JPS6327060B2 - - Google Patents

Info

Publication number
JPS6327060B2
JPS6327060B2 JP55000582A JP58280A JPS6327060B2 JP S6327060 B2 JPS6327060 B2 JP S6327060B2 JP 55000582 A JP55000582 A JP 55000582A JP 58280 A JP58280 A JP 58280A JP S6327060 B2 JPS6327060 B2 JP S6327060B2
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
separation
separated
high gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55000582A
Other languages
Japanese (ja)
Other versions
JPS5697560A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP58280A priority Critical patent/JPS5697560A/en
Publication of JPS5697560A publication Critical patent/JPS5697560A/en
Publication of JPS6327060B2 publication Critical patent/JPS6327060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

開示技術は希土類酸化物の磁選に於てパルス磁
界を付与される高勾配磁場に対し希土類酸化物を
重力を介して流過して磁化率の差により選別する
技術に属するものである。 而して、この発明は希土類酸化物を重力によつ
て選別場内に流過させることにより磁力選鉱させ
る磁場分離方法に関するものであり、特に、採鉱
鉱物より予め鉄、マンガン等の強磁性鉱物を一般
の磁力選鉱にて分離除去した後に得られた、或
は、未分離のものからの希土類含有鉱物を帯磁性
細線を有する複段のパルス磁界発生傾斜高勾配磁
場に重力を介して流過させ各希土類酸化物の磁化
率の差によりパルス磁界偏倚力を受けて分離し易
いものから水平方向に分離する様にした希土類酸
化物磁場分離方法に係るものである。 希土類金属は、周知の様に従来より鉄鋼業に於
ける脱酸、水和反応等に広く用いられ、又、工業
面ではライター発火石等にも使用されていたが、
近時、テレビ、顔料等の民生用は勿論、研摩材、
レーザー用の新工業分野に於ける開発採用もされ
る様になり、超電導材料、或は、原子力用等の研
究用材料としても、そして近時さらに高エネルギ
ー磁石として使用される様になつて来て需要が急
速に高まつて来ている。 従つて、それらのニーズに応えるべく採鉱から
の高効率、無公害精選技術の開発が望まれる様に
なつて来ている。 ところで、一般に該希土類金属については漂砂
鉱床から酸化物の形で産出され、採鉱々物中から
は鉄、マンガン系の強磁性鉱物に対する弱磁性を
利用し通常の磁力選鉱を介して分離選別する様に
されている。 而して、上記の様にして分離された希土類酸化
物含有鉱物については、例えば、NaOH,Hcl,
C2O4H2、或は、H2SO4等により抽出処理され、
続いて酸性溶液にシユウ酸を加えてシユウ酸塩と
して沈澱させ、その後沈澱物を焙焼して希土類酸
化物となし、これを溶解処理し沈降分離してLa
系とCe系にまず2分する。 そして、La系については溶融塩電解により析
出分離し、又、Ce系については酸処理して更に
Ce系とLa,Nd,Pr,Sm系に2分し前者のCe系
については溶融塩電解により析出分離し、後者に
ついては塩基処理、又は、DZEPA処理により
R2O3として夫々の溶融塩電解によりLa,Nd,
Pr、又はSmを析出分離するか、上記DZEPA処
理後イオン交換樹脂処理によつてR2O3とし、以
後前記同様の析出分離操作等の工程を行うことに
より分離している。 さりながら、上記在来の相互分離方法は化学的
乃至物理化学的分離方法であるため、前述の如
く、分離処理操作工程は極めて煩瑣多岐であり、
処理薬液の量、種類も多く、コスト的にも高くな
る不利点があり、しかもプロセスの管理もし難い
難点があつた。 又、上記の様に薬液処理工程が多いため廃液処
理を誤ると二次公害が発生するおそれがある不都
合さもあつた。 そして、前記の如くPr,Nd,Sm等の有用希
土類金属の終段分離が著るしく困難であるため磁
石材触媒、レーザー用材の供給難、コスト高に連
がるデメリツトがあつた。 この発明の目的は上記従来技術に基づく希土類
酸化物含有鉱物の分離方法の問題点に鑑み、採鉱
鉱物中から在来通りに鉄、マンガン等の強磁性体
を予め磁選分離除去し、残留希土類含有鉱物、或
は、抽出焙焼処理希土酸化物を斜面に重力により
流下し、而して該斜面に帯磁性細線を斜設して介
装した電磁石にパルス電流を通電してパルス磁界
による高勾配磁場を形成し、該パルス高勾配磁場
を流過させることにより希土類酸化物の磁化率の
差に基づき側方分離力を衝撃的に付与し、水平方
向に各希土類酸化物を分離する様にした優れた希
土類酸化物磁場分離方法を提供せんとするもので
ある。 次に上記目的に沿うこの発明の実施例を図面に
従つて説明すれば以下の通りである。 まず、この発明の原理に於て、希土類及び希土
類酸化物は弱磁性体であるものゝ、後者の方がそ
の磁化率が大きいことに着目されている。 ちなみにその磁化率Xを例示すると次表の如く
である。
The disclosed technique belongs to a technique in magnetic separation of rare earth oxides in which rare earth oxides are caused to flow through a high gradient magnetic field applied with a pulsed magnetic field via gravity and are sorted based on the difference in magnetic susceptibility. Therefore, this invention relates to a magnetic field separation method in which rare earth oxides are magnetically separated by flowing through a sorting field by gravity. Rare earth-containing minerals obtained after separation and removal by magnetic beneficiation or unseparated minerals are passed through a multi-stage pulsed magnetic field generating gradient high gradient magnetic field with magnetic fine wires via gravity. This relates to a method for separating rare earth oxides in a magnetic field, in which those that are easier to separate are separated in the horizontal direction by receiving a pulsed magnetic field biasing force due to the difference in magnetic susceptibility of the rare earth oxides. As is well known, rare earth metals have been widely used for deoxidation and hydration reactions in the steel industry, and have also been used industrially for lighter flints, etc.
Recently, in addition to consumer products such as televisions and pigments, abrasives,
It has been developed and adopted in new industrial fields for lasers, and has also come to be used as a superconducting material, research material for nuclear power, and recently as a high-energy magnet. Demand is rapidly increasing. Therefore, in order to meet these needs, it has become desirable to develop highly efficient and pollution-free selection technology from mining. By the way, rare earth metals are generally produced in the form of oxides from alluvial deposits, and are separated and sorted from mined ores through ordinary magnetic beneficiation using their weak magnetism against ferromagnetic minerals such as iron and manganese. is being used. For rare earth oxide-containing minerals separated as described above, for example, NaOH, Hcl,
Extracted with C 2 O 4 H 2 or H 2 SO 4 , etc.
Next, oxalic acid is added to the acidic solution to precipitate oxalate, and the precipitate is then roasted to form rare earth oxides, which are dissolved and separated by sedimentation to form La.
First, divide it into two parts: system and Ce system. La-based materials are precipitated and separated by molten salt electrolysis, and Ce-based materials are further treated with acid.
It is divided into two types: Ce-based and La, Nd, Pr, Sm-based. The former Ce-based is precipitated and separated by molten salt electrolysis, and the latter is separated by base treatment or DZEPA treatment.
La , Nd ,
Pr or Sm is separated by precipitation or converted into R 2 O 3 by ion exchange resin treatment after the above-mentioned DZEPA treatment, and then separated by performing steps such as precipitation separation operations similar to those described above. However, since the above-mentioned conventional mutual separation methods are chemical or physicochemical separation methods, the separation processing steps are extremely complicated and diverse, as described above.
There are disadvantages in that the amount and variety of processing chemicals are large, the cost is high, and it is also difficult to control the process. Further, as mentioned above, since there are many chemical treatment steps, there is a risk that secondary pollution may occur if the waste liquid is treated incorrectly. As mentioned above, it is extremely difficult to separate useful rare earth metals such as Pr, Nd, and Sm at the final stage, resulting in disadvantages such as difficulty in supplying magnet catalysts and laser materials, and high costs. The purpose of this invention is to remove ferromagnetic substances such as iron and manganese from mined minerals by magnetic separation in advance in the conventional manner, in view of the problems with the separation method of rare earth oxide-containing minerals based on the above-mentioned conventional technology, and to remove residual rare earth oxides from mined minerals. Minerals or extracted and roasted rare earth oxides are allowed to flow down a slope by gravity, and a pulsed current is applied to an electromagnet interposed with magnetically thin wires diagonally installed on the slope to generate a high magnetic field. By forming a gradient magnetic field and passing the pulsed high gradient magnetic field, a lateral separation force is applied impulsively based on the difference in magnetic susceptibility of the rare earth oxides, so that each rare earth oxide is separated in the horizontal direction. The purpose of the present invention is to provide an excellent magnetic field separation method for rare earth oxides. Next, embodiments of the present invention in accordance with the above object will be described below with reference to the drawings. First, in the principle of the present invention, attention is paid to the fact that rare earth elements and rare earth oxides are weakly magnetic substances, and that the latter has a higher magnetic susceptibility. Incidentally, the magnetic susceptibility X is illustrated in the following table.

【表】 従つて、各相互間の磁化率の差の絶対値は酸化
物の場合の方が大きいことが判る。 ところで、近時所謂高勾配磁場分離方式が新し
く開発される様になつて来ているが、この発明に
於ては該高勾配磁場分離を適用するものである。 基本的処理は第1図に示す様に所定に採鉱され
た希土類酸化物含有鉱石1は周知の抽出処理工程
2を経て焙焼処理工程3の後に残留希土類酸化物
分離工程4で次に詳述する様に処理する。 該分離処理工程に使用する分離装置5は第2図
に示す如く側視略直角三角形のフレーム状スタン
ド6のプラスチツクプレート斜面7の下端には設
定数のホツパー8,8…が併設されている。 一方、該斜面7の上縁にはシユート9が設けら
れ、その上部には被分離用材料を供給する振動プ
レート10が適宜バイブレータ11に連係されて
設けられており、更に該振動プレート10上には
多数の水噴出用ノズル12,12…を穿設した水
パイプ13が図示しない給水源に接続されて臨ま
されている。 而して、それらの上位置には振動プレート10
に平行にベルトコンベア14が同じく図示しない
切出用振動フイーダに接続されて設けられてお
り、更に該振動プレート10に対応する部位には
全幅掻出可能に位相差を介してスクレーパ15,
15…が所定数複段付設されている。 そして、図示する様に上記プラスチツク斜面7
には第2,3図に示す様に該プラスチツク斜面7
の表面円滑さを損うことが無い様に面一化されて
ステンレス製細線16,16…が該斜面7の正面
視態様で設定幅、間隔、角度を以つてプラスチツ
ク、ガラス等中に混合して一体的に埋設され、更
に各ステンレス製細線16には極性が対向する様
に両極対接された電磁石17が該プラスチツク斜
面7の裏面に付設されている。 そして該各電磁石17に巻装した電磁コイル1
8は直列に連結されて分離装置5に併設されたケ
ース19内の周知のサイラトロンまたはSCR等
のスイツチ20、抵抗21を介し電源22に接続
されており、該スイツチ20には、例えば、4〜
1KHzのパルス信号23が印加される様にされ並
列介装コンデンサー24が上記各電磁コイル1
8,18…に間歇的に放電してパルス電流励磁を
する様にされている。 この様な装置に対して、上記スイツチ20にパ
ルス信号23を印加し、各電磁コイル18,18
…に振動電圧を印加し、ステンレス製細線16,
16…にパルス磁界を発振させ、又、水パイプ1
3に給水してノズル12,12…から水を噴出
し、併せてバイブレータ11を起振させベルトコ
ンベア14に対して前記希土類酸化物の粒状原料
を均一に供給する。 そこで、該ベルトコンベア14によつて前記希
土類酸化物は供給端でスクレーパ15,15…に
より平均して掻き除かれ振動プレート10上に落
下され、該振動プレート10の振動によつて水パ
イプ13からの水と混合され一種のスラリーにさ
れシユート9を介して斜面7上に落下される。 そこで、該斜面7を滑走落下する希土類酸化物
1は重力によつて降下するプロセスで前記電磁石
17,17…によるステンレス製細線16,16
…に形成される磁場をを通過し、而して、該磁場
がパルス磁場とされているため周期的に衝撃的な
側方偏倚力を受け、それも前記した様に希土類酸
化物の磁化率の差により磁化の大きさを異なつて
受け、分離し易いものから順に側方に分離されて
いく。 従つて、最下端に達したところで充分々離状態
にされ、ホツパー8,8…に分離される。 そして、ホツパー8,8…の下端には適宜フイ
ルターを付設して固液分離し、開閉ダンパーを介
して回収次段処理に移行する。 尚、各酸化物粒子の効率的分離としては図上斜
面7の上部始端(右端)側から降下させて複段処
理を行うことにより分離精度を上げることが出来
る。 上記実施例に則す実験例によれば、500#の
Bastnaesiteの加熱酸化した希土類酸化物を鉱石
として分離原料に用いステンレス製約4μの細線
を高勾配磁場コアに用い表面に3μレジンコーテ
イングしたガラス斜面を形成し電磁石による高勾
配磁場を形成する様にし4KHzのパルス磁場を形
成し分離処理を行つたところPr6O11Nd2O3
Sm2O3,Ce2O3,La2O3等の分離が確実に出来、
例えば、La2O3とSm2O3の分離はワンパスプロセ
スで95%の精度で得られた。 尚、この発明の実施例は上記実施態様に限るも
のでなく、種々の態様が可能であり、設計も各種
変更が可能である。 上記の様にこの発明によれば、希土類酸化物分
離に際し、採鉱々物より予め鉄、クロム等の強磁
性物を通常の磁選により分離除去し残留した希土
類酸化物を複段列設した高勾配磁場に重力を介し
て落下降下させ、而して該高勾配磁場にパルス磁
界を付与する様にしたことにより、基本的に希土
類酸化物の有する磁化率の差により該高勾配磁場
に於て各希土類酸化物は異なる側方偏倚力を受け
分離し易いものより分離され、従つて、該磁化率
をインデツクスとし、その差によつて確実に相互
分離することが出来る効果がある。 更に、該高勾配磁場にパルス磁場を付与するこ
とにより流過希土類酸化物に対する側方偏倚力が
衝撃的に反復して付与されるため上記側方分離が
より促進される優れた効果があり、複段の高勾配
磁場と相俟つて極めて効果的に作用されるメリツ
トがある。 従つて、在来の化学的分離操作と異なり、1プ
ロセス分離で簡単に出来、処理に薬液等も用い
ず、公害発生もなく、装置もシンプルで安価で出
来る利点がある。
[Table] Therefore, it can be seen that the absolute value of the difference in magnetic susceptibility between the two is larger in the case of oxides. By the way, recently, a new so-called high gradient magnetic field separation system has been developed, and the present invention applies this high gradient magnetic field separation. The basic process is as shown in Figure 1. A rare earth oxide-containing ore 1 that has been mined in a specified manner goes through a well-known extraction process 2, a roasting process 3, and a residual rare earth oxide separation process 4, which will be detailed next. Process as desired. As shown in FIG. 2, the separation device 5 used in the separation process includes a set number of hoppers 8, 8, . On the other hand, a chute 9 is provided on the upper edge of the slope 7, and a vibrating plate 10 for supplying the material to be separated is provided on the upper edge of the chute 9 in conjunction with a vibrator 11 as appropriate. A water pipe 13 in which a large number of water jet nozzles 12, 12, . . . are bored is connected to a water supply source (not shown). A vibrating plate 10 is placed above them.
