JPH0651097B2 - Method for decomposing and removing nitrous oxide in gas mixture - Google Patents
Method for decomposing and removing nitrous oxide in gas mixtureInfo
- Publication number
- JPH0651097B2 JPH0651097B2 JP61255790A JP25579086A JPH0651097B2 JP H0651097 B2 JPH0651097 B2 JP H0651097B2 JP 61255790 A JP61255790 A JP 61255790A JP 25579086 A JP25579086 A JP 25579086A JP H0651097 B2 JPH0651097 B2 JP H0651097B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- laser light
- nitrous oxide
- laser
- gas mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
Landscapes
- Treating Waste Gases (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明はガス混合物中の亜酸化窒素の除去方法に関す
る。特に本発明は各種の工業及び産業における排ガス、
たとえば各種脱硝設備からの排ガス、アンモニア及び硝
酸工業における排ガス、水処理設備、特にその脱窒装置
からの発生ガス等、自動車の排ガス及び医療や調理等の
設備からの発生又はリークガス中の窒素酸化物の除去処
理の一環として実施するに適当な微量の亜酸化窒素を含
有する排ガスからの亜酸化窒素の除去方法に関するもの
である。FIELD OF THE INVENTION The present invention relates to a method for removing nitrous oxide in a gas mixture. In particular, the present invention relates to various industries and exhaust gas in industry,
For example, exhaust gas from various denitration equipment, exhaust gas from ammonia and nitric acid industry, gas generated from water treatment equipment, especially its denitrification equipment, automobile exhaust gas and nitrogen oxides generated from or leaked from equipment such as medical equipment and cooking equipment. The present invention relates to a method for removing nitrous oxide from exhaust gas containing a trace amount of nitrous oxide, which is suitable for carrying out as a part of the removal treatment of nitrous oxide.
従来の技術及び問題点 従来各種の工業及び産業における排ガスの大気中への放
出については公害防止の観点から法的その他の規制阻置
がとられており、特に窒素酸化物については酸性雨や光
化学スモツグの原因物質としてその排出は厳しく制限さ
れている。Conventional technology and problems Conventionally, various industries and industries are subject to legal and other restrictions on the emission of exhaust gas into the atmosphere from the viewpoint of pollution prevention. Its emission is severely restricted as the causative agent of smog.
ところで、従来排出規制の対象とされている排ガス中の
窒素酸化物(NOx)は主として一酸化窒素(NO)及び二
酸化窒素(NO2)であり、したがつて従来の排ガスの脱
硝技術もまた主として一酸化窒素及び二酸化窒素の除去
を対象としており、たとえばアンモニア添加による還元
法、触媒を使用する還元法、放射線照射法等が提案され
ている。By the way, the nitrogen oxides (NOx) in the exhaust gas that have been conventionally subject to emission regulations are mainly nitric oxide (NO) and nitrogen dioxide (NO 2 ), and thus the conventional exhaust gas denitration technology is also mainly used. Targeting the removal of nitric oxide and nitrogen dioxide, for example, a reduction method by adding ammonia, a reduction method using a catalyst, a radiation irradiation method and the like have been proposed.
一方、排ガス中の亜酸化窒素(N2O)は、勿論NOやNO
2と同様窒素酸化物に属するものではあるが、これまで
法的な排出規制値はなく、また日本工業規格(JIS)の
ような公的な測定も定められておらず、脱硝装置の評価
において実質的に無視されてきたのが実状である。これ
は大気中のN2O濃度がNOやNO2濃度に比較して一定濃
度で推移しており、他の物質への変換がなく安定と云わ
れていたため及びN2Oの物性が十分に判明していなか
つたためである。On the other hand, nitrous oxide (N 2 O) in the exhaust gas is, of course, NO or NO.
Although it belongs to nitrogen oxides like No. 2 , there are no legal emission control values up to now, and no official measurement such as Japanese Industrial Standard (JIS) has been established. The reality is that it has been virtually ignored. This is because the concentration of N 2 O in the atmosphere remained constant compared to NO and NO 2 concentration, and it was said that it was stable without conversion to other substances, and the physical properties of N 2 O were sufficient. This is because it was unclear.
