JP2607548B2 - Exhaust gas treatment method - Google Patents

Exhaust gas treatment method

Info

Publication number
JP2607548B2
JP2607548B2 JP62253807A JP25380787A JP2607548B2 JP 2607548 B2 JP2607548 B2 JP 2607548B2 JP 62253807 A JP62253807 A JP 62253807A JP 25380787 A JP25380787 A JP 25380787A JP 2607548 B2 JP2607548 B2 JP 2607548B2
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
radicals
treatment method
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62253807A
Other languages
Japanese (ja)
Other versions
JPH0199633A (en
Inventor
哲哉 池田
実 団野
洋 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62253807A priority Critical patent/JP2607548B2/en
Publication of JPH0199633A publication Critical patent/JPH0199633A/en
Application granted granted Critical
Publication of JP2607548B2 publication Critical patent/JP2607548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガス中に含まれるNOX及びSOXを電磁波ある
いは電子ビームを利用して除去する方法に関する。
The present invention relates to a method for removing NO X and SO X contained in exhaust gas using an electromagnetic wave or an electron beam.

〔従来の技術〕[Conventional technology]

従来から燃焼排ガス中のNOX,SOX除去方法は多くの方
法が知られているが、なかでもNOXに対しては排ガス中
にアンモニアを注入し、触媒の存在下に接触還元を行う
方法等、乾式の触媒による方法が主流を占めており、ま
た、SOXに対しては吸収液として石灰水溶液を用い、副
生物として石こうを回収する石灰−石こう法による湿式
法等が主流を成している。
METHOD NO X in the combustion exhaust gas from a conventional, SO X removal method have been known many methods, ammonia is injected into the exhaust gas for inter alia NO X, perform catalytic reduction in the presence of a catalyst etc., account for the process according to the mainstream dry catalyst, also using lime aqueous solution as an absorbing solution for SO X, lime recovering gypsum as a by-product - a wet process is the main stream by gypsum method ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このような従来の排ガスの処理方法では、NOX,SOX
処理は、それぞれ別々のプロセスで実施され、それぞれ
に固体の脱硝触媒や吸収媒体としての石灰水溶液あるい
は固体吸着剤等が必要であり、さらにまた、脱硝と脱硫
とを複数の段階で行うため、プロセスは複雑となり、し
たがって、使用する機器の点数も多くなり、その結果、
装置費や運転費が多額になるという問題点があった。
In such a conventional method for processing an exhaust gas, treatment of NO X, SO X is carried out in each separate processes, it requires lime solution or solid adsorbent such as a solid denitration catalyst and absorbing medium, respectively Furthermore, since the denitration and desulfurization are performed in multiple stages, the process is complicated, and therefore, the number of equipment to be used is increased, and as a result,
There has been a problem that equipment costs and operating costs are large.

本発明は、かかる事情から上記のような従来の排ガス
処理方法の欠点を改良した排ガスの処理方法、すなわ
ち、排ガス中のNOX及びSOXを処理するための触媒や吸収
液及び吸着剤等を必要としないでNOXとSOXとを単一プロ
セスで一段階で処理できる新規なNOX及びSOXの除去方法
を提供することを目的としたものである。
The present invention has improved the disadvantages of the conventional exhaust gas treatment method as described above from the above circumstances, that is, a method for treating exhaust gas, that is, a catalyst, an absorbent, an adsorbent, and the like for treating NO X and SO X in the exhaust gas. It is an object of the present invention to provide a novel NO X and SO X removal method that can process NO X and SO X in a single step without any need.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、NOX及びSOXを含む排ガスの処理方法におい
て、OHラジカルを発生するアルコールを含むガスに電磁
波あるいは電子ビームを照射してOHラジカルを生成さ
せ、このOHラジカルを含むガスを上記の排ガスに混合し
て、そのOHラジカルによりNOX及びSOXを同時に分解処理
することを特徴とする排ガスの処理方法を提案するもの
である。
The present invention provides a method for treating an exhaust gas containing NO X and SO X, in which a gas containing an alcohol that generates an OH radical is irradiated with an electromagnetic wave or an electron beam to generate an OH radical, and the gas containing the OH radical is converted into the above gas. mixed into the exhaust gas, it is to propose a method of processing an exhaust gas, which comprises simultaneously decomposing NO X and SO X by the OH radicals.

〔作 用〕(Operation)

メタノール等のOHラジカルを発生するアルコールを含
むガスに電磁波あるいは電子ビームを照射すると、アル
コールや共存する物質からOHラジカルが発生する。この
ラジカルを含むガスをNO及びSO2を含む排ガスと混合す
るとこのラジカルにより次の反応が生じる。
When an electromagnetic wave or an electron beam is irradiated on a gas containing an alcohol that generates an OH radical, such as methanol, an OH radical is generated from the alcohol or a coexisting substance. When the gas containing the radical is mixed with the exhaust gas containing NO and SO 2 , the radical causes the following reaction.

上記の(1),(2)式に示すように、NO及びSO2
還元されてそれぞれN2及び単体のイオウSに分解され
る。このプロセスで発生するN2,H2O,O2は無害であり、
後処理の必要はないが、Sは処理ガス中に固体状で含ま
れるので集塵器で除去される。
As shown in the above formulas (1) and (2), NO and SO 2 are reduced and decomposed into N 2 and simple sulfur S, respectively. N 2 , H 2 O, O 2 generated in this process is harmless,
Although there is no need for post-treatment, S is contained in the processing gas in a solid state and is removed by a dust collector.

〔実施例〕〔Example〕

本発明の方法で用いられるOHラジカルを発生する前駆
体としては、メタノール、エタノール及びそのアルコー
ル誘導体があげられる。
Precursors that generate OH radicals used in the method of the present invention include methanol, ethanol and alcohol derivatives thereof.

また、本発明の方法では、電磁波としては紫外・可視
・赤外光が用いられるが、波長範囲が150nm〜16μmの
紫外・可視・赤外光としては、アルゴン、CO2、エキシ
マ等のガスレーザーシステム及びイットリウム−アルミ
ニウム−ガーネット(YAG)等の固体レーザーシステム
を用いて出射されるレーザー光が用いられる。
In the method of the present invention, ultraviolet, visible, and infrared light is used as the electromagnetic wave, and the ultraviolet, visible, and infrared light having a wavelength range of 150 nm to 16 μm includes gas lasers such as argon, CO 2 , and excimer. Laser light emitted using a solid-state laser system such as a system and yttrium-aluminum-garnet (YAG) is used.

さらに、また、マイクロ波を用いる場合は、OHラジカ
ルを発生するアルコールを誘導した空洞共振器内で照射
する。
Further, when microwaves are used, the irradiation is performed in a cavity resonator in which alcohol that generates OH radicals is induced.

なお、OHラジカルを含むガスは排ガスに対して、排ガ
スが露点に至らない温度、すなわち、50〜100℃の温度
範囲でOHラジカルとNOX+SOXのモル比が3:1になるよう
に混合される。
The gas containing OH radicals is mixed with the exhaust gas at a temperature at which the exhaust gas does not reach the dew point, that is, in a temperature range of 50 to 100 ° C., so that the molar ratio of OH radical to NO X + SO X becomes 3: 1. Is done.

次に本発明の方法について行った実験例を第1図の説
明図に基づいて説明する。NO,SO2,CH3OH,N2の試験ガス
がそれぞれ別々に封入されている試験ガス容器1からガ
ス流量調整器2により流量を調整してCH3OHガスとN2
スとを抜き出して混合しCH3OH含有ガス3の濃度を調整
した。ついでこのCH3OH含有ガス3をガス流量30cc/sで
反応セル4に導入し、ArF−エキシマレーザーシステム
5からの波長193nmのレーザー光6を100Hzのパルス発振
の条件(1〜100Hzで発振させてもよい)で連続照射し
た。レーザー光の照射によりCH3OHは励起されOHラジカ
ルが生成する。
Next, an experimental example performed on the method of the present invention will be described based on the explanatory diagram of FIG. The flow rates of the CH 3 OH gas and the N 2 gas are extracted from the test gas container 1 in which the test gases NO, SO 2 , CH 3 OH, and N 2 are separately sealed by adjusting the flow rate by the gas flow rate regulator 2. The concentration of the CH 3 OH-containing gas 3 was adjusted by mixing. Next, the CH 3 OH-containing gas 3 is introduced into the reaction cell 4 at a gas flow rate of 30 cc / s, and the laser beam 6 having a wavelength of 193 nm from the ArF-excimer laser system 5 is oscillated at a pulse oscillation condition of 100 Hz (1 to 100 Hz). May be continuously irradiated. CH 3 OH is excited by laser light irradiation to generate OH radicals.

