JPS63267423A - Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide - Google Patents
Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxideInfo
- Publication number
- JPS63267423A JPS63267423A JP62102051A JP10205187A JPS63267423A JP S63267423 A JPS63267423 A JP S63267423A JP 62102051 A JP62102051 A JP 62102051A JP 10205187 A JP10205187 A JP 10205187A JP S63267423 A JPS63267423 A JP S63267423A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- laser beam
- exhaust gas
- laser
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 94
- 238000000034 method Methods 0.000 title claims description 58
- 239000007789 gas Substances 0.000 title claims description 48
- 239000000203 mixture Substances 0.000 title claims description 14
- 238000000354 decomposition reaction Methods 0.000 title abstract description 9
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims description 24
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 9
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 abstract description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- 229910021529 ammonia Inorganic materials 0.000 description 9
- GQPLMRYTRLFLPF-UHFFFAOYSA-N nitrous oxide Inorganic materials [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052602 gypsum Inorganic materials 0.000 description 5
- 239000010440 gypsum Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- ZCUQOPGIJRGJDA-UHFFFAOYSA-N 1-naphthalen-1-ylethane-1,2-diamine Chemical compound C1=CC=C2C(C(N)CN)=CC=CC2=C1 ZCUQOPGIJRGJDA-UHFFFAOYSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- 101100537937 Caenorhabditis elegans arc-1 gene Proteins 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- OXSWKJLAKXNIFG-UHFFFAOYSA-N azane sulfuric acid Chemical compound N.N.N.OS(O)(=O)=O OXSWKJLAKXNIFG-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、窒素酸化物を含有する排ガス等のガス混合物
の処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating gas mixtures such as exhaust gases containing nitrogen oxides.
従来各種の工業及び産業における排ガス及び自動車の排
ガスの大気中への放出については公害防止の観点から法
的その他の規制装置がとられており、特に窒素酸化物及
び硫黄酸化物については酸性雨や光化学スモッグの原因
物質としてその排出は厳しく制限されている。排出規制
の対象とされている排ガス中の窒素酸化物(NOx)や
硫黄酸化物(’E30x)の処理技術は、従来多くの方
式が提案されているが、実用的には撞々の課題がある。Conventionally, legal and other regulatory measures have been taken to prevent the release of exhaust gas from various industries and automobiles into the atmosphere from the perspective of pollution prevention. As a causative agent of photochemical smog, its emission is strictly restricted. Many methods have been proposed to treat nitrogen oxides (NOx) and sulfur oxides ('E30x) in exhaust gas, which are subject to emission regulations, but there are many practical issues. be.
次とえば、従来の排カスの脱硝技術としては、アンモニ
ア添加による還元法、触媒を使用する還元法、放射線照
射法等が提案されている。For example, as conventional exhaust gas denitrification techniques, a reduction method by adding ammonia, a reduction method using a catalyst, a radiation irradiation method, etc. have been proposed.
従来のこれらの方法は、夫々次のような問題点がある。These conventional methods each have the following problems.
■ アンモニア添加による還元法:脱硝効果率が低い。■ Reduction method by adding ammonia: The denitrification effect rate is low.
■ 触媒を使用する還元法:連続的に使用した場合触媒
性能が低下する。触媒として金属、貴金属を用いている
ので、省資源の観点から見直す必要がある。ダストや酸
性物質の影響を受けやすい。■ Reduction method using a catalyst: Catalytic performance decreases when used continuously. Since metals and precious metals are used as catalysts, it is necessary to reconsider from the viewpoint of resource conservation. Susceptible to dust and acidic substances.
■ 放射線照射法;硫安や硝安のような二次生成物を生
ずるので、別途副生成物の処理が必要である。■ Radiation irradiation method: Since secondary products such as ammonium sulfate and ammonium nitrate are produced, separate treatment of by-products is required.