ところが、上述したごとき従来技術に従う脱硝方法にお
いては、使用される脱硝装置の運転条件によつてはNO,
NO2及びNH3等の反応によりN2Oが比較的高濃度で生
成することが認められており、さらに近年、N2Oが成
層圏で分解してNOを生成することが明らかとなり、また
N2Oとオゾン層との係わりについても一部で議論され
るようになる等、N2Oの排出問題についても注目され
てきつつある。このような状況から、大気中のN2Oの
発生源である各種の排ガス、特に現在排ガス中の窒素酸
化物の除去のために使用されている種々の脱硝装置から
生成するNOx除去後の排ガスからN2Oの除去を行なう必
要性が生じてきた。However, in the denitration method according to the prior art as described above, NO, depending on the operating conditions of the denitration device used,
It has been recognized that N 2 O is produced in a relatively high concentration by the reaction of NO 2 and NH 3, etc., and in recent years, it has become clear that N 2 O decomposes in the stratosphere to produce NO. The issue of N 2 O emissions has been drawing attention, as some have discussed the relationship between 2 O and the ozone layer. Under these circumstances, various exhaust gases that are sources of N 2 O in the atmosphere, particularly exhaust gases after NOx removal generated from various NOx removal devices currently used to remove nitrogen oxides in the exhaust gas The need to remove N 2 O from the.
上記は主として脱硝設備を例に説明したが、他にも水処
理設備のように、従来排出規制が行なわれていない設備
からのN2Oの発生があり、これらについても同様にN2
Oの除去を行なう必要がある。The above explained mainly the denitration equipment as an example, but as in the well water treatment facility to another, there are N 2 O in the generation of conventional emission control is not performed facilities, these will similarly N 2
It is necessary to remove O.
問題点を解決するための手段、作用及び効果 本発明はガス混合物、特に種々の排ガス中に含まれる窒
素酸化物のうち除去が困難であつた亜酸化窒素を除去す
ることを目的とするものである。Means for Solving Problems, Actions and Effects The present invention aims to remove nitrous oxide, which is difficult to remove among nitrogen oxides contained in gas mixtures, particularly various exhaust gases. is there.
本発明に従えば、亜酸化窒素を含有するガス混合物に11
0 〜240nm の範囲の波長のレーザ光を照射することによ
り亜酸化窒素を分解無害化することを特徴とするガス混
合物中の亜酸化窒素の分解除去方法が提供される。According to the invention, a gas mixture containing nitrous oxide is
Provided is a method for decomposing and removing nitrous oxide in a gas mixture, which comprises decomposing and detoxifying nitrous oxide by irradiating laser light having a wavelength in the range of 0 to 240 nm.
以下本発明の方法を重油燃焼炉から発生する重油燃焼排
ガスの慣用の脱硝装置から生成するN2Oの処理に適用
する一具体例について第1図を参照しつつ説明する。A specific example in which the method of the present invention is applied to the treatment of N 2 O produced from a conventional denitration device for heavy oil combustion exhaust gas produced from a heavy oil combustion furnace will be described with reference to FIG.
重油燃焼炉1から平均NOx(NO及びNO2の合計)濃度2
50ppmで排出される排ガスをまず通常の脱硝装置2で
脱硝所してNOxを除去した後、ここで生成するN2Oをレ
ーザ光照射器4にて分解して、無害化された排ガスをフ
アン5を介して煙突6から排出する。Average NOx (total of NO and NO 2 ) concentration from heavy oil combustion furnace 1 2
Exhaust gas discharged at 50 ppm is first denitrified by a normal denitrification device 2 to remove NOx, and then N 2 O produced here is decomposed by a laser light irradiator 4 to detoxify the detoxified exhaust gas. It is discharged from the chimney 6 via 5.
脱硝装置2での脱硝は、排ガス中のNOx濃度に対して化
学量論量の0.7〜0.9当量のアンモニア(NH3)3
を添加することにより行なわれる。The denitration by the denitration device 2 is carried out by using a stoichiometric amount of 0.7 to 0.9 equivalent of ammonia (NH 3 ) 3 with respect to the NOx concentration in the exhaust gas.
