JPS63269002A - Apparatus for detecting position of body - Google Patents

Apparatus for detecting position of body

Info

Publication number
JPS63269002A
JPS63269002A JP62103791A JP10379187A JPS63269002A JP S63269002 A JPS63269002 A JP S63269002A JP 62103791 A JP62103791 A JP 62103791A JP 10379187 A JP10379187 A JP 10379187A JP S63269002 A JPS63269002 A JP S63269002A
Authority
JP
Japan
Prior art keywords
light
detection area
shielding
blocking
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62103791A
Other languages
Japanese (ja)
Inventor
Susumu Suzuki
進 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP62103791A priority Critical patent/JPS63269002A/en
Publication of JPS63269002A publication Critical patent/JPS63269002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To detect the position of a body, by operationally processing the light blocking phenomenon, which is generated by scanning one laser beam by a rotary mirror to reflect the same from the reflecting part provided to the peripheral surface of a detection area and projecting the reflected beam on the body, and the light blocking phenomenon detected by a beam receiving means. CONSTITUTION:The beam path of the laser beam L of a beam emitting element LD changes by the angle of rotation of a mirror 3. Beam L1 is reflected by the reflecting mirror 4 provided to the peripheral surface of an area 1 to reach a beam receiving element group PD 3 and beam L2 reaches a beam receiving group PD 4 and beam L3 directly goes to a beam receiving element group PD 4 but it is blocked by a body 5 and groups PD 3, 4 are arranged at the predetermined positions on the peripheral surface of the area 1 at arbitrary angles in an arbitrary number so as to continuously output the sum signal of the groups during the projection of the beams L1-L3. The laser beam L1 is blocked by the body 5 in the area 1 and the sum signal of a terminal 6 reduces (first beam blocking phenomenon). The laser beam L3 is blocked so as to provide time difference from the laser beam L1 and the sum signal of the terminal 6 reduces (second beam blocking phenomenon). The position of the body can be calculated by performing operational processing using both output signals corresponding to each other and, by this constitution, the number of beam emitting and receiving elements are reduced to make it possible to detect the position of the body.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、特定な区域内における遮光性物体の位置を
検出し得るように構成された物体の位置検出装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an object position detection device configured to be able to detect the position of a light-blocking object within a specific area.

〈従来の技術〉 従来の遮光性物体の位置検出装置の一例として、第6図
に示した長方形状の検出区域Zにいて相対する二辺にそ
れぞれ多数の受光素子群PDI。
<Prior Art> As an example of a conventional position detection device for a light blocking object, a large number of light receiving element groups PDI are provided on two opposing sides of a rectangular detection area Z shown in FIG.

PD2を配置し、また、長方形状の検出区域Zの四隅に
1個ずつ発光素子LDI、LD2.LD3゜LD4を配
置し、前記発光素子LDI、LD2がらの拡散光は、こ
の発光素子LDI、LD2に対向して配置されている受
光素子群PD2の全てが受光し得るように構成し、また
、前記発光素子LD3.LD4からの拡散光もこれと対
向して配置されている受光素子群PDIの全てが受光し
得るように構成され、遮光性物体が前記長方形状の検出
区域Z内に存在した場合は、この遮光性物体の位置に対
応して遮光現象の生じた受光素子群の各受光素子の位置
によって、その遮光性物体の位置を検出する方式が実用
化されている。
PD2 is arranged, and light emitting elements LDI, LD2 . LD3 and LD4 are arranged, and the diffused light from the light emitting elements LDI and LD2 is configured so that all of the light receiving element group PD2 arranged facing the light emitting elements LDI and LD2 can receive the light, and The light emitting element LD3. The diffused light from the LD4 is also configured to be received by all of the light receiving element groups PDI arranged facing the LD4, and when a light blocking object exists within the rectangular detection area Z, this light blocking object A system has been put into practical use in which the position of a light-shielding object is detected based on the position of each light-receiving element in a group of light-receiving elements in which a light-shielding phenomenon occurs in correspondence with the position of the light-shielding object.