又、これらのいずれの方法もアンモニアの添加を行うの
で、脱硝反応で消費されないアンモニアはリークアンモ
ニアとして排出され、二次公害となる。又、アンモニア
の使用を省資源の観点から見直す必要がある。Furthermore, since all of these methods involve the addition of ammonia, ammonia that is not consumed in the denitrification reaction is discharged as leak ammonia, resulting in secondary pollution. Furthermore, it is necessary to reconsider the use of ammonia from the perspective of resource conservation.
また、特開昭51−98670号公報には、窒素と酸化
窒素(N0x)を含有する排ガスにマイクロ波、ミリ波
またはレーザを作用させて窒素を活性化してこの活性化
窒素でN0xt−N2とOまたは01に転化させる方法
が記載されているが、該公報には具体的にはマイクロ波
を作用させる方法が記載されているのみでレーザについ
ては何等具体的に記載されていない。Furthermore, Japanese Patent Laid-Open No. 51-98670 discloses that exhaust gas containing nitrogen and nitrogen oxides (N0x) is activated by microwaves, millimeter waves, or lasers, and the activated nitrogen is used to convert N0xt-N2. Although a method for converting it to O or 01 is described, the publication only specifically describes a method of applying microwaves and does not specifically describe a laser.
本発明は、窒素酸化物を含有するガス混合物の処理方法
に関し、該ガス混合物にレーザ光を照射することを特徴
とするガス混合物中の窒素酸化物を分解する方法であっ
て、本発明方法は、各種燃焼設備からの排ガスの処理、
アンモニア及び硝酸工業の排ガスの処理、自動車の排ガ
スの処理、家庭・1s務所・病院等の空気の清浄化等に
適用しうるものである。The present invention relates to a method for treating a gas mixture containing nitrogen oxides, and is a method for decomposing nitrogen oxides in a gas mixture, the method comprising irradiating the gas mixture with a laser beam. , treatment of exhaust gas from various combustion equipment,
It can be applied to the treatment of ammonia and nitric acid industrial exhaust gas, the treatment of automobile exhaust gas, and the purification of air in homes, offices, hospitals, etc.
本発明の方法の一具゛体例として、石油系燃料の燃焼炉
から発生する燃焼排ガス中NOxの処理へ適用した場合
の概念図を第1図に示す。As an embodiment of the method of the present invention, FIG. 1 shows a conceptual diagram when the method is applied to the treatment of NOx in flue gas generated from a petroleum-based fuel combustion furnace.
燃焼炉1から排出された平均550 ppmのNOx
(NoとNo雪、主にNo ) を含有する排ガスは
、レーザ光照射器2に導入され、NOx I/iNsと
02 に分解され、 NOxの分解処理された排ガス
は吸引ファン3により煙突4から放出される@レーザ元
照射器2は、本発明の特徴であるレーザ光の照射により
NOxの分解が行われる反応器である。Average 550 ppm NOx emitted from combustion furnace 1
The exhaust gas containing (No and No snow, mainly No) is introduced into the laser beam irradiator 2 and decomposed into NOx I/iNs and 02, and the NOx decomposed exhaust gas is sent from the chimney 4 by the suction fan 3. The emitted @laser source irradiator 2 is a reactor in which NOx is decomposed by laser light irradiation, which is a feature of the present invention.
レーザ光照射器2の一具体例を第2図に示す。A specific example of the laser beam irradiator 2 is shown in FIG.
レーザ光照射器2は、レーザ光発振管5及びレーザ光の
照射によl) NOxの分解が行われる反応器6よ構成
る0レ−f党発振f5からのレーザ光の波長は、処理対
象物質に吸収されれば良(,110〜400 nm、好
ましくは160〜550nmである。The laser beam irradiator 2 uses a laser beam oscillation tube 5 and laser beam irradiation to determine the wavelength of the laser beam from the laser beam oscillation f5, which is composed of a reactor 6 in which NOx decomposition is performed, depending on the wavelength of the laser beam to be processed. It is sufficient if the wavelength is absorbed by the substance (110 to 400 nm, preferably 160 to 550 nm).