Is added.
脱硝装置2の後流の排ガス中のNOx濃度は50ppmである
が、NOxの一部はN2Oに変換しており、ここでのN2O
濃度は45ppmである。While the NOx concentration in the exhaust gas stream after the denitrification device 2 is 50 ppm, a portion of the NOx is converted to N 2 O, N 2 O Here
The concentration is 45 ppm.
ここで脱硝率を算出すると、従来のような脱硝装置入口
及び出口のNOx濃度のみに着目した場合の脱硝率は となる。つぎにN2Oに着目し、N2O濃度をNOx濃度に
換算し(45ppmN2Oは90ppmNOに相当する)、NOx濃
度としてN2OからのNOxを加えた場合の脱硝率は となる。Calculating the denitrification rate here, the denitrification rate when only focusing on the NOx concentration at the inlet and outlet of the conventional denitrification equipment is Becomes Then paying attention to N 2 O, the N 2 O concentration in terms of NOx concentration (45ppmN 2 O corresponds to 90ppmNO), denitration rate when added NOx from N 2 O as the NOx concentration Becomes
脱硝装置2の後流のN2Oは、レーザ光照射器4にてN
2及びO2に分解無害化される。The N 2 O in the downstream of the denitration device 2 is converted into N by the laser light irradiator 4.
Decomposed into 2 and O 2 and rendered harmless.
レーザ光照射器4は、本発明の特徴であるレーザ光の照
射によりN2Oの分解が行なわれる反応器である。The laser light irradiator 4 is a reactor in which N 2 O is decomposed by irradiation with laser light, which is a feature of the present invention.
レーザ光照射器4の一具体例を第2図を参照して説明す
る。A specific example of the laser light irradiator 4 will be described with reference to FIG.
レーザ光照射器4はレーザ光発振管7及びレーザ光の照
射によりN2Oの分解が行なわれる反応器8より成る。
レーザ光発振管7からのレーザ光は、N2Oに吸収され
てN2OをN2及びO2に分解するものであればよい。
レーザ光の波長は110〜240nm、好ましくは185
〜240nm、より好ましくは185〜230nmである。The laser light irradiator 4 comprises a laser light oscillating tube 7 and a reactor 8 in which N 2 O is decomposed by irradiation with laser light.
Laser light from the laser beam oscillation tube 7 is not limited as long as it is absorbed into the N 2 O decomposing the N 2 O to N 2 and O 2.
The wavelength of laser light is 110 to 240 nm, preferably 185
˜240 nm, more preferably 185 to 230 nm.
レーザの種類及び媒質ガスは、上記の波長のレーザ光を
発するものであればよく、好ましいレーザの種類はエキ
シマレーザ、媒質ガスはArF又はArClである。The type of laser and the medium gas may be any one as long as it emits a laser beam having the above wavelength, and the preferable type of laser is an excimer laser and the medium gas is ArF or ArCl.
レーザ光として110nm よりも小さい波長のレーザ光又は
240nm よりも大きい波長のレーザ光を使用した場合、例
えばアルゴンレーザ、炭酸ガスレーザ又はYAG レーザを
使用した場合にはN2O を分解できないので本発明の目的
を達成できない。また、エキシマレーザを用いた場合で
も、使用するレーザ光が110 〜240nm の範囲外の波長も
のである場合には、N2O を十分に分解できないので本発
明の目的を達成できない。Laser light with a wavelength smaller than 110 nm or
When laser light having a wavelength larger than 240 nm is used, for example, when an argon laser, a carbon dioxide gas laser, or a YAG laser is used, N 2 O cannot be decomposed, so that the object of the present invention cannot be achieved. Further, even when an excimer laser is used, if the laser light used has a wavelength outside the range of 110 to 240 nm, N 2 O cannot be sufficiently decomposed and the object of the present invention cannot be achieved.