A belt conveyor 14 is connected to a cutting vibrating feeder (not shown) in parallel with the belt conveyor 14, and a scraper 15, which is connected to a vibrating feeder (not shown), is provided at a portion corresponding to the vibrating plate 10 via a phase difference so as to be able to scrape the entire width.
15... are provided in multiple stages in a predetermined number. Then, as shown in the figure, the plastic slope 7 is
As shown in FIGS. 2 and 3, the plastic slope 7 is
Fine stainless steel wires 16, 16... are mixed into the plastic, glass, etc. with set widths, intervals, and angles when viewed from the front of the slope 7 so as not to impair the surface smoothness of the surface. Further, an electromagnet 17 is attached to the back surface of the plastic slope 7, and each stainless steel thin wire 16 has both poles in contact with each other so that the polarities thereof are opposite to each other. And the electromagnetic coil 1 wound around each electromagnet 17
8 are connected in series and connected to a power source 22 via a switch 20 such as a well-known thyratron or SCR in a case 19 attached to the separation device 5, and a resistor 21.
A 1KHz pulse signal 23 is applied to each electromagnetic coil 1 in parallel with a parallel interposed capacitor 24.
8, 18, . . . are discharged intermittently to excite pulsed current. For such a device, a pulse signal 23 is applied to the switch 20, and each electromagnetic coil 18, 18
Applying an oscillating voltage to..., the thin stainless steel wire 16,
16... oscillates a pulsed magnetic field, and the water pipe 1
3 and jets out water from the nozzles 12, 12, . Therefore, the rare earth oxide is scraped off on average by the scrapers 15, 15, . The slurry is mixed with water to form a kind of slurry and is dropped onto the slope 7 via the chute 9. Therefore, the rare earth oxide 1 sliding down the slope 7 is lowered by the electromagnets 17, 17, . . . in the process of falling by gravity.
It passes through the magnetic field formed by ..., and because the magnetic field is a pulsed magnetic field, it is periodically subjected to an impulsive lateral biasing force, which also affects the magnetic susceptibility of the rare earth oxide as mentioned above. Due to the difference in magnetization, they receive different degrees of magnetization, and are separated laterally in order of ease of separation. Therefore, when it reaches the lowest end, it is sufficiently separated and separated into hoppers 8, 8, . . . . Then, filters are appropriately attached to the lower ends of the hoppers 8, 8, . Incidentally, in order to effectively separate each oxide particle, separation accuracy can be improved by performing multi-stage processing by descending from the upper starting end (right end) side of the slope 7 in the figure. According to an experimental example based on the above example, 500#
Bastnaesite's heated and oxidized rare earth oxide ore is used as the separation raw material, and a stainless steel thin wire of about 4μ is used as the high gradient magnetic field core.A glass slope coated with 3μ resin is formed on the surface, and a high gradient magnetic field is generated by an electromagnet at 4KHz. When a pulsed magnetic field was formed and separation processing was performed, Pr 6 O 11 Nd 2 O 3 ,
Sm 2 O 3 , Ce 2 O 3 , La 2 O 3 etc. can be separated reliably.
For example, separation of La 2 O 3 and Sm 2 O 3 was obtained with 95% accuracy in a one-pass process. Note that the embodiments of the present invention are not limited to the embodiments described above, and various embodiments are possible, and various changes in design are possible. As described above, according to the present invention, when separating rare earth oxides, ferromagnetic substances such as iron and chromium are previously separated and removed from mined ores by ordinary magnetic separation, and the remaining rare earth oxides are placed in a high gradient in multiple stages. By causing the magnetic field to fall through gravity and applying a pulsed magnetic field to the high gradient magnetic field, basically each of the magnetic fields in the high gradient magnetic field is Rare earth oxides are more easily separated due to different lateral bias forces, and therefore, the magnetic susceptibility is used as an index, and the difference can be used to reliably separate the oxides from each other. Furthermore, by applying a pulsed magnetic field to the high gradient magnetic field, a lateral biasing force is repeatedly and impulsively applied to the flowing rare earth oxide, which has the excellent effect of further promoting the lateral separation. It has the advantage of being extremely effective in conjunction with a multi-stage high gradient magnetic field. Therefore, unlike conventional chemical separation operations, this method has the advantage that separation can be easily performed in one process, no chemicals are used for treatment, there is no pollution, and the equipment is simple and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の1実施例の説明図であり、第
1図は処理フロー説明図、第2図は装置の斜視説
明図、第3図は高勾配磁場機構説明図である。
The drawings are explanatory diagrams of one embodiment of the present invention; FIG. 1 is an explanatory diagram of the processing flow, FIG. 2 is a perspective explanatory diagram of the apparatus, and FIG. 3 is an explanatory diagram of the high gradient magnetic field mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 希土類酸化物を重力によつて流過させるプロ
セスで磁選させる磁場分離方法において、採鉱々
物より強磁性酸化物を磁選により予め除去して得
られた希土類酸化物含有鉱物を傾斜々面に列設し
た複段の電磁高勾配磁場に対し重力を介して流過
させ、而して該流過プロセスにて該電磁高勾配磁
場をパルス磁界とし、磁化率の差により分離し易
いものより分離する様にしたことを特徴とする希
土類酸化物の磁場分離方法。
1 In a magnetic field separation method in which rare earth oxides are magnetically separated by a process of flowing through them by gravity, rare earth oxide-containing minerals obtained by previously removing ferromagnetic oxides from mined ores by magnetic separation are arranged in a sloping plane. The electromagnetic high gradient magnetic field is made to flow through the multi-stage electromagnetic high gradient magnetic field set up by gravity, and in the flow process, the electromagnetic high gradient magnetic field is turned into a pulsed magnetic field, and those that are easier to separate are separated by the difference in magnetic susceptibility. A method for magnetic field separation of rare earth oxides.
JP58280A 1980-01-09 1980-01-09 Magnetic field separation of rare earth oxide Granted JPS5697560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58280A JPS5697560A (en) 1980-01-09 1980-01-09 Magnetic field separation of rare earth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58280A JPS5697560A (en) 1980-01-09 1980-01-09 Magnetic field separation of rare earth oxide