レーザ光の種類及び媒質ガスは上記の波長のレーザ光を
発するものであれば良く、適用分野、処理対象物質、共
存物質等により適宜選択して使用できる。通常、レーザ
の種頌はエキシマレーザ、又、媒質ガスとしてはArF
%ArC1%KrC4XeC1%XeF又はXeBr
等が用いられこれらは1種又は2重1類以上選択して使
用することが出来る0
レーザ光の照射方法は、排ガスに均一かつ効果的に照射
されれば何れの方法でも良く周知の方法が適用できる。The type of laser light and the medium gas may be selected as long as they emit laser light of the above-mentioned wavelengths, and can be appropriately selected and used depending on the field of application, the substance to be treated, the coexisting substances, etc. Usually, the laser source is an excimer laser, and the medium gas is ArF.
%ArC1%KrC4XeC1%XeF or XeBr
etc., and these can be used singly or in combination of type 1 or more.0 The laser beam irradiation method may be any method as long as it irradiates the exhaust gas uniformly and effectively. Applicable.
通常、第2図に示すごとく排ガスの流れに対して向流に
照射するのが好ましく又、反応器6内部に攪拌羽根等の
攪拌機構を設けるか又は旋回流により、排ガスを攪拌し
排ガスに均一照射すると効果的である。Usually, it is preferable to irradiate the exhaust gas in a countercurrent direction to the flow of the exhaust gas as shown in Fig. 2. Also, it is preferable to provide a stirring mechanism such as a stirring blade inside the reactor 6 or to stir the exhaust gas by using a swirling flow so that the exhaust gas is uniformly distributed. Irradiation is effective.
又、レーザ光の照射は適宜集光して、あるいは集光しな
いで行なうことが出来る。Further, the laser beam irradiation can be carried out with or without focusing as appropriate.
第2図において7は、排ガスの流れを示し、7重 は入
口、7意は出口のガスの流れを示し8はレーザ光の照射
窓である。In FIG. 2, 7 indicates the flow of exhaust gas, 7-fold indicates the gas flow at the inlet, 7-fold indicates the gas flow at the outlet, and 8 indicates the laser beam irradiation window.
本方式における、NOx分解に対する温度効果は小′さ
い。このため、特別な温度制御は通常不要である。本図
示例においては、燃焼炉1の出口排ガス(温度500−
350℃の排ガス)がその′!まレーザ光照射器2に導
入されており、特別な温度制御を行なわないで実施され
ている。In this method, the temperature effect on NOx decomposition is small. Therefore, special temperature control is usually not necessary. In this illustrated example, the outlet exhaust gas of the combustion furnace 1 (temperature 500-
350℃ exhaust gas) is that'! It is also introduced into the laser beam irradiator 2, and is carried out without any special temperature control.
通常、燃焼ガスを処理する場合の反応器6の温度は、排
ガス中の酸ミスト等の反応器への付着、凝縮が無視し得
る温度以上、一般的には酸露点以上(例えば120℃以
上)で行なうのが好プしい。Normally, when treating combustion gas, the temperature of the reactor 6 is higher than the temperature at which adhesion and condensation of acid mist in the exhaust gas to the reactor can be ignored, and generally higher than the acid dew point (for example, 120°C or higher). It is preferable to do it with
以上の説明では、排ガス中NOxの分解処理について述
べたが、排ガス中にN20(亜酸化窒素)が言筐れてい
る場合にはN20も同様に処理出来る0
NOx (No + NO2) とNeoの分解処理
を同時に行なう場合には、NOxとNeoの両方に吸収
される波長、例えば160〜210 nmの波長有する
レーザで照射するか、あるいはNOx 、 Neo 夫
々に特徴的な吸収波長例えば222 nm (NO3C
)。In the above explanation, we talked about the decomposition treatment of NOx in exhaust gas, but if there is any N20 (nitrous oxide) in the exhaust gas, N20 can also be treated in the same way.0 NOx (No + NO2) and Neo If the decomposition treatment is performed simultaneously, irradiation can be performed with a laser having a wavelength that is absorbed by both NOx and Neo, for example, 160 to 210 nm, or with a laser having a wavelength that is characteristic of both NOx and Neo, such as 222 nm (NO3C
).
