JPS6014493B2 - electromagnetic induction equipment - Google Patents

electromagnetic induction equipment

Info

Publication number
JPS6014493B2
JPS6014493B2 JP1190480A JP1190480A JPS6014493B2 JP S6014493 B2 JPS6014493 B2 JP S6014493B2 JP 1190480 A JP1190480 A JP 1190480A JP 1190480 A JP1190480 A JP 1190480A JP S6014493 B2 JPS6014493 B2 JP S6014493B2
Authority
JP
Japan
Prior art keywords
refrigerant
iron core
soot
container
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1190480A
Other languages
Japanese (ja)
Other versions
JPS56107531A (en
Inventor
宏和 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1190480A priority Critical patent/JPS6014493B2/en
Publication of JPS56107531A publication Critical patent/JPS56107531A/en
Publication of JPS6014493B2 publication Critical patent/JPS6014493B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 この発明は凝縮性冷蝶によって冷却する電磁誘導機器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electromagnetic induction equipment cooled by condensing cooling butterflies.

変圧器の冷却効率を良くするためには変圧器とその冷却
媒体との間の熱交換効率を高くすることが重要であるが
、六弗化硫黄(SF6)などの電気絶縁ガスを絶縁及び
冷却媒体にしたガス絶縁変圧器の場合、この熱交換効率
を高めるために、変圧器の常規運転温度および圧力で気
化しうるような不活性の弗素添加有機化合物などの液体
冷却材(以後冷媒と呼ぶ)を変圧器の鉄心や巻線などの
発熱部分に噴霧または散布し、冷却液を蒸発させて冷却
する蒸発冷却式ガス絶縁変圧器が使用される。
In order to improve the cooling efficiency of a transformer, it is important to increase the heat exchange efficiency between the transformer and its cooling medium. In the case of gas-insulated transformers, liquid coolants (hereinafter referred to as refrigerants) such as inert fluorinated organic compounds that can vaporize at the normal operating temperatures and pressures of the transformer are used to increase the efficiency of this heat exchange. ) is sprayed or dispersed onto heat-generating parts such as the core and windings of the transformer, and the evaporative cooling type gas insulated transformer is used, which cools the transformer by evaporating the coolant.

この蒸発冷却式ガス絶縁変圧器の基本的な構造を第1図
に示す例によって説明する。
The basic structure of this evaporative cooling type gas insulated transformer will be explained using the example shown in FIG.

変圧器巻線1や鉄心2は密封された容器3内に収納され
、容器内部はSF6ガスなどの変圧器の絶縁に適するガ
ス4が適切な圧力で封入されている。容器3の底部には
冷煤6が常時溜められている。変圧器運転時には、この
袷煤5がポンプ6によって汲み上げられ、導管7を通じ
て噴霧器8又は、他の適当な散布器に送られて巻線1及
び鉄心2にできるかぎり約一に噴霧又は散布される。こ
の冷嬢5は巻線1及び鉄心2に近ずくか、また触れて熱
せられると、その温度に対応した蒸気圧に達するまで気
化し、巻線1及び鉄心2より発生した熱を吸収する。こ
の時の巻線1及び鉄心2と冷煤5との間の高い熱交換効
率を利用して、巻線1及び鉄心2を冷却する方式が蒸発
冷却式ガス絶縁変圧器の基本方式である。なお、気化し
た冷却液は容器3の表面及び凝縮器9において放熱して
再び液化し、容器底部の冷煤溜にもどる。
The transformer winding 1 and the iron core 2 are housed in a sealed container 3, and the inside of the container is filled with a gas 4 suitable for insulating the transformer, such as SF6 gas, at an appropriate pressure. Cold soot 6 is always stored at the bottom of the container 3. When the transformer is in operation, this soot 5 is pumped up by a pump 6 and sent through a conduit 7 to a sprayer 8 or other suitable spreader where it is sprayed or spread over the windings 1 and core 2 as closely as possible. . When this cooler 5 approaches or touches the winding 1 and the iron core 2 and is heated, it vaporizes until it reaches a vapor pressure corresponding to the temperature, and absorbs the heat generated by the winding 1 and the iron core 2. A method of cooling the winding 1 and the iron core 2 by utilizing the high heat exchange efficiency between the winding 1 and the iron core 2 and the cold soot 5 at this time is the basic method of the evaporative cooling type gas insulated transformer. The vaporized coolant radiates heat on the surface of the container 3 and the condenser 9, liquefies it again, and returns to the cold soot reservoir at the bottom of the container.