レーザ光の照射方法は排ガスに均一かつ効果的に照射さ
れる方法であればよく、周知の方法が適宜適用できる。
通常、第2図に示すごとく排ガスの流れに対して向流的
に照射するのが好ましく、又反応器8内に撹拌羽根等の
撹拌機構を持たせるか又は旋回流により排ガスを撹拌し
てレーザ光を排ガスに均一照射するように構成すること
が効果的である。The method of irradiating the laser light may be any method as long as it can irradiate the exhaust gas uniformly and effectively, and a known method can be appropriately applied.
Normally, it is preferable to irradiate the exhaust gas flow countercurrently as shown in FIG. 2, and also to provide a stirring mechanism such as a stirring blade in the reactor 8 or to stir the exhaust gas by a swirling flow to laser the laser. It is effective to configure so that the exhaust gas is uniformly irradiated with light.
第2図において9は排ガスの流れで、91は入口、92
は出口、10はレーザ光の照射窓である。In FIG. 2, 9 is the flow of exhaust gas, 9 1 is the inlet, and 9 2
Is an exit, and 10 is a laser beam irradiation window.
本方式ではN2O分解に対する温度効果は少ないので特
別な温度制御は通常不要である。本具体例は、脱硝装置
2出口の排ガス(温度250〜300℃の排ガス)がその
ままレーザ光照射器4に導入されており、特別な温度制
御を行なわないで実施し得るものである。In this method, the temperature effect on the N 2 O decomposition is small, so that special temperature control is usually unnecessary. In this specific example, the exhaust gas at the outlet of the denitration device 2 (exhaust gas at a temperature of 250 to 300 ° C.) is directly introduced into the laser light irradiator 4, and can be implemented without special temperature control.
通常、燃焼排ガスの場合の反応器8の温度は、排ガス中
の酸ミスト等の反応器への付着、凝縮が無視し得る程度
である温度又はそれ以上、一般には酸露点以上(たとえ
ば120℃以上)で行なうのが好ましい。Usually, the temperature of the reactor 8 in the case of combustion exhaust gas is a temperature at which attachment or condensation of acid mist in exhaust gas to the reactor is negligible or higher, generally an acid dew point or higher (for example, 120 ° C. or higher). ) Is preferable.
第1図に示した実施態様のレーザ光照射器4は、通常の
脱硝装置2の後流に別途設置した場合であるが、通常の
脱硝装置2とレーザ光照射器4を一体化させて行なうこ
ともできることはいうまでもない。実用的には経済性
(装置全体が小型化する)等から一体化が好ましい。The laser beam irradiator 4 of the embodiment shown in FIG. 1 is a case where the laser beam irradiator 4 is separately installed in the downstream of the normal denitration device 2. However, the ordinary denitrification device 2 and the laser beam irradiator 4 are integrated. It goes without saying that you can also do it. Practically, it is preferable to be integrated from the viewpoint of economy (the entire device is downsized).
上記説明及び後記実施例からも明らかなごとく、本発明
方法によれば特に下記〜の効果が達成される。As is clear from the above description and the examples described below, the following effects (1) to (3) are particularly achieved by the method of the present invention.
ガス混合物中のN2Oが無害かつ安定なN2及びO2
に分解された。N 2 O in the gas mixture is harmless and stable N 2 and O 2
Was disassembled into
N2Oが分解され、実質的に脱硝率が向上した。すな
わち、従来の脱硝率は、脱硝装置入口のNOx濃度と出口
のNOx濃度の比較であり、出口での生成N2O濃度は考慮
しておらず、N2O濃度を考慮した(NOxと見なして)脱
硝率はN2O濃度分だけ低下していた。N 2 O was decomposed and the denitration rate was substantially improved. That is, the conventional denitrification rate is a comparison between the NOx concentration at the inlet of the denitrification device and the NOx concentration at the outlet, and the concentration of N 2 O produced at the outlet is not taken into consideration, but the N 2 O concentration is taken into consideration (considered as NOx The denitration rate was decreased by the N 2 O concentration.