193 nm (N20) の波長を有する夫々のレ
ーザで同時に又は交互に照射することにより効果的に実
施できる。This can be effectively carried out by irradiating simultaneously or alternately with respective lasers having a wavelength of 193 nm (N20).
尚、混合ガス中のN、Oの分解処理については、本発明
者の別の発明がある(特願昭6l−255790)。Regarding the decomposition treatment of N and O in a mixed gas, there is another invention by the present inventor (Japanese Patent Application No. 61-255790).
上記説明においては、排ガス中の窒素酸化物としてNo
が多い場合について記載したが、NO鵞が多い場合も同
様に処理される。又、排ガスにBoxが言まれている場
合は、80xも同様に処理することが出来る。これらの
処理は後述の表1に示すととくレーザ光の波長を適宜選
択することにより効率良〈実施出来る。In the above explanation, NO.
Although the description has been made for the case where there are many NO geese, the same process is applied when there are many NO geese. Also, if the exhaust gas is designated as Box, 80x can be treated in the same way. These treatments can be carried out efficiently by appropriately selecting the wavelength of the laser beam, as shown in Table 1 below.
処理対象物質に適正なレーザ光の波長、媒質ガスの例を
表1に示す。これらの波長の中、222nmの波長は、
No 、 NO2、130x のいずれにも吸収され
るので、好ましい。Table 1 shows examples of laser light wavelengths and medium gases suitable for the substance to be treated. Among these wavelengths, the wavelength of 222 nm is
It is preferable because it is absorbed by all of No, NO2, and 130x.
表−1
SOxの処理は、表1に記載したよりなSOxに吸収波
長を有するレーザ光を照射することにより行なわれ、S
oxはS及びS及び0雪に分解される。Table 1 SOx treatment is performed by irradiating the SOx listed in Table 1 with a laser beam having an absorption wavelength.
ox is decomposed into S and S and 0 snow.
SOxの分解生成物である8(硫黄)は、レーザ光照射
器(第1図の2)の後方に電気集塵器やバックフィルタ
ー等の周知の集塵、捕集装置を設置することにより捕集
、回収される0回収されたSは、周知の方法によシ適宜
精製され、資源として有効利用出来る。8 (sulfur), which is a decomposition product of SOx, can be captured by installing a well-known dust collection and collection device such as an electrostatic precipitator or a back filter behind the laser beam irradiator (2 in Figure 1). The recovered S can be appropriately purified by well-known methods and effectively utilized as a resource.
NOxとSoxの処理を同時に行なう方法は、NOxと
BOXの両方に吸収される波長例えば222nm のレ
ーザで照射するか、あるいはNOxとF30x夫々の特
長的な吸収波長例えば222 nm(NOり 、 28
2 nm (Box) の夫々の波長を有するレーザで
同時に又は交互に照射することにより効果的に実施出来
る。A method for simultaneously treating NOx and Sox is to irradiate with a laser at a wavelength that is absorbed by both NOx and BOX, for example 222 nm, or to irradiate with a laser at a wavelength that is absorbed by both NOx and F30x, for example 222 nm (NOx, 28 nm).
This can be effectively carried out by irradiating simultaneously or alternately with lasers having respective wavelengths of 2 nm (Box).
又、 NO!処理のみを本方式(レーザ照射法)で行な
い、SOxの処理は周知の処理法で行なっても良い。B
oxの周知の処理法としては、アンモニア−硫安法、ア
ンモニア−石こう法2石灰−石こう法、亜硫曹−石こう
法、活性炭−吸着法等がある。Again, NO! Only the processing may be performed using this method (laser irradiation method), and the SOx processing may be performed using a known processing method. B
Well-known treatment methods for ox include the ammonia-ammonium sulfate method, the ammonia-gypsum method, the lime-gypsum method, the sulfite-gypsum method, and the activated carbon-adsorption method.
SOxの処理法は、NOxの処理法に比べて、実用上の
課題、問題点が少なく、欠点はめるが実用化されており
、現在、稼動中の装置が多い。The SOx treatment method has fewer practical issues and problems than the NOx treatment method, and although it has some drawbacks, it has been put into practical use, and there are many devices currently in operation.
そこで、SOxの処理を、周知の処理法で行ない課題、
問題点が多いNOxの処理のみを本方式で行なう様にす
ると、適用分野、立地条件等によっては実用上有利とな
る場合がある。Therefore, we decided to treat SOx using a well-known treatment method.
If only the treatment of NOx, which has many problems, is performed by this method, it may be practically advantageous depending on the field of application, location conditions, etc.
NOxとBoxの同時処理法として、前述のようにNO
x 、 Boxともレーザ照射法で行なうか、あるいは
NOx fレーザ照射法としSOxを周知の方法で行な
うかの選択は、本方式の適用分野、規模、立地条件、効
果、経済性等に基いて適宜性なうことが出来る。As mentioned above, NOx and Box can be treated simultaneously.
The choice of whether to use laser irradiation for both the I can do sexual things.
第3図に、Boxの処理を石灰−石こう法で行なう石炭
燃焼排ガス中のNOx及びBox処理の概念図を示す。FIG. 3 shows a conceptual diagram of NOx and Box treatment in coal combustion exhaust gas in which Box treatment is performed using the lime-gypsum method.
第3図において、符号1〜4は第1図に関し説明し几符
号と同じ意味を有し、符号9は石灰−石こう法によるB
oxの吸収塔を示す〇第3図に示す方法においては、レ
ーザ光照射器2に導入されNOxの分解され次ガスを石
灰−5仁う法によるBoxの吸収塔9に導き、ガス中に
含有されているBox t−吸収除去した後吸引7アン
5により煙突4から放出するものである。In FIG. 3, numerals 1 to 4 have the same meaning as the 几 numerals explained in relation to FIG.
In the method shown in Figure 3, the NOx gas introduced into the laser beam irradiator 2 is introduced into the box absorption tower 9 using the lime-5-layer method, and the gas contained in the gas is Box t - After absorption and removal, it is released from the chimney 4 by suction 7 and 5.
実施例1
第2図に示す如きレーザ光照射器にSOOppmのNo
xf含む空気t−11,7分の割合で導入し、レーザ光
の照射を行ない反応器出口のNOx濃度を測定した。Example 1 A laser beam irradiator as shown in FIG.
Air containing xf was introduced at a rate of t-11.7 minutes, laser light was irradiated, and the NOx concentration at the reactor outlet was measured.
レーザ:エキシマレーザ、KrC220W反δ器の大き
さ:2を
反応器の温度:室温
NOx : No 400 ppm、 No3100
ppmNOxの測定:亜鉛還元ナフチルエチレンジア
ミン法による。Laser: Excimer laser, KrC220W Reactor size: 2 Reactor temperature: Room temperature NOx: No. 400 ppm, No. 3100
Measurement of ppmNOx: Based on the zinc-reduced naphthylethylenediamine method.
反応器出口の空気中のNOx含有量は10 ppm以下
でおった。The NOx content in the air at the reactor outlet was below 10 ppm.
実施例2
500 ppm0NOx、 5 Q Oppm08Oz
t−を有する空気t−117分の割合で第2図に示す
如きレーザ光照射器に導入し、レーザ光の照射を行ない
、反応器出口のNOx及び8026度を測足し友O
レーザ:エキシマレーザ、KrC120W反応器大きさ
:2を
反応器のa度:室温
NOxの測定二亜鉛還元ナフチルエチレンジアミン法に
よる。Example 2 500 ppm0NOx, 5 Q Oppm08Oz
Air having a temperature of t- is introduced into a laser beam irradiator as shown in Fig. 2 at a rate of t-117 minutes, irradiated with laser light, and the NOx and 8026 degrees at the reactor outlet are measured. , KrC120W reactor size: 2 A degree of reactor: room temperature NOx measurement by dizinc reduction naphthyl ethylene diamine method.
solの測定:紫外線吸収式分析計を使用。Measurement of sol: Use an ultraviolet absorption analyzer.