一方、CH3OH含有ガスを調整する場合と同様な方法
で、NO,SO2及びN2ガスを試験ガス容器1から抜き出し混
合して、NO濃度100ppm、SO2濃度600ppmの供試ガス7を
調整した。このようにして調整した供試ガス7をガス流
量30cc/sでガス混合器8に導き反応セル4からのOHラジ
カルを含むガスと80℃で混合した。
On the other hand, in the same manner as in the case of adjusting the CH 3 OH-containing gas, NO, SO 2 and N 2 gases are extracted from the test gas container 1 and mixed to obtain a test gas 7 having an NO concentration of 100 ppm and an SO 2 concentration of 600 ppm. It was adjusted. The test gas 7 thus adjusted was introduced into the gas mixer 8 at a gas flow rate of 30 cc / s and mixed with the gas containing OH radicals from the reaction cell 4 at 80 ° C.

混合すると同時に供試ガス7中に含まれているNOとSO
2はOHラジカルと反応し分解し、N2とSに変換した。
NO and SO contained in test gas 7 at the same time as mixing
2 was decomposed by reacting with OH radicals and converted into N 2 and S.

反応後のガスをガス組成分析計9に導きガス組成を分
析し、NO及びSO2の分解率を求めた。その結果、NO及びS
O2の分解率は共に65%であった。この実験例から本発明
の方法は排ガス処理に有効であることが認められた。な
お本実施例の方法によればつぎの効果を奏する。
The gas after the reaction was introduced into the gas composition analyzer 9 and the gas composition was analyzed to determine the decomposition rates of NO and SO 2 . As a result, NO and S
Both O 2 decomposition rates were 65%. From this experimental example, it was confirmed that the method of the present invention was effective for exhaust gas treatment. According to the method of the present embodiment, the following effects are obtained.

(1)NOXとSOXを別々のプロセスでかつ複数段階で処理
する必要がなく、単一プロセスで一段でNOXとSOXとを同
時に処理することができ、プロセスが単純となり、した
がって必要とする機器点数も少なくなる。
(1) It is not necessary to process NO X and SO X in separate processes and in multiple stages, NO X and SO X can be processed simultaneously in a single process in a single step, and the process becomes simple, thus requiring The number of devices to be used also decreases.

(2)従来のプロセスで必要とした触媒や吸収液、吸着
剤等を必要としない。
(2) It does not require a catalyst, an absorbing solution, an adsorbent, and the like required in the conventional process.

(3)排ガス中のNOX及びSOXを処理するために、処理す
べき排ガス全体に電磁波あるいは電子ビームを照射する
のではなく、添加するガスにのみ電磁波あるいは電子ビ
ームを照射させるので、排ガスによる光学系の汚染が防
止され、排ガス中の不純物によるエネルギロスを低減す
ることが可能である。
(3) In order to treat NO X and SO X in exhaust gas, instead of irradiating the entire exhaust gas to be treated with electromagnetic waves or electron beams, only the added gas is irradiated with electromagnetic waves or electron beams. It is possible to prevent contamination of the optical system and reduce energy loss due to impurities in exhaust gas.

〔発明の効果〕〔The invention's effect〕

本発明の排ガスの処理方法によれば次のような効果を
奏する。
According to the exhaust gas treatment method of the present invention, the following effects can be obtained.

(1)NOXとSOXを別々のプロセスでかつ複数段階で処理
する必要がなく、単一プロセスで一段でNOXとSOXとを同
時に処理することができ、プロセスが単純となり、した
がって、必要とする機器点数も少なくなる。
(1) There is no need to process NO X and SO X in separate processes and in multiple stages, NO X and SO X can be processed simultaneously in a single process in a single step, and the process is simplified, thus The number of required equipment is also reduced.