Publications (2)

Publication Number Publication Date
JPS5697560A JPS5697560A (en) 1981-08-06
JPS6327060B2 true JPS6327060B2 (en) 1988-06-01

Family

ID=11477701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58280A Granted JPS5697560A (en) 1980-01-09 1980-01-09 Magnetic field separation of rare earth oxide

Country Status (1)

Country Link
JP (1) JPS5697560A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9156038B2 (en) 2012-03-30 2015-10-13 Rsr Technologies, Inc. Magnetic separation of electrochemical cell materials
KR101349307B1 (en) * 2013-10-29 2014-01-13 한국지질자원연구원 Specific gravity separator for simultaneously separating heavy mineral components and magnetic mineral components
CN104959223B (en) * 2015-06-30 2017-05-24 宁夏共享机床辅机有限公司 Draw type magnetic separation device

Also Published As

Publication number Publication date
JPS5697560A (en) 1981-08-06

Similar Documents

Publication Publication Date Title
US3375925A (en) Magnetic separator
US6253924B1 (en) Magnetic separator apparatus and methods regarding same
US3279602A (en) Magnetic separation process and equipment therefor
EP2812119B1 (en) Method and device for separating nonmagnetic components from a mixture of scrap metal
Xiong et al. New technology of pulsating high gradient magnetic separation
Kelland High gradient magnetic separation applied to mineral beneficiation
US4062765A (en) Apparatus and process for the separation of particles of different density with magnetic fluids
Parker The physics of magnetic separation
US4214984A (en) Magnetic separation
JPS6327060B2 (en)
US5356015A (en) Magnetic separation process
US5238489A (en) Leaching/flotation scrap treatment method
US2079241A (en) Apparatus for separating metallic mixtures
US4424124A (en) Method and magnetic separator for removing weakly magnetic particles from slurries of minute mineral particles
Venkatraman et al. Magnetic and electrostatic separation
US3382977A (en) Magnetic separator with a combination field
US555792A (en) Method of and apparatus for magnetic separation
Oberteuffer Engineering development of high gradient magnetic separators
JPS6325818B2 (en)
KR900008927B1 (en) Process and method for separating noniron ores
US2766888A (en) Method and apparatus for magnetic separation of ores
SU628951A1 (en) Method of depositing useful minerals
RU2343983C2 (en) Separation method and device for its implementation
Iannicelli Development of high extraction magnetic filtration by the kaolin industry of Georgia
GB1046832A (en) Magnetic separator