〈発明が解決しようとする問題点〉 前記従来技術の物体の位置検出装置は、発光素子が従来
に比べてかなり削減されているものの、・ 受光素子の
数は以前として多数使用している。また、発光素子の数
を削減したがために1個の発光素子の光を多数の受光素
子に供給することになり必然的に放射角の大きい発光素
子を利用しなければならない。そのため発光素子1個あ
たりの受光量は少なく、位置検出能力(検出領域、検出
分解能および信頼性)に限界を生じる。
<Problems to be Solved by the Invention> Although the object position detecting device of the prior art has considerably fewer light-emitting elements than the conventional one, it still uses a large number of light-receiving elements. Furthermore, since the number of light emitting elements is reduced, the light from one light emitting element is supplied to a large number of light receiving elements, and it is therefore necessary to use a light emitting element with a large radiation angle. Therefore, the amount of light received by each light emitting element is small, which limits the position detection ability (detection area, detection resolution, and reliability).

く問題点を解決するための手段〉 この発明は、前記のような問題点を解決するため、検出
区域内に遮光性を有する遮光性物体が存在する場合に、
その遮光性物体の位置を検出する位置検出装置であって
、1個の光源から発射された光を順次偏向走査する検出
区域の周面部の所定位置に配設した回転鏡を用いた走査
手段と、この走査手段によって走査された光を、検出区
域の周面部の所定位置に配設した反射手段を介して遮光
性物体に投射させて生じた第1の遮光現象と前記走査手
段によって走査された光を前記遮光性物体に直接投射さ
せて生じた第2の遮光現象とを検出する受光手段として
、前記反射手段に対向および斜め対向するように前記検
出区域の周面部に受光素子を所定の間隔を置いて複数個
配設し、この受光手段によって検出された前記第1およ
び第2の遮光現象に対応する信号によって前記遮光性物
体の位置を検出する検出手段とよりなることを特徴とす
る物体の位置検出装置を提供するものである。
Means for Solving the Problems> In order to solve the problems as described above, the present invention provides a means for solving the above-mentioned problems when there is a light-shielding object having a light-shielding property within the detection area.
The position detection device detects the position of the light-blocking object, and includes scanning means using a rotating mirror disposed at a predetermined position on the circumferential surface of a detection area that sequentially deflects and scans light emitted from one light source. , a first light-shielding phenomenon caused by projecting the light scanned by the scanning means onto a light-shielding object via a reflection means disposed at a predetermined position on the circumferential surface of the detection area; As a light-receiving means for detecting a second light-shielding phenomenon caused by directly projecting light onto the light-shielding object, light-receiving elements are disposed at a predetermined interval on a peripheral surface of the detection area so as to face and diagonally face the reflection means. and a detection means for detecting the position of the light-blocking object based on signals corresponding to the first and second light-blocking phenomena detected by the light-receiving means. The present invention provides a position detection device.

〈作 用〉 前記のような物体の位置検出装置により、1個の光源か
ら発射された光を順次偏向走査する回転鏡を用いた走査
手段によって走査された光ビームを、検出区域の周面部
の所定位置に配設した反射手段を介して遮光性物体に投
射させて生じた第1の遮光現象と、前記走査手段によっ
て走査された光ビームとを検出する、前記反射手段に対
向および斜め対向するように検出区域の周面部に受光素
子を所定間隔を置いて複数個配設した受光手段によって
検出された、前記第1および第2の遮光現象に対応する
信号を、演算処理することによって、検出区域内の遮光
性物体の位置を検出することができる。
<Operation> The object position detection device as described above scans the light beam scanned by a scanning means using a rotating mirror that sequentially deflects and scans the light emitted from one light source, onto the peripheral surface of the detection area. Detecting a first light shielding phenomenon caused by projecting the light onto a light shielding object through a reflection means disposed at a predetermined position and a light beam scanned by the scanning means, and facing and diagonally facing the reflection means. Detection is performed by computationally processing signals corresponding to the first and second light shielding phenomena detected by a light receiving means in which a plurality of light receiving elements are arranged at predetermined intervals on the circumferential surface of the detection area. The position of a light-blocking object within the area can be detected.