(2)従来のプロセスで必要とした触媒や吸収液、吸着
剤等を必要としない。
(2) It does not require a catalyst, an absorbing solution, an adsorbent, and the like required in the conventional process.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実験例を説明するための説明図であ
る。 1……試料ガス容器 2……ガス流量調整器 3……CH3OH含有ガス 4……反応セル 5……ArF−エキシマレーザーシステム 6……レーザー光 7……供試ガス 8……ガス混合器 9……ガス組成分析計
FIG. 1 is an explanatory diagram for explaining an experimental example of the present invention. 1 ...... sample gas container 2 ...... gas flow controller 3 ...... CH 3 OH containing gas 4 ...... reaction cell 5 ...... ArF-excimer laser system 6 ...... laser beam 7 ...... test gas 8 ...... gas mixture Instrument 9 Gas analyzer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】NOX及びSOXを含む排ガスの処理方法におい
て、OHラジカルを発生するアルコールを含むガスに電磁
波あるいは電子ビームを照射してOHラジカルを生成さ
せ、このOHラジカルを含むガスを上記排ガスに混合し
て、そのOHラジカルによりNOX及びSOXを同時に分解処理
することを特徴とする排ガスの処理方法。
In a method for treating an exhaust gas containing NO X and SO X , a gas containing an alcohol that generates OH radicals is irradiated with an electromagnetic wave or an electron beam to generate OH radicals. A method for treating exhaust gas, wherein the exhaust gas is mixed with the exhaust gas and the NO X and SO X are simultaneously decomposed by OH radicals.
JP62253807A 1987-10-09 1987-10-09 Exhaust gas treatment method Expired - Lifetime JP2607548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62253807A JP2607548B2 (en) 1987-10-09 1987-10-09 Exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62253807A JP2607548B2 (en) 1987-10-09 1987-10-09 Exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH0199633A JPH0199633A (en) 1989-04-18
JP2607548B2 true JP2607548B2 (en) 1997-05-07

Family

ID=17256422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62253807A Expired - Lifetime JP2607548B2 (en) 1987-10-09 1987-10-09 Exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2607548B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342599A (en) * 1990-09-14 1994-08-30 Cummins Power Generation, Inc. Surface stabilized sources of isocyanic acid
US5234671A (en) * 1990-09-20 1993-08-10 Molecular Technology Corporation Reduction of nitrogen oxide in effluent gases using formaldehyde and/or formaldehyde-derived free radicals
US5284556A (en) * 1991-05-01 1994-02-08 Plasmachines, Inc. Exhaust treatment system and method
US6264314B1 (en) 1991-05-27 2001-07-24 Seiko Epson Corporation Ink cartridge for ink jet recording apparatus
SG95595A1 (en) 1998-05-13 2003-04-23 Seiko Epson Corp Ink cartridge for ink-jet printing apparatus
FR2791276B1 (en) * 1999-03-26 2002-01-18 Anne Marie Coudert PROCESS FOR DECOMPOSING ATMOSPHERIC POLLUTANTS. APPARATUS FOR THIS REALIZATION
CN110038403B (en) * 2019-04-30 2024-10-11 李焕昌 Non-turbulent wave infrared electromagnetic wave denitration device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222213A (en) * 1983-05-30 1984-12-13 Japan Atom Energy Res Inst Treatment of waste gas
JPH0815532B2 (en) * 1987-05-21 1996-02-21 三菱重工業株式会社 Exhaust gas treatment method

Also Published As

Publication number Publication date
JPH0199633A (en) 1989-04-18

Similar Documents

Publication Publication Date Title
JP4110427B2 (en) Absorber regeneration
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
JP3329386B2 (en) Method and apparatus for removing SO2 and NOx from combustion flue gas
JP2607548B2 (en) Exhaust gas treatment method
US4146450A (en) Method for removing nitrogen oxides from nitrogen oxide-containing gases
CA2281392C (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JPS62262433A (en) Surface treating method
JPH0815532B2 (en) Exhaust gas treatment method
JP5927074B2 (en) Gas processing method and gas processing apparatus
JP3711490B2 (en) Method and apparatus for oxidizing SO2 in exhaust gas using HO2 radical as OH generating reactive species in radical chain reaction of SO2 oxidation
JPH08155264A (en) Desulfurization and denitration of flue gas and apparatus therefor
JPS59222213A (en) Treatment of waste gas
KR970020150A (en) Removal method of harmful components in incinerator flue gas and device
JPH0714462B2 (en) Decomposition method of nitrous oxide in gas mixture
JP2578131B2 (en) SOx removal method
JP2607639B2 (en) DeNOx method
JPS63267423A (en) Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide
JPH0651097B2 (en) Method for decomposing and removing nitrous oxide in gas mixture
RU2257256C1 (en) Method of cleaning gas emissions from polycyclic aromatic hydrocarbons, benza-pyrene inclusive
JP3398414B2 (en) Detoxification equipment for harmful chlorine compounds
KR101765467B1 (en) Heat Resonance System for Brazier that using Degassed Nitrogen Oxide Bio-fuel
JP2864640B2 (en) NO ▲ lower x gas processing equipment
KR19990018051A (en) Flue gas treatment method by electron beam irradiation
JPH0442054B2 (en)
JPS60251917A (en) Desulfurization and denitration of waste gas