反応器出口の空気中のNOx含有量は10 ppm以下
、5Ost有量は20 ppm以下であった。The NOx content in the air at the reactor outlet was 10 ppm or less, and the 5Ost content was 20 ppm or less.
1、 NOxを含むガス混合物にレーザth、を照射
することに“より、
■ ガス混合物中のN0Xk、Nz及び0!の様な無害
で安定なガスに分解できる(処理すべき二次生成物は生
成しない)。1. By irradiating a gas mixture containing NOx with a laser th, it can be decomposed into harmless and stable gases such as NOXk, Nz and 0! in the gas mixture (the secondary products to be treated are (not generated).
■ ガス混合物中にN、Oを含有する場合N、0も分解
され、実質的に脱硝率が向上した。(2) When N and O were contained in the gas mixture, N and O were also decomposed, and the denitrification rate was substantially improved.
■ ガス混合物11CBoxが含まれる場合は、Box
も分解され、脱硝、脱硫が同時にできる0
2 本方式は室温程度で効果があるので■ 従来の脱硝
法(例、解媒法)のような温度制御は不要で保守、管理
が容易でらる・■ 水処理設備や空気清浄器のような、
室温付近のNOx発生源に対し有効である。■ If gas mixture 11CBox is included, Box
Since this method is effective at room temperature, maintenance and management are easy as there is no need for temperature control like in conventional denitrification methods (e.g., decomposition methods).・■ Such as water treatment equipment and air purifiers,
Effective against NOx sources near room temperature.
& アンモニア添加を必要としないので■省資源の面や
■リークアンモニアによる二次公害がないことから、−
着実用的な方法である。& Since it does not require the addition of ammonia, it saves resources and there is no secondary pollution caused by leaked ammonia.
It is a practical way to wear it.
4、 乾式処理法であるので、排水処理等の二次的な処
理が不要で、実用的な方法である。4. Since it is a dry treatment method, secondary treatment such as wastewater treatment is not required, making it a practical method.
& レーザ照射法によ5 NOx 、 N2O、Box
が同時に処理出来ることから同時脱硝、脱硫法として一
層実用的な方法でめる0
4 E30Xの処理法は、適用分野、立地条件、効果
、規模、経済性等により、適宜レーザ法又は周知の方法
との組みあわせを任意に選択できるので、実用的かつ好
適なNOxとBoxの同時処理を行なうことが出来る。& Laser irradiation method 5 NOx, N2O, Box
The treatment method of 04 E30X is a more practical method as a simultaneous denitrification and desulfurization method because it can be treated at the same time. Since the combination can be arbitrarily selected, practical and suitable simultaneous processing of NOx and Box can be performed.
第1図は、本発明方法を燃焼排ガスの処理に適用する場
合の概念図、第2図は、本発明で用いるレーザ光照射器
の1例を示す概念図、第3図は第1図に示す装置に石灰
−石こう法による80sの吸収塔を組みこんだ図である
。Fig. 1 is a conceptual diagram when the method of the present invention is applied to the treatment of combustion exhaust gas, Fig. 2 is a conceptual diagram showing an example of a laser beam irradiator used in the present invention, and Fig. 3 is similar to Fig. 1. It is a diagram in which an 80s absorption tower using the lime-gypsum method is incorporated into the shown apparatus.