本方式は、室温程度でも有効であるので、従来の方
式、たとえば触媒法は高温が必須条件であるのに比較し
て実用上有利である。具体的には、たとえば従来の脱硝
法(たとえば触媒法)のような温度制御が不要で、保
守、管理が容易であること、水処理設備や医療・調理設
備のような室温付近での発生源の処理に有効であること
等があげられる。Since this method is effective even at about room temperature, it is practically advantageous as compared with the conventional method, for example, the catalytic method, in which high temperature is an essential condition. Specifically, it does not require temperature control such as the conventional denitration method (for example, catalytic method) and is easy to maintain and manage. Sources near room temperature such as water treatment facilities and medical / cooking facilities. It is effective for the treatment of.
実施例 つぎに本発明を実施例によつてさらに説明する。Examples Next, the present invention will be further described with reference to Examples.
第2図に示したレーザ光照射器に50ppmN2O/空気バ
ランスの調整ガスを1/分で通送することによりレー
ザ光の照射を行ない、反応器出口のN2O濃度をガスク
ロマトグラフ法により測定した。なお使用条件は次記の
とおりである。Laser light irradiation was performed by passing 50 ppm N 2 O / air balance adjusting gas at 1 / minute to the laser light irradiator shown in FIG. 2, and the N 2 O concentration at the reactor outlet was measured by gas chromatography. It was measured. The usage conditions are as follows.
レーザ:エキシマレーザ,媒質ガスArF,20W レーザ光の波長:193nm 反応器の大きさ:2 反応器の温度 :室温 結 果 反応器出口のN2O濃度は1ppm以下であつた。Laser: excimer laser, medium gas ArF, 20 W Laser light wavelength: 193 nm Reactor size: 2 Reactor temperature: room temperature Result The N 2 O concentration at the reactor outlet was 1 ppm or less.
なお、NOx(NO+NO2)濃度を亜鉛還元ナフチルエチレンジ
アミン法で測定したところ、検出限界(5ppm)以下で
あつた。The NOx (NO + NO 2 ) concentration was measured by the zinc-reduced naphthylethylenediamine method and found to be below the detection limit (5 ppm).
比較例 上記実施例で使用したレーザに代えて、媒質ガスとして
XeF を用いたエキシマレーザ(レーザ光の波長350nm)
を使用した以外は実施例と同一の条件で試験を行った。
その結果、得られた反応器出口のN2O 濃度は45ppm であ
り、極少量しか分解できなかった。Comparative Example Instead of the laser used in the above example, as a medium gas
Excimer laser using XeF (laser light wavelength 350 nm)
The test was carried out under the same conditions as in the example except that was used.
As a result, the N 2 O concentration at the obtained reactor outlet was 45 ppm, and only a very small amount could be decomposed.
第1図は本発明の方法を重油燃焼炉から発生する排ガス
の慣用の脱硝装置から生成するN2O含有排ガスの処理
に適用する一具体例の概略フローシートであり、第2図
は本発明方法の実施に使用されるレーザ光照射器(第1
図、4)の一具体例を示すものである。 1……重油燃焼炉、2……慣用の脱硝装置、3……アン
モニア槽、4……レーザ光照射器、5……フアン、6…
…煙突、7……レーザ光照射器、8……反応器、91……
排ガス入口、92……排ガス出口、10……レーザ光入射
窓。FIG. 1 is a schematic flow sheet of a specific example in which the method of the present invention is applied to the treatment of N 2 O-containing exhaust gas generated from a conventional denitration device for exhaust gas generated from a heavy oil combustion furnace, and FIG. 2 is the present invention. A laser light irradiator used to carry out the method (first
FIG. 4) shows a specific example. 1 ... Heavy oil combustion furnace, 2 ... Conventional denitration device, 3 ... Ammonia tank, 4 ... Laser light irradiator, 5 ... Juan, 6 ...
… Chimney, 7 …… Laser light irradiator, 8 …… Reactor, 9 1 ……
Exhaust gas inlet, 9 2 ...... Exhaust gas outlet, 10 ...... Laser light incident window.
Claims (4)
240 nmの範囲の波長のレーザ光を照射することにより亜
酸化窒素を分解無害化せしめることを特徴とするガス混
合物中の亜酸化窒素の分解除去方法。1. A gas mixture containing nitrous oxide containing 110-
A method for decomposing and removing nitrous oxide in a gas mixture, which comprises decomposing and detoxifying nitrous oxide by irradiating laser light having a wavelength in the range of 240 nm.