矢印10のように凝縮器9に運ばれてそこで放熱した袷
煤5は矢EO11のように流れて容器底部にもどり、再
びポンプ6によって循環される。ところで、第1図に示
すような構造の場合、液化した冷媒5がポンプ6によっ
て直接、噴霧器8に送られるので、容器下部の冷煤溜に
ある冷煤5の温度と噴霧器8より頃霧された冷媒5の温
度はほぼ等しく、冷煤5の蒸気が液化した直後の温度に
近いかなり高い値になる。
The soot 5, which is carried to the condenser 9 as shown by the arrow 10 and radiated heat there, flows as shown by the arrow EO11 and returns to the bottom of the container, where it is circulated again by the pump 6. By the way, in the case of the structure shown in FIG. 1, the liquefied refrigerant 5 is sent directly to the atomizer 8 by the pump 6, so the temperature of the cold soot 5 in the cold soot reservoir at the bottom of the container and the amount of atomization from the atomizer 8 are determined by the pump 6. The temperatures of the refrigerant 5 are almost the same, and are quite high, close to the temperature immediately after the vapor of the cold soot 5 liquefies.

なぜならば、凝縮器9や容器3の表面の放熱作用の多く
が、冷媒5の蒸気やSF6ガスの温度を下げるとともに
、蒸気の気化潜熱を奪い取って、それを液化させるため
に使われるので、液化した後の冷媒5の温度を下げる作
用はそれほど大きくないためである。このように、贋霧
された冷媒5の温度が高いと巻線1や鉄心2との温度差
が小さく、そのため冷媒5の接触による巻線1や鉄心2
の冷却効果が小さくなる。噂窮された冷蝶5の温度が高
く、蒸発しやすい状態にあると、冷嫌5の大半が巻線1
及び鉄心2の上部で蒸発してしまい、巻線1や鉄心2の
全体を均一に冷却することが困難になる。一方、容器3
の内部圧力は、ガス4のガス圧と袷煤5の蒸気の圧力の
和になるが、容器3の機械強度の上からはこの圧力の和
がなるべく小さいことが望ましい。しかし、冷嬢の温度
が高いと、その温度に対する冷煤の蒸気圧が大きいので
、容器内の圧力は大きくり、容器にその圧力に耐えられ
る大きな機械強度を持たせることが必要になる。本発明
は上記したような欠点を改善する目的でなされたもので
ある。
This is because most of the heat dissipation on the surface of the condenser 9 and container 3 is used to lower the temperature of the refrigerant 5 vapor and SF6 gas, as well as to take away the latent heat of vaporization from the vapor and liquefy it. This is because the effect of lowering the temperature of the refrigerant 5 after this is not so great. In this way, when the temperature of the misted refrigerant 5 is high, the temperature difference between the winding 1 and the iron core 2 is small, and therefore the winding 1 and the iron core 2 due to contact with the refrigerant 5 are
cooling effect becomes smaller. It is rumored that if the temperature of the cold butterfly 5 is high and it is easy to evaporate, most of the cold butterfly 5 will be in the winding 1.
This evaporates in the upper part of the iron core 2, making it difficult to uniformly cool the entire winding 1 and the iron core 2. On the other hand, container 3
The internal pressure is the sum of the gas pressure of the gas 4 and the pressure of the steam of the soot 5, but from the viewpoint of the mechanical strength of the container 3, it is desirable that this sum of pressures be as small as possible. However, when the temperature of the cold container is high, the vapor pressure of the cold soot is high relative to that temperature, so the pressure inside the container increases, and the container needs to have high mechanical strength to withstand that pressure. The present invention was made for the purpose of improving the above-mentioned drawbacks.