〈実施例〉 第1図は、この発明の物体の位置検出装置の一例であり
、1は遮光性物体の検出区域、2は発光素LDから光が
投射されるコリメートレンズ、3はコリメートレンズを
通した光ビームLが投射される鏡面3aを有する回転鏡
、Mはこの回転鏡を回転させるとともに回転パルス発生
器を備えているモータ、4は検出区域1の周面部に配設
した反射手段である固定された反射鏡、5は検出区域1
内にある遮光性物体、PD3は前記反射鏡4と対向する
よう検出区域1の周面部に受光素子を所定の間隔を置い
て複数個配設した受光素子群、PD4は前記反射鏡4と
斜め対向するよう検出区域1の周面部に受光素子を所定
の間隔を置いて複数個配設した受光素子群である。
<Example> FIG. 1 shows an example of the object position detection device of the present invention, in which 1 is a detection area of a light-blocking object, 2 is a collimating lens on which light is projected from a light emitting element LD, and 3 is a collimating lens. A rotating mirror having a mirror surface 3a onto which the transmitted light beam L is projected; M is a motor that rotates this rotating mirror and is equipped with a rotating pulse generator; 4 is a reflecting means disposed on the peripheral surface of the detection area 1; A fixed reflector, 5 is the detection area 1
A light-shielding object inside, PD3, is a light-receiving element group in which a plurality of light-receiving elements are arranged at predetermined intervals on the circumferential surface of the detection area 1 so as to face the reflecting mirror 4, and PD4 is located diagonally to the reflecting mirror 4. This is a light-receiving element group in which a plurality of light-receiving elements are arranged at a predetermined interval on the circumferential surface of the detection area 1 so as to face each other.

発光素子LDから発射した光はコリメートレンズ2によ
って平行光とされた後に、検出区域1の周面部の所定位
置に配設されたモータMによって所定方向(実施例では
矢印方向)に回転駆動されている回転鏡3の鏡面3aに
投射され、この回転鏡3が光ビームLを受光している間
、この光ビームLは回転鏡3によって前記長方形状の検
出区域1において順次走査される。
The light emitted from the light emitting element LD is collimated by the collimator lens 2, and then rotated in a predetermined direction (in the example, in the direction of the arrow) by a motor M disposed at a predetermined position on the circumferential surface of the detection area 1. While the rotating mirror 3 receives the light beam L, the light beam L is sequentially scanned in the rectangular detection area 1 by the rotating mirror 3.

この回転鏡3によって走査される光ビームLの光路は回
転鏡3の回転角度によって3通りに大別することができ
る。
The optical path of the light beam L scanned by the rotating mirror 3 can be roughly divided into three types depending on the rotation angle of the rotating mirror 3.

すなわち、第1の光路をたどる光ビームLは、前記検出
区域1の周面部の所定位置に配設されている反射鏡4で
゛反射され前記受光素子群PD3に投射される。
That is, the light beam L following the first optical path is reflected by a reflecting mirror 4 disposed at a predetermined position on the circumferential surface of the detection area 1, and is projected onto the light receiving element group PD3.

第2の光路をたどる光ビームL2は、光ビームL1と同
様に反射鏡4によって反射され前記受光素子群PD4に
投射される。
The light beam L2 following the second optical path is reflected by the reflecting mirror 4 similarly to the light beam L1 and is projected onto the light receiving element group PD4.

第3の光路をたどる光ビームL3は直接に前記受光素子
群PD4に投射される。
The light beam L3 following the third optical path is directly projected onto the photodetector group PD4.

前記受光素子群PD3およびPD4は、前記光ビームL
1〜L3が投射されている間、前記受光素子群PD3、
PD4の相信号が出力端子6に途切れなく連続的に出力
されるように、検出区域lの周面の所定位置に任意の数
量および角度で配置されている。
The light receiving element groups PD3 and PD4 receive the light beam L.
1 to L3 are being projected, the light receiving element group PD3,
They are arranged at predetermined positions on the circumferential surface of the detection area l at arbitrary numbers and angles so that the phase signal of the PD 4 is outputted continuously to the output terminal 6 without interruption.

前記長方形状の検出区域1内に遮光性物体5が存在した
場合は、前記回転鏡3によって走査され前記受光素子群
PD3の受光素子PD3nに投射されていた光ビーム1
はこの遮光性物体5によって遮光され、前記受光素子群
PD3およびPD4の出力端子6に出力される和信号は
減少する(第1の遮光現象)。
When a light-blocking object 5 exists within the rectangular detection area 1, the light beam 1 that has been scanned by the rotating mirror 3 and projected onto the light receiving element PD3n of the light receiving element group PD3
is blocked by this light-blocking object 5, and the sum signal output to the output terminals 6 of the photodetector groups PD3 and PD4 decreases (first light-blocking phenomenon).

一方、前記回転鏡3によって光ビームの走査が順次進行
した状態で、前記受光素子群PD4の受光素子PD4n
に投射していた光ビームL3も光ビーム1とは時間差を
もって遮光され、前記第1の遮光現象と同様に出力端子
6に出力される相信号は減少する(第2の遮光現象)。
On the other hand, while the scanning of the light beam is progressing sequentially by the rotating mirror 3, the light receiving element PD4n of the light receiving element group PD4 is
The light beam L3 that was being projected is also blocked with a time difference from the light beam 1, and the phase signal output to the output terminal 6 decreases in the same way as the first light blocking phenomenon (second blocking phenomenon).

以上のような第1および第2の遮光現象に対応する出力
端子6から出力される信号を演算処理することによって
、検出区域1内の遮光性物体5の位置を検出することが
できる。
The position of the light-blocking object 5 within the detection area 1 can be detected by processing the signals output from the output terminal 6 corresponding to the first and second light-blocking phenomena as described above.

さらに、その遮光性物体5の位置座標を求める原理を第
2図を用いて説明する。この第2図おいてPlは光ビー
ムLを走査する回転鏡3の走査基点、P2は反射鏡4に
よって作られた前記走査基点P1の虚像点、P3は遮光
性物体5が存在する位置、SLは走査基点P1と虚像点
P2を結ぶ基準線である。
Furthermore, the principle of determining the positional coordinates of the light-shielding object 5 will be explained using FIG. 2. In FIG. 2, Pl is the scanning base point of the rotating mirror 3 that scans the light beam L, P2 is the virtual image point of the scanning base point P1 created by the reflecting mirror 4, P3 is the position where the light blocking object 5 is present, and SL is a reference line connecting the scanning base point P1 and the virtual image point P2.

長方形状の検出区域lの位置P3に遮光性物体5が存在
した場合、モータMの回転パルス発生器の基準位置を前
記基準線SL上に設定し、回転鏡3によって反射鏡4に
向かって走査されている光ビームL1が反射鏡4にて反
射し1、遮光性物体5に投射された時、受光素子PD3
nに入射していた光は遮光され、和信号の出力端子6に
得られる受光素子群PD3およびPD4の相信号は減少
する(第1の遮光現象)、その時のモータMの回転パル
ス発生器(例えば1回転に1個のパルス信号を出力)の
基準線SLと光ビームL1との角度をθ1とする。L1
゛は光ビームL1に対する虚像光であり、この虚像光L
L’と前記基準線SLとのなす角度θ1′は角度θ1と
等価である。
When a light-shielding object 5 exists at a position P3 in the rectangular detection area l, the reference position of the rotating pulse generator of the motor M is set on the reference line SL, and the rotating mirror 3 scans toward the reflecting mirror 4. When the light beam L1 reflected by the reflecting mirror 4 is projected onto the light-shielding object 5, the light receiving element PD3
The light incident on n is blocked, and the phase signals of the light receiving element groups PD3 and PD4 obtained at the output terminal 6 of the sum signal decrease (first light blocking phenomenon). For example, the angle between the reference line SL (which outputs one pulse signal per rotation) and the light beam L1 is θ1. L1
゛ is virtual image light with respect to the light beam L1, and this virtual image light L
The angle θ1' between L' and the reference line SL is equivalent to the angle θ1.

一方、回転鏡3によって順次走査が進行した状態にある
光ビームL3が直接遮光性物体5に投射された時、受光
素子PD4nに入射していた光は遮光され、再び受光素
子群PD3およびPD4の和信号は減少する(第2の遮
光現象)。
On the other hand, when the light beam L3, which has been sequentially scanned by the rotating mirror 3, is directly projected onto the light-blocking object 5, the light incident on the light-receiving element PD4n is blocked, and the light-receiving element groups PD3 and PD4 are again The sum signal decreases (second shading phenomenon).

その時の回転パルス発生器の基準線SLと光ビームL3
とのなす角度をθ2とすると、遮光性物体5の位置P3
の座標(x 、y )は、図中の基準線SLを底辺とし
て走査基点P1.遮光性物体5の位置P3および虚像点
P2を結ぶ三角形を想定し、基準線SLを軸にとり、走
査基点P1を座概原点とすると、前記の三角形において
1辺とこの辺に接する2角、すなわち、走査基点P1か
ら虚像点P2までの距離aと角度θ1′(θ1)、θ2
によって次式で求まる。
Reference line SL of the rotating pulse generator and light beam L3 at that time
If the angle between the
The coordinates (x, y) of the scanning base point P1. Assuming a triangle connecting the position P3 of the light-blocking object 5 and the virtual image point P2, with the reference line SL as the axis and the scanning base point P1 as the locus origin, one side and two corners touching this side in the triangle, that is, Distance a from scanning base point P1 to virtual image point P2 and angles θ1' (θ1), θ2
It is determined by the following formula.

そこで、角度θ1、θ2の求め方を第3図乃至第5図に
よって説明する。第4図において、6は各受光素子群P
D3.PD4の相信号の出力端子、7は前記モータMに
備えられている回転パルス発生器、8はゲート回路、9
は増幅回路、1oは波形整形回路、11はインバータ、
12はマルチバイブレーク回路、13は演算回路である
Therefore, how to obtain the angles θ1 and θ2 will be explained with reference to FIGS. 3 to 5. In FIG. 4, 6 indicates each light receiving element group P.
D3. 7 is a rotation pulse generator provided in the motor M; 8 is a gate circuit; 9 is a phase signal output terminal of PD 4;
is an amplifier circuit, 1o is a waveform shaping circuit, 11 is an inverter,
12 is a multi-by-break circuit, and 13 is an arithmetic circuit.

第3図は前記の各回路の出力信号波形であり、第5図は
ゲート回路8の詳細を示したものである。
FIG. 3 shows the output signal waveforms of each of the circuits described above, and FIG. 5 shows details of the gate circuit 8.

モータMに備えられた回転パルス発生器7より出力され
た第3図の(A)に示すような回転パルス出力は、第5
図に示すように構成されたゲート回路8のアナログスイ
ッチ14に入ることにより、電源15の電流が流れダイ
オード16を通し、コンデンサ17に充電されるので、
第3図の(E)に示すようなゲート信号が得られゲート
端子19に達する。
The rotational pulse output as shown in FIG. 3(A) outputted from the rotational pulse generator 7 provided in the motor M is
By entering the analog switch 14 of the gate circuit 8 configured as shown in the figure, the current from the power supply 15 flows through the diode 16 and charges the capacitor 17.
A gate signal as shown in FIG. 3(E) is obtained and reaches the gate terminal 19.

一方、前記受光素子群PD3.PD4の和信号は増幅器
って増幅される。この増幅された信号(B)は波形整形
回路10により第3図の(C)に示すような整形パルス
信号となり、インバータ11により第3図の(D>に示
すような反転信号となる。この反転信号<D)のパルス
信号11−1.11−2が前記第1および第2の遮光現
象と対応する信号である。そして、この反転信号(D)
のパルス信号11−1がゲート回路8のアナログスイッ
チ18に入ることにより、前記コンデンサ17に充電さ
れた電荷が放電し、第3図の(E)に示すようにゲート
出力信号がゼロとなる。
On the other hand, the photodetector group PD3. The sum signal of PD4 is amplified by an amplifier. This amplified signal (B) is converted into a shaped pulse signal as shown in (C) in FIG. 3 by the waveform shaping circuit 10, and is converted into an inverted signal as shown in (D> in FIG. 3) by the inverter 11. The pulse signals 11-1 and 11-2 of the inverted signal <D) are signals corresponding to the first and second light shielding phenomena. And this inverted signal (D)
When the pulse signal 11-1 enters the analog switch 18 of the gate circuit 8, the charge stored in the capacitor 17 is discharged, and the gate output signal becomes zero as shown in FIG. 3(E).

前記反転信号(D)のパルス信号11−1がゲート回路
8に入ると同時にマルチバイブレータ回路12からも第
3図の(F)に示すような信号が出力され、反転信号(
D>のパルス信号11−2が出力されることによりスト
ップする。つまり、このゲート回路8から出力されるゲ
ート出力信号(E)は回転パルス出力信号(A)が出力
されてから、第1の遮光現象が生じた所要時間であり、
ゲート出力信号(E)およびマルチバイブレーク回路1
2の出力信号(F)の和が第2の遮光現象が生じた所要
時間である。前記の2つの時間は演算回路13で、第2
図の角度θ1.θ2に対応する回転鏡3の角度(ただし
、この角度はθ1゜θ2のそれぞれ半分に相当)として
割り出すことができる。
At the same time that the pulse signal 11-1 of the inverted signal (D) enters the gate circuit 8, the multivibrator circuit 12 also outputs a signal as shown in (F) in FIG.
It stops when the pulse signal 11-2 of D> is output. In other words, the gate output signal (E) output from the gate circuit 8 is the time required for the first light shielding phenomenon to occur after the rotation pulse output signal (A) is output.
Gate output signal (E) and multi-by-break circuit 1
The sum of the two output signals (F) is the time required for the second light shielding phenomenon to occur. During the above two times, the arithmetic circuit 13
Angle θ1 in the figure. It can be determined as the angle of the rotating mirror 3 corresponding to θ2 (this angle corresponds to half of θ1° and θ2, respectively).

〈発明の効果〉 この発明は、以上説明したように、1個の発光素子から
発射した光を平行光にして回転鏡を用いて検出区域内を
順次走査するため、受光強度の変化が少ないので、発光
素子および受光素子の数を削減した物体の位置検出装置
が構成できる。
<Effects of the Invention> As explained above, the present invention converts the light emitted from one light emitting element into parallel light and sequentially scans the detection area using a rotating mirror, so there is little change in the received light intensity. , it is possible to configure an object position detection device in which the number of light emitting elements and light receiving elements is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1はこの発明の物体の位置検出装置の構成図、第2図
はこの物体の位置検出装置における物体の位置検出の説
明図、第3図は検出回路の各信号のタイミングチャート
、第4図は検出回路のブロック図、第5図はゲート回路
のブロック図、第6図は従来の物体の位置検出装置の例
を示すものである LD・・・発光素子、PD3、PD4−・・受光素子群
、PD3n、PD4n−受光素子、M−・・モータ、1
・・・検出区域、2・・・コリメートレンズ、3−・・
回転鏡、3a・・・鏡面、4・・・反射鏡、5・・・遮
光性物体、6−・−受光素子群の相信号の出力端子。
1 is a configuration diagram of the object position detection device of the present invention, FIG. 2 is an explanatory diagram of object position detection in this object position detection device, FIG. 3 is a timing chart of each signal of the detection circuit, and FIG. 4 is a block diagram of a detection circuit, FIG. 5 is a block diagram of a gate circuit, and FIG. 6 is an example of a conventional object position detection device.LD...Light emitting element, PD3, PD4...Light receiving element Group, PD3n, PD4n-light receiving element, M-...motor, 1
...Detection area, 2...Collimating lens, 3-...
rotating mirror, 3a...mirror surface, 4...reflecting mirror, 5...light-shielding object, 6--output terminal for phase signal of light-receiving element group;

Claims (1)

【特許請求の範囲】[Claims] 検出区域内に遮光性を有する遮光性物体が存在する場合
に、その物体の位置を検出する位置検出装置であって、
1個の光源から発射された光を順次偏向走査する検出区
域の周面部の所定位置に配設した回転鏡を用いた走査手
段と、この走査手段によって走査された光を、検出区域
の周面部の所定位置に配設した反射手段を介して遮光性
物体に投射させて生じた第1の遮光現象と前記走査手段
によって走査された光を前記遮光性物体に直接投射させ
て生じた第2の遮光現象とを検出する受光手段として、
前記反射手段に対向および斜め対向するように前記検出
区域の周面部に受光素子を所定の間隔を置いて複数個配
設し、この受光手段によって検出された前記第1および
第2の遮光現象に対応する信号によって前記遮光性物体
の位置を検出する検出手段とよりなることを特徴とする
物体の位置検出装置。
A position detection device that detects the position of a light-blocking object when a light-blocking object exists in a detection area,
A scanning means using a rotating mirror disposed at a predetermined position on the circumferential surface of the detection area to sequentially deflect and scan the light emitted from one light source; A first light-shielding phenomenon occurs when the light is projected onto a light-shielding object via a reflecting means arranged at a predetermined position of the light-shielding object, and a second light-shielding phenomenon occurs when the light scanned by the scanning means is directly projected onto the light-shielding object. As a light receiving means for detecting light blocking phenomena,
A plurality of light receiving elements are disposed at predetermined intervals on the peripheral surface of the detection area so as to face and diagonally face the reflecting means, and the first and second light blocking phenomena detected by the light receiving means are An object position detection device comprising: a detection means for detecting the position of the light-blocking object based on a corresponding signal.
JP62103791A 1987-04-27 1987-04-27 Apparatus for detecting position of body Pending JPS63269002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62103791A JPS63269002A (en) 1987-04-27 1987-04-27 Apparatus for detecting position of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62103791A JPS63269002A (en) 1987-04-27 1987-04-27 Apparatus for detecting position of body

Publications (1)

Publication Number Publication Date
JPS63269002A true JPS63269002A (en) 1988-11-07

Family

ID=14363222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62103791A Pending JPS63269002A (en) 1987-04-27 1987-04-27 Apparatus for detecting position of body

Country Status (1)

Country Link
JP (1) JPS63269002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524239A (en) * 2009-04-16 2012-10-11 イシキリ インターフェイス テクノロジーズ ゲーエムベーハー Photo detector suitable for application to light curtain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012524239A (en) * 2009-04-16 2012-10-11 イシキリ インターフェイス テクノロジーズ ゲーエムベーハー Photo detector suitable for application to light curtain

Similar Documents

Publication Publication Date Title
US4782239A (en) Optical position measuring apparatus
JPS6299823A (en) Object position information generator
JP3647608B2 (en) Surveyor automatic tracking device
CN113075642A (en) Laser radar and detection method for laser radar
CA1244688A (en) Optical projector
JPH03215813A (en) Angle detecting device
WO1983004303A1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
US4521113A (en) Optical measuring device
JPS63269002A (en) Apparatus for detecting position of body
JPS63157003A (en) Position detecting device for body
JP2614446B2 (en) Distance measuring device
JPS58213235A (en) Gas detection system
JP2003097924A (en) Shape measuring system and method using the same
JPH0240506A (en) Distance measuring apparatus
WO2023286114A1 (en) Ranging device
JPH0334563B2 (en)
JP2544789B2 (en) Optical displacement measuring device
JP4175715B2 (en) Optical scanning touch panel
JPS633212A (en) Measuring instrument
JP2903472B2 (en) Distance measuring device
JPH0119178B2 (en)
JPH0410569B2 (en)
JPS6142615A (en) Wide area optical scanner
JPH09257470A (en) Optical displacement sensor
JPH0267911A (en) Distance measuring apparatus