Claims (1)
することを特徴とするガス混合物中の窒素酸化物の分解
方法。 2、被処理ガス混合物が硫黄酸化物を含有する特許請求
の範囲第1項記載の方法。 3、レーザ光の波長が110〜400nm、好ましくは
160〜350nmである特許請求の範囲第1項又は第
2項記載の方法。 4、レーザの種類がエキシマレーザである特許請求の範
囲第5項記載の方法。 5、媒質ガスがArF、ArCl、KrCl、XeCl
、XeF、XeBrの内いずれか1種類又は2種以上の
混合物である特許請求の範囲第1項乃至第4項のいずれ
かの一に記載の方法。 6、被処理ガス混合物中の硫黄酸化物の処理をレーザ光
照射法以外の方法で行ない、窒素酸化物の処理をレーザ
光照射により行なう特許請求の範囲第1項乃至第5項の
いずれかの一に記載の方法。[Scope of Claims] 1. A method for decomposing nitrogen oxides in a gas mixture, which comprises irradiating a gas mixture containing nitrogen oxides with a laser beam. 2. The method according to claim 1, wherein the gas mixture to be treated contains sulfur oxides. 3. The method according to claim 1 or 2, wherein the wavelength of the laser beam is 110 to 400 nm, preferably 160 to 350 nm. 4. The method according to claim 5, wherein the type of laser is an excimer laser. 5. Medium gas is ArF, ArCl, KrCl, XeCl
, XeF, and XeBr, or a mixture of two or more thereof. 6. Any one of claims 1 to 5, wherein the treatment of sulfur oxides in the gas mixture to be treated is carried out by a method other than laser beam irradiation, and the treatment of nitrogen oxides is carried out by laser beam irradiation. The method described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62102051A JPS63267423A (en) | 1987-04-27 | 1987-04-27 | Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62102051A JPS63267423A (en) | 1987-04-27 | 1987-04-27 | Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63267423A true JPS63267423A (en) | 1988-11-04 |
Family
ID=14316966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62102051A Pending JPS63267423A (en) | 1987-04-27 | 1987-04-27 | Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63267423A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150888A (en) * | 2015-02-19 | 2016-08-22 | 国立大学法人岐阜大学 | Method and apparatus for producing nitric acid |
-
1987
- 1987-04-27 JP JP62102051A patent/JPS63267423A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150888A (en) * | 2015-02-19 | 2016-08-22 | 国立大学法人岐阜大学 | Method and apparatus for producing nitric acid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7048899B2 (en) | Removing NOx, SO2, and Hg from a gas stream using limestone regeneration | |
KR101094672B1 (en) | Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system | |
RU2139753C1 (en) | Method for radiation by electron beams | |
EP0408772B1 (en) | Exhaust gas cleaning method | |
CN107497265B (en) | Integrated flue gas purification system and method for inducing free radicals by exciting fly ash through cooperation of ozone and microwaves | |
JPH01218622A (en) | Method for removing nitrogen oxides in low concentration from air | |
CN104324610B (en) | A kind of desulfurization denitration method and device | |
US20080233026A1 (en) | Method and system for NOx removal | |
JPS63267423A (en) | Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide | |
JP2607548B2 (en) | Exhaust gas treatment method | |
JPS6359729B2 (en) | ||
JPH0564721A (en) | Method and apparatus for treating air containing nitrogen oxide in low concentration | |
JP2607639B2 (en) | DeNOx method | |
JPH0714462B2 (en) | Decomposition method of nitrous oxide in gas mixture | |
JPH0815532B2 (en) | Exhaust gas treatment method | |
JPH0394813A (en) | Method for removing harmful gas in waste gas generated by incineration of refuse | |
KR101792958B1 (en) | Heat Resonance System for Exhaust Gas Purification of Facilities that using Cokes | |
JPH0651097B2 (en) | Method for decomposing and removing nitrous oxide in gas mixture | |
KR100406510B1 (en) | Method and system for removing nitrogen oxide using oxidation catalyst | |
JP2001219078A (en) | Method for catalyst regeneration | |
JPS60251917A (en) | Desulfurization and denitration of waste gas | |
SK6612002A3 (en) | Method for decomposing chlorine-containing organic compound in exhaust gas and catalyst for use in the method | |
JPH0442054B2 (en) | ||
JPH11165043A (en) | Treatment of waste gas of waste incinerator | |
KR101765467B1 (en) | Heat Resonance System for Brazier that using Degassed Nitrogen Oxide Bio-fuel |