本発明の一実施例を第2図によって説明する。図におい
て、1〜11は従来のものと同様である。12はポンプ
6によって送り出された袷煤5が噴霧器8から放出され
る前に、裕煤5を冷却する放熱器である。この放熱器1
2は導管7の長さを長くして導管7と外気との接触面積
をたきくしたものでもよい。また、冷却フィン等を設け
て放熱表面積を大きくしたものや、冷却扇によって強制
的に冷却してもよい。放熱器12を設けることによって
噴霧器8から放出される袷煤5の温度は放熱器12を通
る前に冷媒溜にあった冷煤5の温度よりも低くすること
ができる。このようにして、冷却し低温にした冷煤を頃
議することにより、巻線1や鉄心2の冷却効果があがる
ばかりか、冷蝶5が巻線1や鉄心2の上部だけで蒸発し
てしまわないように放熱器12の放熱量を適当に選び冷
煤5の温度を調節することによって、巻線1や鉄心2を
より一様に冷却すことができる。また、袷媒5の温度を
下げることによって、冷煤5の蒸気圧を低くすることが
できる、そのため容器3の内圧が低くなるので、容器3
が必要とする機械的強度を小さくすることができる。以
上のように本発明は袷煤の楯還経路中に液化した冷煤を
冷却するための放熱器を設けて冷煤の温度を下げること
によって、冷却効果を向上させ、一様な冷却を行なわせ
るとともに容器が必要とする機械的強度を低減すること
ができる。
An embodiment of the present invention will be described with reference to FIG. In the figure, numerals 1 to 11 are the same as conventional ones. A radiator 12 cools the soot 5 sent out by the pump 6 before it is discharged from the sprayer 8. This heat sink 1
2 may be one in which the length of the conduit 7 is increased to increase the contact area between the conduit 7 and the outside air. Alternatively, cooling fins or the like may be provided to increase the heat dissipation surface area, or forced cooling may be performed using a cooling fan. By providing the radiator 12, the temperature of the soot 5 discharged from the atomizer 8 can be lower than the temperature of the cold soot 5 that was in the refrigerant reservoir before passing through the radiator 12. In this way, by distributing cold soot that has been cooled to a low temperature, not only the cooling effect of the winding 1 and the iron core 2 is improved, but also the cold soot 5 evaporates only in the upper part of the winding 1 and the iron core 2. The winding 1 and the iron core 2 can be cooled more uniformly by appropriately selecting the amount of heat radiated by the radiator 12 and adjusting the temperature of the cold soot 5 so as not to cause the soot to cool. In addition, by lowering the temperature of the liner 5, the vapor pressure of the cold soot 5 can be lowered, which lowers the internal pressure of the container 3.
The mechanical strength required can be reduced. As described above, the present invention improves the cooling effect and performs uniform cooling by providing a radiator for cooling the liquefied cold soot in the shield return path of the soot and lowering the temperature of the cold soot. At the same time, the mechanical strength required by the container can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁誘導機器の構成図、第2図はこの発
明の一実施例を示す構成図である。 図において、1は巻線、2は鉄心、5は冷媒、9は凝縮
器、12は放熱器である。なお各図中同一符号は同一又
は相当部分を示す。第1図第2図
FIG. 1 is a block diagram of a conventional electromagnetic induction device, and FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, 1 is a winding, 2 is an iron core, 5 is a refrigerant, 9 is a condenser, and 12 is a radiator. Note that the same reference numerals in each figure indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 密封容器内に巻線及び鉄心を収納し蒸発性の冷媒を
上記巻線及び上記鉄心に散布して蒸発時の気化潜熱によ
って上記巻線及び上記鉄心を冷却し、気化した上記冷媒
を凝縮器で液化する構成にしたものにおいて、上記冷媒
の循環経路中に液相の上記冷媒を、冷却する放熱器を設
けたことを特徴とする電磁誘導機器。
1. The windings and the iron core are housed in a sealed container, and an evaporative refrigerant is sprayed onto the windings and the iron core, the windings and the iron core are cooled by the latent heat of vaporization during evaporation, and the vaporized refrigerant is transferred to a condenser. 1. An electromagnetic induction device configured to liquefy the refrigerant, characterized in that a radiator for cooling the refrigerant in a liquid phase is provided in a circulation path of the refrigerant.
JP1190480A 1980-01-30 1980-01-30 electromagnetic induction equipment Expired JPS6014493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1190480A JPS6014493B2 (en) 1980-01-30 1980-01-30 electromagnetic induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1190480A JPS6014493B2 (en) 1980-01-30 1980-01-30 electromagnetic induction equipment

Publications (2)

Publication Number Publication Date
JPS56107531A JPS56107531A (en) 1981-08-26
JPS6014493B2 true JPS6014493B2 (en) 1985-04-13

Family

ID=11790709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190480A Expired JPS6014493B2 (en) 1980-01-30 1980-01-30 electromagnetic induction equipment

Country Status (1)

Country Link
JP (1) JPS6014493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103359A (en) * 1982-12-03 1984-06-14 Mitsubishi Electric Corp Cooling device for heating element
JPS61236108A (en) * 1985-04-12 1986-10-21 Mitsubishi Electric Corp Vapor-cooling type transformer

Also Published As

Publication number Publication date
JPS56107531A (en) 1981-08-26

Similar Documents

Publication Publication Date Title
US2643282A (en) Electronic equipment cooling means
US5508884A (en) System for dissipating heat energy generated by an electronic component and sealed enclosure used in a system of this kind
JP2001521138A (en) Multi-mode two-phase cooling system
JPH0563954B2 (en)
US11306957B2 (en) Liquid nitrogen-based cooling system
TW200521657A (en) Pumped liquid cooling system using a phase change refrigerant
JPS6014493B2 (en) electromagnetic induction equipment
US2164730A (en) Refrigeration
JPH0897338A (en) Cooler for power semiconductor device
JP2001342458A (en) Vaporization-type heat transfer hydraulic fluid
JPS5953689B2 (en) Phase conversion cooling system for electrical equipment
JPS61131553A (en) Immersion liquid cooling apparatus
JPS5860512A (en) Evaporation cooling induction electric appliance
JPS64543Y2 (en)
JPS5844639Y2 (en) Electronics
JPS6336658Y2 (en)
JPH10318654A (en) Cooler of refrigerator
JPS58194317A (en) Vaporization cooling type transformer
JPS5937843B2 (en) transformer equipment
JPS59103359A (en) Cooling device for heating element
US1723453A (en) Refrigeration
JPS6312116A (en) Incombustible-oil-immersed induction electric appliance
JPS58101407A (en) Vaporizative-cooling type transformer
JPH0644088Y2 (en) Evaporative cooling electric equipment
JPS6028213A (en) Evaporation cooling type transformer