特許請求の範囲第1項記載の方法。2. The method according to claim 1, wherein an excimer laser is used as the laser light.
請求の範囲第2項記載の方法。3. The method according to claim 2, wherein the medium gas is ArF and / or ArCl.
有する排ガスである特許請求の範囲第1項ないし第3項
のいずれかに記載の方法。4. The method according to any one of claims 1 to 3, wherein the gas mixture to be treated is an exhaust gas containing a trace amount of nitrous oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255790A JPH0651097B2 (en) | 1986-10-29 | 1986-10-29 | Method for decomposing and removing nitrous oxide in gas mixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255790A JPH0651097B2 (en) | 1986-10-29 | 1986-10-29 | Method for decomposing and removing nitrous oxide in gas mixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63111927A JPS63111927A (en) | 1988-05-17 |
JPH0651097B2 true JPH0651097B2 (en) | 1994-07-06 |
Family
ID=17283666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255790A Expired - Lifetime JPH0651097B2 (en) | 1986-10-29 | 1986-10-29 | Method for decomposing and removing nitrous oxide in gas mixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0651097B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108379994B (en) * | 2016-01-11 | 2019-12-06 | 安徽金森源环保工程有限公司 | Denitration method for industrial waste cracking incineration tail gas |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5247425B2 (en) * | 1972-06-30 | 1977-12-02 | ||
JPS5198670A (en) * | 1975-01-29 | 1976-08-31 | KATSUSEICHITSUSONYORU NOX NOBUNKAIHO | |
JPS53125265A (en) * | 1977-04-08 | 1978-11-01 | Saburo Yanagisawa | Removing method for nitrogen oxides |
JPS58211823A (en) * | 1982-06-03 | 1983-12-09 | Inoue Japax Res Inc | Electric machining device |
-
1986
- 1986-10-29 JP JP61255790A patent/JPH0651097B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63111927A (en) | 1988-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1064981B1 (en) | Reduction of oxides of nitrogen in waste gas emissions | |
EP1332786B1 (en) | Process for the removal of impurities from gas streams | |
US4119702A (en) | Process for abating concentration of nitrogen oxides in combustion flue gas | |
JPH01218622A (en) | Method for removing nitrogen oxides in low concentration from air | |
JPS60175524A (en) | Conversion of nitrogen oxide contained gaseous combustion product | |
JPH0653212B2 (en) | Method for decomposing and removing nitrous oxide in gas mixture | |
JPH0714462B2 (en) | Decomposition method of nitrous oxide in gas mixture | |
JPH0651097B2 (en) | Method for decomposing and removing nitrous oxide in gas mixture | |
JP3711490B2 (en) | Method and apparatus for oxidizing SO2 in exhaust gas using HO2 radical as OH generating reactive species in radical chain reaction of SO2 oxidation | |
JP2607548B2 (en) | Exhaust gas treatment method | |
JPH06343820A (en) | Treatment of waste gas by steam plasma | |
JP2007069130A (en) | Method for denitrating exhaust gas | |
JPH0815532B2 (en) | Exhaust gas treatment method | |
JP2607639B2 (en) | DeNOx method | |
JPS63267423A (en) | Decomposition method for nitrogen oxide in gas mixture containing nitrogen oxide | |
JPH0975668A (en) | Exhaust gas treatment apparatus | |
KR100406510B1 (en) | Method and system for removing nitrogen oxide using oxidation catalyst | |
JP2000300959A (en) | Method and apparatus for decomposing halogen- containing organic compound | |
JPH0442054B2 (en) | ||
JPS60251917A (en) | Desulfurization and denitration of waste gas | |
JPH05337336A (en) | Method for purifying exhaust gas | |
JPH08108172A (en) | Treatment of waste water containing oxide form nitrogen | |
JP2864689B2 (en) | NOx gas treatment method | |
KR100451690B1 (en) | Method and apparatus for removing harmful compounds in exhaust gas by electron beam irradiation | |
JP2864641B2 (en) | NO ▲ lower x gas processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |