JPS6326734B2 - - Google Patents
Info
- Publication number
- JPS6326734B2 JPS6326734B2 JP54123128A JP12312879A JPS6326734B2 JP S6326734 B2 JPS6326734 B2 JP S6326734B2 JP 54123128 A JP54123128 A JP 54123128A JP 12312879 A JP12312879 A JP 12312879A JP S6326734 B2 JPS6326734 B2 JP S6326734B2
- Authority
- JP
- Japan
- Prior art keywords
- distillation
- column
- distillation column
- dimethylphenol
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004821 distillation Methods 0.000 claims description 131
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 claims description 75
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 36
- 239000007795 chemical reaction product Substances 0.000 claims description 23
- 239000000047 product Substances 0.000 claims description 17
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000003054 catalyst Substances 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 239000007788 liquid Substances 0.000 description 31
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical class COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 20
- 238000000926 separation method Methods 0.000 description 19
- 238000009835 boiling Methods 0.000 description 16
- 239000000203 mixture Substances 0.000 description 15
- 238000010992 reflux Methods 0.000 description 14
- 230000006866 deterioration Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 9
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 6
- 239000006227 byproduct Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- BPRYUXCVCCNUFE-UHFFFAOYSA-N 2,4,6-trimethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1 BPRYUXCVCCNUFE-UHFFFAOYSA-N 0.000 description 3
- GFNZJAUVJCGWLW-UHFFFAOYSA-N 2-methoxy-1,3-dimethylbenzene Chemical compound COC1=C(C)C=CC=C1C GFNZJAUVJCGWLW-UHFFFAOYSA-N 0.000 description 3
- 238000001944 continuous distillation Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229930003836 cresol Natural products 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical class CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 150000001896 cresols Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical class CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 150000003739 xylenols Chemical class 0.000 description 2
- JEFSTMHERNSDBC-UHFFFAOYSA-N 1,2-dimethylcyclohexa-2,4-dien-1-ol Chemical compound CC1=CC=CCC1(C)O JEFSTMHERNSDBC-UHFFFAOYSA-N 0.000 description 1
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 1
- KUFFULVDNCHOFZ-UHFFFAOYSA-N 2,4-xylenol Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 1
- 150000000345 2,6-xylenols Chemical class 0.000 description 1
- MNVMYTVDDOXZLS-UHFFFAOYSA-N 4-methoxyguaiacol Natural products COC1=CC=C(O)C(OC)=C1 MNVMYTVDDOXZLS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【発明の詳細な説明】
本発明は、フエノールとメタノールを触媒の存
在下に気相接触反応させてメチルフエノール類を
製造する方法において、目的生成物を分離する方
法に関するものである。さらに詳しくは、フエノ
ールとメタノールを金属酸化物含有触媒の存在下
に気相接触反応させて得られる反応生成物から副
生物を効率的に分離して高純度の2,6−ジメチ
ルフエノールを得る方法に関するものである。
在下に気相接触反応させてメチルフエノール類を
製造する方法において、目的生成物を分離する方
法に関するものである。さらに詳しくは、フエノ
ールとメタノールを金属酸化物含有触媒の存在下
に気相接触反応させて得られる反応生成物から副
生物を効率的に分離して高純度の2,6−ジメチ
ルフエノールを得る方法に関するものである。
2,6−ジメチルフエノールは、フエノールと
メタノールを原料として、金属酸化物含有触媒の
存在下に気相接触反応させて得られる。この2,
6−ジメチルフエノールは耐熱性合成樹脂原料と
して極めて有用で、このような原料としてかなり
の高純度品が要求される。しかしながら、上記の
方法で得られる反応生成物中には、目的とするメ
チルフエノール類のほか、多くのジメチルフエノ
ール異性体、トリメチルフエノール異性体、三種
類のクレゾール、いくつかのアニソール類等が存
在し、これらの分離は困難であつて、多数の副生
物のうちでも、O−クレゾール、P−クレゾー
ル、2,4−ジメチルフエノール、とくに、反応
中間体であつて高い濃度で生成するO−クレゾー
ルは、目的生成物である2,6−ジメチルフエノ
ールに物性的に類似し、これらの分離は極めて困
難である。すなわち、前記反応生成物から高純度
の2,6−ジメチルフエノールを高い分離収率で
得ることは困難であつた。
メタノールを原料として、金属酸化物含有触媒の
存在下に気相接触反応させて得られる。この2,
6−ジメチルフエノールは耐熱性合成樹脂原料と
して極めて有用で、このような原料としてかなり
の高純度品が要求される。しかしながら、上記の
方法で得られる反応生成物中には、目的とするメ
チルフエノール類のほか、多くのジメチルフエノ
ール異性体、トリメチルフエノール異性体、三種
類のクレゾール、いくつかのアニソール類等が存
在し、これらの分離は困難であつて、多数の副生
物のうちでも、O−クレゾール、P−クレゾー
ル、2,4−ジメチルフエノール、とくに、反応
中間体であつて高い濃度で生成するO−クレゾー
ルは、目的生成物である2,6−ジメチルフエノ
ールに物性的に類似し、これらの分離は極めて困
難である。すなわち、前記反応生成物から高純度
の2,6−ジメチルフエノールを高い分離収率で
得ることは困難であつた。
従来、反応生成物中の副生物を除去し高純度の
2,6−ジメチルフエノールを分離取得しようと
する試はあつた。例えば、生成物液を有機溶剤
に溶解し、無機アルカリ水溶液でO−クレゾール
を抽出除去する方法があるが、O−クレゾールと
2,6−ジメチルフエノールのアルカリ水溶液へ
の分配が近似しているため効果的でなく、多量の
有機溶剤およびアルカリ水溶液を必要とし、ま
た、生成物液中に含まれる非解離性物質である数
種類のアニソール類は、ほぼ全量が製品となる側
に抽出され、以後の工程を複雑にする、さらに、
抽出後の多量のアルカリ水溶液は、多量の酸によ
つて中和する必要がある等の欠点を有している。
また、生成物液中に有機溶媒を混合し、冷却に
より晶析する方法も考えられるが、本研究者らの
研究によれば、一般の有機溶媒は、2,6−ジメ
チルフエノールを極めて良く溶解し、晶析法にお
ける溶媒の効果を得る量では、晶析温度を著しく
低下させねばならない、その上、一回当りの結晶
化率も低く、また微細結晶として析出する例が多
く、この方法による高純度化も十分期待できな
い。さらにこの方法では晶析分離で得られる母液
をアルカリ水溶液で洗浄し、フエノール類を除い
て有機溶媒を回収しても、水に不溶のアニソール
類等が系中に蓄積され、連続的な再使用は実質上
不可能となる欠点があることが判明した。
2,6−ジメチルフエノールを分離取得しようと
する試はあつた。例えば、生成物液を有機溶剤
に溶解し、無機アルカリ水溶液でO−クレゾール
を抽出除去する方法があるが、O−クレゾールと
2,6−ジメチルフエノールのアルカリ水溶液へ
の分配が近似しているため効果的でなく、多量の
有機溶剤およびアルカリ水溶液を必要とし、ま
た、生成物液中に含まれる非解離性物質である数
種類のアニソール類は、ほぼ全量が製品となる側
に抽出され、以後の工程を複雑にする、さらに、
抽出後の多量のアルカリ水溶液は、多量の酸によ
つて中和する必要がある等の欠点を有している。
また、生成物液中に有機溶媒を混合し、冷却に
より晶析する方法も考えられるが、本研究者らの
研究によれば、一般の有機溶媒は、2,6−ジメ
チルフエノールを極めて良く溶解し、晶析法にお
ける溶媒の効果を得る量では、晶析温度を著しく
低下させねばならない、その上、一回当りの結晶
化率も低く、また微細結晶として析出する例が多
く、この方法による高純度化も十分期待できな
い。さらにこの方法では晶析分離で得られる母液
をアルカリ水溶液で洗浄し、フエノール類を除い
て有機溶媒を回収しても、水に不溶のアニソール
類等が系中に蓄積され、連続的な再使用は実質上
不可能となる欠点があることが判明した。
以上のことから、フエノールとメタノールとの
反応生成物からの2,6−ジメチルフエノールの
分離方法として、蒸留法が優れていると言える。
反応生成物からの2,6−ジメチルフエノールの
分離方法として、蒸留法が優れていると言える。
しかしながら、一般に、アルキル化反応等で得
られる2,6−ジメチルフエノールの純度は40〜
95モル%で、不純物として種々のジメチルフエノ
ール類、クレゾール類、アニソール類、トリメチ
ルフエノール類、主反応副生物である水、未反応
メタノール、フエノール等を含み、最も高濃度の
ものでも5モル%程度のO−クレゾールを含んで
いて、分離を困難にしている。すなわち、O−
クレゾールと2,6−ジメチルフエノールの沸点
は近似しているため、通常の蒸留法によつて高純
度の2,6−ジメチルフエノールを高い回収率で
得ることは極めて困難である。また、不都合な
ことには、上記反応生成物を蒸留するため加熱す
ると、内容物の変質が起りある種のアニソール類
が増加することが認められ、この現象は、加熱壁
温度が局部的ではあつても220℃を越えると、実
質上無視できない程度に顕著となる。
られる2,6−ジメチルフエノールの純度は40〜
95モル%で、不純物として種々のジメチルフエノ
ール類、クレゾール類、アニソール類、トリメチ
ルフエノール類、主反応副生物である水、未反応
メタノール、フエノール等を含み、最も高濃度の
ものでも5モル%程度のO−クレゾールを含んで
いて、分離を困難にしている。すなわち、O−
クレゾールと2,6−ジメチルフエノールの沸点
は近似しているため、通常の蒸留法によつて高純
度の2,6−ジメチルフエノールを高い回収率で
得ることは極めて困難である。また、不都合な
ことには、上記反応生成物を蒸留するため加熱す
ると、内容物の変質が起りある種のアニソール類
が増加することが認められ、この現象は、加熱壁
温度が局部的ではあつても220℃を越えると、実
質上無視できない程度に顕著となる。
さらに、フエノールとメタノールとの前記の
反応成分系、特にO−クレゾールと2,6−キシ
レノールとを含む系においては、蒸留塔内の圧力
が高いほど分離効率が高くなり、従来工業的に用
いられている多段蒸留塔のように塔内圧力損失が
大きい装置を用いて反応生成物の蒸留を行なおう
とすれば、極めて多段の蒸留塔を用い、且つ、還
流比を非常に大きくして操作する必要がある。し
かし、このような多段の蒸留塔では塔頂と塔底の
圧力差が大きくなるため、塔底部温度を低く保つ
ならば、塔頂部操作圧力は非常に低いものに限定
されてしまい、効率の高い分離は期待できない。
その上、還流比を大きくしなければならないの
で、蒸留塔内での混合物の滞留時間も増大し、反
応内容物の変質も防止できない。
反応成分系、特にO−クレゾールと2,6−キシ
レノールとを含む系においては、蒸留塔内の圧力
が高いほど分離効率が高くなり、従来工業的に用
いられている多段蒸留塔のように塔内圧力損失が
大きい装置を用いて反応生成物の蒸留を行なおう
とすれば、極めて多段の蒸留塔を用い、且つ、還
流比を非常に大きくして操作する必要がある。し
かし、このような多段の蒸留塔では塔頂と塔底の
圧力差が大きくなるため、塔底部温度を低く保つ
ならば、塔頂部操作圧力は非常に低いものに限定
されてしまい、効率の高い分離は期待できない。
その上、還流比を大きくしなければならないの
で、蒸留塔内での混合物の滞留時間も増大し、反
応内容物の変質も防止できない。
上記のように、アルキルフエノール類の分離、
特に2,6−ジメチルフエノールをO−クレゾー
ルとの混合物から高純度、高収率で回収するに
は、蒸留法であつても、通常の方法には、多くの
問題点があつた。本発明者らは、上記の諸問題点
に関し、鋭意検討の結果、これらを解決し、反応
生成物の変質を、実質上、無視できる程度に防止
しながら、十分に高い濃度でO−クレゾールを除
去し高収率で2,6−ジメチルフエノールを得る
ための効率的な蒸留方法を見い出し、本発明の方
法に至つた。
特に2,6−ジメチルフエノールをO−クレゾー
ルとの混合物から高純度、高収率で回収するに
は、蒸留法であつても、通常の方法には、多くの
問題点があつた。本発明者らは、上記の諸問題点
に関し、鋭意検討の結果、これらを解決し、反応
生成物の変質を、実質上、無視できる程度に防止
しながら、十分に高い濃度でO−クレゾールを除
去し高収率で2,6−ジメチルフエノールを得る
ための効率的な蒸留方法を見い出し、本発明の方
法に至つた。
すなわち、本発明の方法は、フエノールとメタ
ノールを金属酸化物含有触媒の存在下に反応させ
て得られる生成物のうちから、高純度の2,6−
ジメチルフエノールを収率良く得るに際し、常温
で液体である反応生成物のうちから、2,6−ジ
メチルフエノールとこれにより低沸点の成分また
は高沸点成分を分離する蒸留操作を、(1)蒸留缶を
含む蒸留塔々底部の温度が、局部的であつても
220℃を越えない温度で蒸留分離する方法、およ
び(2)蒸留缶を含む蒸留塔々底部の温度を局部的で
あつても220℃を越えない温度とし、かつ主とし
て反応生成物を直接供給して蒸留する蒸留塔、該
蒸留塔の塔頂留出物を蒸留する蒸留塔および/ま
たは塔底缶出物を蒸留する蒸留塔の2または3基
から成る蒸留塔により行なう、ことを特徴とする
2,6−ジメチルフエノールの精製方法である。
ノールを金属酸化物含有触媒の存在下に反応させ
て得られる生成物のうちから、高純度の2,6−
ジメチルフエノールを収率良く得るに際し、常温
で液体である反応生成物のうちから、2,6−ジ
メチルフエノールとこれにより低沸点の成分また
は高沸点成分を分離する蒸留操作を、(1)蒸留缶を
含む蒸留塔々底部の温度が、局部的であつても
220℃を越えない温度で蒸留分離する方法、およ
び(2)蒸留缶を含む蒸留塔々底部の温度を局部的で
あつても220℃を越えない温度とし、かつ主とし
て反応生成物を直接供給して蒸留する蒸留塔、該
蒸留塔の塔頂留出物を蒸留する蒸留塔および/ま
たは塔底缶出物を蒸留する蒸留塔の2または3基
から成る蒸留塔により行なう、ことを特徴とする
2,6−ジメチルフエノールの精製方法である。
本発明の方法によれば、前記反応生成物の変質
を、実質上、支障のないように防止でき、蒸留塔
塔頂の操作圧を従来法にくらべ十分に高く設定で
きるので、高い効率での分離操作が可能である。
すなわち、高純度の2,6−ジメチルフエノール
を極めて高い収率で分離採取すること、また、各
蒸留塔の還流比は従来法の半分から十分の一とす
ること、さらに、各々の蒸留塔の操作条件は独立
に選ぶこと等ができる、きわめて安定した操作が
可能な効率的なメチルフエノールの工業的分離方
法である。
を、実質上、支障のないように防止でき、蒸留塔
塔頂の操作圧を従来法にくらべ十分に高く設定で
きるので、高い効率での分離操作が可能である。
すなわち、高純度の2,6−ジメチルフエノール
を極めて高い収率で分離採取すること、また、各
蒸留塔の還流比は従来法の半分から十分の一とす
ること、さらに、各々の蒸留塔の操作条件は独立
に選ぶこと等ができる、きわめて安定した操作が
可能な効率的なメチルフエノールの工業的分離方
法である。
本発明の方法で使用する蒸留塔とは、一般に用
いられる減圧蒸留塔、常圧蒸留塔、加圧蒸留塔等
のいずれでも良く、充填物や各蒸留段の形式、コ
ンデンサーや分留器および蒸留缶の形式は、公知
の物であれば、いずれの形式であつてもよい。ま
た、蒸留塔の中間にインタークーラーやヒーター
を設けること、サイドカツトを設けること等、通
常の蒸留操作において用いられる方法を挿入して
も差し支えがない。さらに、本来、単一の蒸留塔
であるものを、高段数であることなどの理由から
2つ以上に分割し用いる場合であつても、ある一
部分の塔頂の蒸気および液が他の部分の塔底に連
結しているようなものも含まれる。
いられる減圧蒸留塔、常圧蒸留塔、加圧蒸留塔等
のいずれでも良く、充填物や各蒸留段の形式、コ
ンデンサーや分留器および蒸留缶の形式は、公知
の物であれば、いずれの形式であつてもよい。ま
た、蒸留塔の中間にインタークーラーやヒーター
を設けること、サイドカツトを設けること等、通
常の蒸留操作において用いられる方法を挿入して
も差し支えがない。さらに、本来、単一の蒸留塔
であるものを、高段数であることなどの理由から
2つ以上に分割し用いる場合であつても、ある一
部分の塔頂の蒸気および液が他の部分の塔底に連
結しているようなものも含まれる。
本発明の方法で、蒸留塔々底部の温度は局部的
ではあつても220℃を越えない温度である。220℃
を越えない温度では蒸留缶内で加熱蒸発させられ
る反応生成物の変質が実質上顕著にならない温度
であつて、この温度を越えると、2,6−ジメチ
ルフエノールが、一種の不均化反応によりO−ク
レゾールと2,6−ジメチルアニソールに変化す
る反応等が起る。また、反応生成物中には、主反
応副生物としての水や未反応メタノールが存在す
るが、これらの成分が微量存在する場合、アニソ
ール類の副生は顕著となる。これらの変質生成物
には、2,6−ジメチルフエノールよりも低沸点
の物質が多く、高純度の分離を困難ならしめてい
る。
ではあつても220℃を越えない温度である。220℃
を越えない温度では蒸留缶内で加熱蒸発させられ
る反応生成物の変質が実質上顕著にならない温度
であつて、この温度を越えると、2,6−ジメチ
ルフエノールが、一種の不均化反応によりO−ク
レゾールと2,6−ジメチルアニソールに変化す
る反応等が起る。また、反応生成物中には、主反
応副生物としての水や未反応メタノールが存在す
るが、これらの成分が微量存在する場合、アニソ
ール類の副生は顕著となる。これらの変質生成物
には、2,6−ジメチルフエノールよりも低沸点
の物質が多く、高純度の分離を困難ならしめてい
る。
また、本発明の方法において、蒸留塔にフイー
ドされる反応生成物とは、金属酸化物含有触媒の
存在下でフエノールとメタノールを反応させて得
られる、2,6−ジメチルフエノールを主成分と
して含む反応生成分のうち、常温で液体である成
分の混合物を意味する。この混合物は何らかの方
法で、あらかじめメタノールや水、アニソール
類、フエノール等の比較的低沸点の成分および一
部のO−クレゾールを分離した混合物であつても
よい。逆に、予め2,6−ジメチルフエノールよ
りも高沸点の成分を分離した混合物であつても良
い。
ドされる反応生成物とは、金属酸化物含有触媒の
存在下でフエノールとメタノールを反応させて得
られる、2,6−ジメチルフエノールを主成分と
して含む反応生成分のうち、常温で液体である成
分の混合物を意味する。この混合物は何らかの方
法で、あらかじめメタノールや水、アニソール
類、フエノール等の比較的低沸点の成分および一
部のO−クレゾールを分離した混合物であつても
よい。逆に、予め2,6−ジメチルフエノールよ
りも高沸点の成分を分離した混合物であつても良
い。
また、本発明の方法で使用する別の蒸留塔塔底
または塔頂より抜出す留出物も、蒸留塔の最適な
位置へ供給される。この場合、一度、タンクへ貯
めること、この混合物を加熱また冷却すること等
についても全く差し支えない。
または塔頂より抜出す留出物も、蒸留塔の最適な
位置へ供給される。この場合、一度、タンクへ貯
めること、この混合物を加熱また冷却すること等
についても全く差し支えない。
つぎに、本発明の第2の方法の実施態様を説明
する。
する。
メタノールとフエノールを金属酸化物含有触媒
の存在下に気相接触反応させて得られる反応生成
物で常温で液体であるものを、蒸留塔(以下、反
応生成物を最初に供給する蒸留塔として1号蒸留
塔と称する)に供給する。この蒸留塔では蒸留缶
を含む塔底部分の温度が局部的であつても220℃
を越えない温度として、蒸留操作を行なう。
の存在下に気相接触反応させて得られる反応生成
物で常温で液体であるものを、蒸留塔(以下、反
応生成物を最初に供給する蒸留塔として1号蒸留
塔と称する)に供給する。この蒸留塔では蒸留缶
を含む塔底部分の温度が局部的であつても220℃
を越えない温度として、蒸留操作を行なう。
この1号蒸留塔の塔頂部分から低沸点成分を濃
縮した混合物として塔頂留出物を抜き出し、この
留出物を別の蒸留塔(以下、1号蒸留塔の塔頂留
出物を供給する蒸留塔として2号蒸留塔と称す
る)に供給して蒸留する。この2号蒸留塔も、蒸
留缶を含む塔底部分の温度は220℃を越えない温
度とする。一方、1号塔の塔底缶出物は、さらに
別の蒸留塔(以下、1号蒸留塔の塔底缶出物を供
給する蒸留塔として3号蒸留塔と称する)に供給
して蒸留する。勿論、3号蒸留塔でも蒸留缶を含
む塔底部分の温度は220℃を越えない温度とする。
2号蒸留塔の塔頂留出物は、低沸点成分が高い濃
度で濃縮されたものであり、これは主としてO−
クレゾールを含むものであるので、通常、メチル
フエノールの反応工程にリサイクルする。一方、
1号蒸留塔の塔底缶出物は低沸点成分の含有率の
極めて低い2,6−ジメチルフエノールとして取
得される。また、2号蒸留塔缶出物および/また
は3号蒸留塔の塔頂留出物は1号蒸留塔にあらか
じめ設けられた複数の供給口の内の最適の位置に
戻して蒸留を行なう、あるいは、別の精製処理を
行なつて高純度の2,6−ジメチルフエノールを
得る。
縮した混合物として塔頂留出物を抜き出し、この
留出物を別の蒸留塔(以下、1号蒸留塔の塔頂留
出物を供給する蒸留塔として2号蒸留塔と称す
る)に供給して蒸留する。この2号蒸留塔も、蒸
留缶を含む塔底部分の温度は220℃を越えない温
度とする。一方、1号塔の塔底缶出物は、さらに
別の蒸留塔(以下、1号蒸留塔の塔底缶出物を供
給する蒸留塔として3号蒸留塔と称する)に供給
して蒸留する。勿論、3号蒸留塔でも蒸留缶を含
む塔底部分の温度は220℃を越えない温度とする。
2号蒸留塔の塔頂留出物は、低沸点成分が高い濃
度で濃縮されたものであり、これは主としてO−
クレゾールを含むものであるので、通常、メチル
フエノールの反応工程にリサイクルする。一方、
1号蒸留塔の塔底缶出物は低沸点成分の含有率の
極めて低い2,6−ジメチルフエノールとして取
得される。また、2号蒸留塔缶出物および/また
は3号蒸留塔の塔頂留出物は1号蒸留塔にあらか
じめ設けられた複数の供給口の内の最適の位置に
戻して蒸留を行なう、あるいは、別の精製処理を
行なつて高純度の2,6−ジメチルフエノールを
得る。
本発明の方法を実施するための蒸留装置の組合
せは、上記のように、1号、2号および3号の組
合せでも、また1号と2号、1号と3号の組合せ
であつてもよい。したがつて、1号と2号、また
は1号と3号との組合せとは、2基の蒸留塔を組
み合せ、1基の蒸留塔に、メチルフエノール反応
生成物を直接供給して蒸留し、必要に応じて塔頂
留出物か、塔底缶出物を供給して蒸留することを
意味する。
せは、上記のように、1号、2号および3号の組
合せでも、また1号と2号、1号と3号の組合せ
であつてもよい。したがつて、1号と2号、また
は1号と3号との組合せとは、2基の蒸留塔を組
み合せ、1基の蒸留塔に、メチルフエノール反応
生成物を直接供給して蒸留し、必要に応じて塔頂
留出物か、塔底缶出物を供給して蒸留することを
意味する。
なお、1号蒸留塔から留出する塔頂留出物およ
び/または塔底缶出物の2号および/または3号
蒸留塔へ供給する供給位置は限定されるものでな
く留出物の組成および蒸留塔の種類や蒸留条件に
よつて適宜決定される。又、1号、2号および/
または3号蒸留塔の種類、蒸留操作の条件も必ず
しも同一である必要はなく、それぞれ最適なもの
を選定することができる。
び/または塔底缶出物の2号および/または3号
蒸留塔へ供給する供給位置は限定されるものでな
く留出物の組成および蒸留塔の種類や蒸留条件に
よつて適宜決定される。又、1号、2号および/
または3号蒸留塔の種類、蒸留操作の条件も必ず
しも同一である必要はなく、それぞれ最適なもの
を選定することができる。
本発明の方法による蒸留の効果は、前述のとお
りであるが、本発明の方法によらない従来の蒸留
法によれば例えば、5モル%のO−クレゾールを
含む反応生成物の場合であつても、これを通常の
分離法によつて分離し、合成樹脂反応等の用途に
適した純度2,6−ジメチルフエノールを十分に
高い回収率で得るためには、蒸留塔段数が80段以
上でありながら、塔頂抜出し量に対し60倍以上の
還流量が必要となる。塔底圧力は塔頂圧力と各段
の圧力損失との総和であつて、上記80段の場合に
は、段の形式にもよるが、工業装置では一般に圧
力損失だけで250〜500mmHgにも達し、この分の
塔底圧力の増大に伴う塔底液の沸点の上昇は避け
られず、液の変質防止のため、蒸留缶内の液の沸
点を低く維持するためには、この液温と壁温との
加熱に要する温度差を考慮するならば、液組成に
もよるが塔頂圧力は、前者の場合でも最高約
230Torr以下に制限され、後者の場合には変質を
十分に防止できる操作はほとんど不可能である。
その上、例え、塔頂圧力を230Torr以下にして蒸
留したとしても、高い還流比での操作が必要であ
るために塔内滞留時間も長くなり、成分の変質が
実質上無視できなくなる可能性を増大することに
もなつている。さらに、蒸留塔の操作圧力または
操作温度の設定は、塔頂か塔底のいづれか一方の
みによつてほとんど一義的に決定されるものであ
るが、本発明の方法により扱われる反応生成物
は、圧力の低い方が分離効率が低くなる性状を有
しており、上記のように、塔頂部での圧力が低く
制限された状態では、蒸留塔全体としての分離効
率は低いものに留まる。さらに、また、蒸留塔段
数が80段以上もあるものは、全段を通じて均一で
安定した運転を行うことは困難であり、液還流比
を40かそれ以上として運転することも、望ましく
ない。
りであるが、本発明の方法によらない従来の蒸留
法によれば例えば、5モル%のO−クレゾールを
含む反応生成物の場合であつても、これを通常の
分離法によつて分離し、合成樹脂反応等の用途に
適した純度2,6−ジメチルフエノールを十分に
高い回収率で得るためには、蒸留塔段数が80段以
上でありながら、塔頂抜出し量に対し60倍以上の
還流量が必要となる。塔底圧力は塔頂圧力と各段
の圧力損失との総和であつて、上記80段の場合に
は、段の形式にもよるが、工業装置では一般に圧
力損失だけで250〜500mmHgにも達し、この分の
塔底圧力の増大に伴う塔底液の沸点の上昇は避け
られず、液の変質防止のため、蒸留缶内の液の沸
点を低く維持するためには、この液温と壁温との
加熱に要する温度差を考慮するならば、液組成に
もよるが塔頂圧力は、前者の場合でも最高約
230Torr以下に制限され、後者の場合には変質を
十分に防止できる操作はほとんど不可能である。
その上、例え、塔頂圧力を230Torr以下にして蒸
留したとしても、高い還流比での操作が必要であ
るために塔内滞留時間も長くなり、成分の変質が
実質上無視できなくなる可能性を増大することに
もなつている。さらに、蒸留塔の操作圧力または
操作温度の設定は、塔頂か塔底のいづれか一方の
みによつてほとんど一義的に決定されるものであ
るが、本発明の方法により扱われる反応生成物
は、圧力の低い方が分離効率が低くなる性状を有
しており、上記のように、塔頂部での圧力が低く
制限された状態では、蒸留塔全体としての分離効
率は低いものに留まる。さらに、また、蒸留塔段
数が80段以上もあるものは、全段を通じて均一で
安定した運転を行うことは困難であり、液還流比
を40かそれ以上として運転することも、望ましく
ない。
以下、本発明の実施例および比較例で具体的に
説明するが、本発明はこれに限定されるものでは
ない。なお、実施例および比較例において、結果
の分析は水素炎式ガスクロマトグラフイーを用い
た内部標準法によつて行なつた。
説明するが、本発明はこれに限定されるものでは
ない。なお、実施例および比較例において、結果
の分析は水素炎式ガスクロマトグラフイーを用い
た内部標準法によつて行なつた。
実施例 1
メタノール2.12(重量)%、水1.05%、アニソ
ール0.54%、フエノール0.40%、2,6−ジメチ
ルアニソール0.83%、O−クレゾール3.99%、
2,6−ジメチルフエノール85.29%、2,4、
6−トリメチルフエノール4.74%、その他の成分
1.04%の混合液2Kgを、段数60段のガラス製オル
ダーシヨウ型回分蒸留器に仕込み、塔頂圧力を
395Torrに保つて蒸留を開始し、塔内全段が安定
した蒸留操作となるまでに4時間を要した。
ール0.54%、フエノール0.40%、2,6−ジメチ
ルアニソール0.83%、O−クレゾール3.99%、
2,6−ジメチルフエノール85.29%、2,4、
6−トリメチルフエノール4.74%、その他の成分
1.04%の混合液2Kgを、段数60段のガラス製オル
ダーシヨウ型回分蒸留器に仕込み、塔頂圧力を
395Torrに保つて蒸留を開始し、塔内全段が安定
した蒸留操作となるまでに4時間を要した。
その後2時間の全還流を行つた後、外部還流比
60対1で留出を行い、33時間後に仕込量の25wt
%を留出させたが、この時点での塔頂抜出し液中
の2,6−ジメチルフエノールの純度は、98wt
%に達しなかつた。この時の蒸留缶加熱用熱媒温
度は215℃であつた。この操作の後、全ての留出
分、−32℃に冷却しておいた減圧配管のコールド
トラツプ滞留液、蒸留缶残分を会せて分析した
所、メタノール分が約50%減少していた以外に
は、アニソール類の増加等の変質は認められなか
つた。
60対1で留出を行い、33時間後に仕込量の25wt
%を留出させたが、この時点での塔頂抜出し液中
の2,6−ジメチルフエノールの純度は、98wt
%に達しなかつた。この時の蒸留缶加熱用熱媒温
度は215℃であつた。この操作の後、全ての留出
分、−32℃に冷却しておいた減圧配管のコールド
トラツプ滞留液、蒸留缶残分を会せて分析した
所、メタノール分が約50%減少していた以外に
は、アニソール類の増加等の変質は認められなか
つた。
比較例 1
実施例1と同一の液および蒸留塔を用い、塔頂
圧力を500Torrに保つて同様の操作を行つた。塔
内全段が一様な液量となるのに4時間近くを要し
た。30時間後の仕込量の25wt%の留出を終えた
が、この時点での塔頂抜出し液中の2,6−ジメ
チルフエノールの純度は、98.6wt%であつた。こ
の時の蒸留缶加熱用熱媒温度は、225℃であつた。
この操作の後、実施例1と同様にして集めた液を
均一に混合し分析した結果、水とアニソールにつ
いては、実施例1での分析値と同一であつたが、
メタノール量が減少し、残りの成分については、
フエノールが0.33(重量)%、2,6−ジメチル
フエノールが84.80%へと減少し、逆に、2,6
−ジメチルアニソールが0.96%、O−クレゾール
が4.10%、2、4、6−トリメチルフエノールが
4.92%へとそれぞれ増加しており、明らかな変質
を示していた。
圧力を500Torrに保つて同様の操作を行つた。塔
内全段が一様な液量となるのに4時間近くを要し
た。30時間後の仕込量の25wt%の留出を終えた
が、この時点での塔頂抜出し液中の2,6−ジメ
チルフエノールの純度は、98.6wt%であつた。こ
の時の蒸留缶加熱用熱媒温度は、225℃であつた。
この操作の後、実施例1と同様にして集めた液を
均一に混合し分析した結果、水とアニソールにつ
いては、実施例1での分析値と同一であつたが、
メタノール量が減少し、残りの成分については、
フエノールが0.33(重量)%、2,6−ジメチル
フエノールが84.80%へと減少し、逆に、2,6
−ジメチルアニソールが0.96%、O−クレゾール
が4.10%、2、4、6−トリメチルフエノールが
4.92%へとそれぞれ増加しており、明らかな変質
を示していた。
実施例 2
実施例1と同組成の混合物を160℃に加熱し塔
径25mm、段数50段のオルダーシヨウ型連続蒸留塔
の塔頂より四分の一の位置に毎時300gの流量で
フイードし、塔頂圧力410Torr、還流比5で蒸留
を行い、塔頂から毎時168.6gを抜出した。この
液を同じ塔径25mm、段数50段のオルダーシヨウ型
連続蒸留塔の塔頂より三分の二の位置に注入フイ
ードし、塔頂圧力425Torr、還流比30で蒸留を行
い、この塔頂から毎時28gを抜出し、この塔の底
部から抜出した液は、分析の結果から判定して、
前記第1の蒸留塔のフイード段へと戻した。この
第1の蒸留塔の塔底からは、この後の工程を経て
製品となるべき2,6−ジメチルフエノールと高
沸点成分との混合物を、毎時272g得ることがで
きた。前記第2の蒸留塔塔頂から抜出された混合
物中の低沸点成分の濃度は89(重量)%以上で、
極めて高く濃縮されており、ここから出る純2,
6−キシレノールの量は、毎時3.0gに過ぎず、
一方、前記第1の蒸留塔へフイードされる純2,
6−ジメチルフエノールの量は、毎時約256gで
あつたから、この実施例での回収率は、99%に達
し、従来の晶析法、抽出法に比べ極めて高いもの
であつた。さらに、第1の蒸留塔塔底液中の、
2,6−ジメチルフエノールよりも低沸点の成分
の全濃度は、0.67%以下となつており、ここから
得られる2,6−ジメチルフエノールの純度は極
めて高いものとなる。さらにまた、蒸留缶加熱用
熱媒体温度は、第1塔については215±1℃、第
2塔については217±1℃であつて、蒸留操作は
60時間連続して行われたが、留出成分の分析結果
からは、2,6−ジメチルアニソール等の増加は
分析精度内で全く認められず、この加熱温度以下
では内容物の変質は起つていないことが確認され
た。また、2基の蒸留塔の操作条件は、別々に選
定および制御する事ができこの運転期間中におい
て各塔内の各々の蒸留段内での蒸気および液の接
触状態は良好で極めて安定しており、操作は極め
て楽であつた。
径25mm、段数50段のオルダーシヨウ型連続蒸留塔
の塔頂より四分の一の位置に毎時300gの流量で
フイードし、塔頂圧力410Torr、還流比5で蒸留
を行い、塔頂から毎時168.6gを抜出した。この
液を同じ塔径25mm、段数50段のオルダーシヨウ型
連続蒸留塔の塔頂より三分の二の位置に注入フイ
ードし、塔頂圧力425Torr、還流比30で蒸留を行
い、この塔頂から毎時28gを抜出し、この塔の底
部から抜出した液は、分析の結果から判定して、
前記第1の蒸留塔のフイード段へと戻した。この
第1の蒸留塔の塔底からは、この後の工程を経て
製品となるべき2,6−ジメチルフエノールと高
沸点成分との混合物を、毎時272g得ることがで
きた。前記第2の蒸留塔塔頂から抜出された混合
物中の低沸点成分の濃度は89(重量)%以上で、
極めて高く濃縮されており、ここから出る純2,
6−キシレノールの量は、毎時3.0gに過ぎず、
一方、前記第1の蒸留塔へフイードされる純2,
6−ジメチルフエノールの量は、毎時約256gで
あつたから、この実施例での回収率は、99%に達
し、従来の晶析法、抽出法に比べ極めて高いもの
であつた。さらに、第1の蒸留塔塔底液中の、
2,6−ジメチルフエノールよりも低沸点の成分
の全濃度は、0.67%以下となつており、ここから
得られる2,6−ジメチルフエノールの純度は極
めて高いものとなる。さらにまた、蒸留缶加熱用
熱媒体温度は、第1塔については215±1℃、第
2塔については217±1℃であつて、蒸留操作は
60時間連続して行われたが、留出成分の分析結果
からは、2,6−ジメチルアニソール等の増加は
分析精度内で全く認められず、この加熱温度以下
では内容物の変質は起つていないことが確認され
た。また、2基の蒸留塔の操作条件は、別々に選
定および制御する事ができこの運転期間中におい
て各塔内の各々の蒸留段内での蒸気および液の接
触状態は良好で極めて安定しており、操作は極め
て楽であつた。
実施例1および比較例1から、蒸留塔々底部温
度が220℃を越えない場合に変質が起らないこと
は明かであり、同時に、本発明の方法において扱
う成分系、特にO−クレゾールと2,6−ジメチ
ルフエノールの蒸留においては、蒸留塔内圧力の
高い方がより高い効率での分離が行えるという、
本発明の方法特有の優位性が明らかである。
度が220℃を越えない場合に変質が起らないこと
は明かであり、同時に、本発明の方法において扱
う成分系、特にO−クレゾールと2,6−ジメチ
ルフエノールの蒸留においては、蒸留塔内圧力の
高い方がより高い効率での分離が行えるという、
本発明の方法特有の優位性が明らかである。
実施例2における2基の蒸留塔の段数が、実施
例1に示したものよりも少なく、塔頂と塔底の差
圧を小さくできるため、各々の例では塔底の圧力
がほとんど同一で、同一沸点であるため、ほとん
ど同一の蒸留缶加熱用熱媒温度でありながら、塔
頂の操作圧は実施例2において高く設定できるこ
とを示しているが、実際の大規模工業装置におい
ては、各段の圧損は本実施例の場合よりもずつと
大きくなり、塔底部温度を変質温度以下に設定し
ながら、塔頂圧を高く設定できる本法の有意さは
明らかである。また、実施例2のように、2基の
蒸留塔を用いる場合は、操作の自由度が増し、蒸
留塔の分離効率の高い条件を、各々の蒸留塔につ
いて選ぶことができる。
例1に示したものよりも少なく、塔頂と塔底の差
圧を小さくできるため、各々の例では塔底の圧力
がほとんど同一で、同一沸点であるため、ほとん
ど同一の蒸留缶加熱用熱媒温度でありながら、塔
頂の操作圧は実施例2において高く設定できるこ
とを示しているが、実際の大規模工業装置におい
ては、各段の圧損は本実施例の場合よりもずつと
大きくなり、塔底部温度を変質温度以下に設定し
ながら、塔頂圧を高く設定できる本法の有意さは
明らかである。また、実施例2のように、2基の
蒸留塔を用いる場合は、操作の自由度が増し、蒸
留塔の分離効率の高い条件を、各々の蒸留塔につ
いて選ぶことができる。
実施例 3
O−クレゾール35(重量)%、2,6−ジメチ
ルフエノール61%、2、4、6−トリメチルフエ
ノール4%の混合液を用いて蒸留による分離を行
つた。用いた蒸留塔は3基(1、2および3号)
とも、内径25mm、段数50段のオルダーシヨウ型連
続蒸留塔である。上記混合液を1号蒸留塔のほぼ
中央に毎時300gの量で供給し、塔頂圧力
380Torr、還流比12で蒸留を行い、塔頂からは毎
時161.3gの量で、O−クレゾールを85%に濃縮
した液を抜出し、塔頂圧力435Torrで操作してい
る2号蒸留塔の塔頂より約3/5の位置に供給し
た。2号蒸留塔は、還流比4で操作し、この塔頂
からは、毎時106.9gの量で、O−クレゾールを
98%にまで濃縮し、2,6−ジメチルフエノール
が2%しか残つていない液を得た。2号蒸留塔塔
底液は毎時54.3gで留出し、O−クレゾール濃度
が59.6%であつたので、1号蒸留塔の塔頂より8
段目にリサイクルした。
ルフエノール61%、2、4、6−トリメチルフエ
ノール4%の混合液を用いて蒸留による分離を行
つた。用いた蒸留塔は3基(1、2および3号)
とも、内径25mm、段数50段のオルダーシヨウ型連
続蒸留塔である。上記混合液を1号蒸留塔のほぼ
中央に毎時300gの量で供給し、塔頂圧力
380Torr、還流比12で蒸留を行い、塔頂からは毎
時161.3gの量で、O−クレゾールを85%に濃縮
した液を抜出し、塔頂圧力435Torrで操作してい
る2号蒸留塔の塔頂より約3/5の位置に供給し
た。2号蒸留塔は、還流比4で操作し、この塔頂
からは、毎時106.9gの量で、O−クレゾールを
98%にまで濃縮し、2,6−ジメチルフエノール
が2%しか残つていない液を得た。2号蒸留塔塔
底液は毎時54.3gで留出し、O−クレゾール濃度
が59.6%であつたので、1号蒸留塔の塔頂より8
段目にリサイクルした。
一方、1号蒸留塔塔底液は、毎時385.3g得ら
れ、O−クレゾール濃度は3%にまで分離されて
いたが、さらに良く分離するために、塔頂圧力
410Torr、還流比6で操作される3号蒸留塔にこ
の液を供給した。3号蒸留塔塔頂液は、毎時
192.3g留出し、O−クレゾール濃度が5.91%で
あつたので、1号蒸留塔の塔頂から47段目にリサ
イクルした。3号蒸留塔塔底液は、毎時193g得
られ、O−クレゾールは、実に、0.1%以下まで
分離されており、この液中の純2,6−ジメチル
フエノールは毎時180.9gの量であつて、その収
率は99%に達した。
れ、O−クレゾール濃度は3%にまで分離されて
いたが、さらに良く分離するために、塔頂圧力
410Torr、還流比6で操作される3号蒸留塔にこ
の液を供給した。3号蒸留塔塔頂液は、毎時
192.3g留出し、O−クレゾール濃度が5.91%で
あつたので、1号蒸留塔の塔頂から47段目にリサ
イクルした。3号蒸留塔塔底液は、毎時193g得
られ、O−クレゾールは、実に、0.1%以下まで
分離されており、この液中の純2,6−ジメチル
フエノールは毎時180.9gの量であつて、その収
率は99%に達した。
上記1号、2号および3号蒸留塔の蒸留缶加熱
用熱媒温度は、それぞれ215±1℃、216±1℃、
215±1℃としたが、全ての留分について、混合
液の変質によるアニソール類等の生成物は検知さ
れなかつた。
用熱媒温度は、それぞれ215±1℃、216±1℃、
215±1℃としたが、全ての留分について、混合
液の変質によるアニソール類等の生成物は検知さ
れなかつた。
実施例3で用いた混合液は、2,6−ジメチル
フエノール濃度が極めて低く、分離の困難なO−
クレゾール濃度が35%と高いため、通常の、単一
またはそれをいくつかに分割した形式の蒸留塔で
分離を試みたとしても、試算によれば、還流比を
40以上に選んでみても、同様の分離を行わせるた
めには、塔形式にもよるが、一般には150段以上
が必要となり、単一塔での工業装置としての建設
は、ほとんど不可能であり、任意に分割しても全
体としての塔内の圧力損失は500mmHg前後とな
り、蒸留缶内液の沸点が高くなり、加熱媒体温度
を220℃以下として、変質を防止しながら操業す
ることは事実上不可能と考えられる。
フエノール濃度が極めて低く、分離の困難なO−
クレゾール濃度が35%と高いため、通常の、単一
またはそれをいくつかに分割した形式の蒸留塔で
分離を試みたとしても、試算によれば、還流比を
40以上に選んでみても、同様の分離を行わせるた
めには、塔形式にもよるが、一般には150段以上
が必要となり、単一塔での工業装置としての建設
は、ほとんど不可能であり、任意に分割しても全
体としての塔内の圧力損失は500mmHg前後とな
り、蒸留缶内液の沸点が高くなり、加熱媒体温度
を220℃以下として、変質を防止しながら操業す
ることは事実上不可能と考えられる。
Claims (1)
- 【特許請求の範囲】 1 フエノールとメタノールを金属酸化物含有触
媒の存在下に気相接触反応させて得られる反応生
成物を、蒸留缶を含む蒸留塔々底部の温度が局部
的であつても220℃を越えない温度で蒸留するこ
とを特徴とする2,6−ジメチルフエノールの精
製方法。 2 フエノールとメタノールを金属酸化物含有触
媒の存在下に気相接触反応させて得られる反応生
成物を、蒸留缶を含む蒸留塔々底部の温度が局
部的であつても220℃を越えない温度とし、かつ
主として反応生成物を直接供給して蒸留する蒸
留塔、該蒸留塔の塔頂留出物を蒸留する蒸留塔お
よび/または塔底缶出物を蒸留する蒸留塔の2ま
たは3基からなる蒸留塔により蒸留することを特
徴とする2,6−ジメチルフエノールの精製方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12312879A JPS5646829A (en) | 1979-09-27 | 1979-09-27 | Separation of methylphenol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12312879A JPS5646829A (en) | 1979-09-27 | 1979-09-27 | Separation of methylphenol |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5646829A JPS5646829A (en) | 1981-04-28 |
JPS6326734B2 true JPS6326734B2 (ja) | 1988-05-31 |
Family
ID=14852863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12312879A Granted JPS5646829A (en) | 1979-09-27 | 1979-09-27 | Separation of methylphenol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5646829A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05117184A (ja) * | 1991-08-28 | 1993-05-14 | Mitsubishi Petrochem Co Ltd | フエノール類混合物の蒸留分離方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5246930A (en) * | 1975-10-11 | 1977-04-14 | Alps Electric Co Ltd | Type selector |
-
1979
- 1979-09-27 JP JP12312879A patent/JPS5646829A/ja active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5246930A (en) * | 1975-10-11 | 1977-04-14 | Alps Electric Co Ltd | Type selector |
Also Published As
Publication number | Publication date |
---|---|
JPS5646829A (en) | 1981-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5783733A (en) | Process for manufacture of bisphenol | |
US5382711A (en) | Process for the production of bishenol A | |
KR20040108610A (ko) | 아크릴산의 제조 방법 | |
WO2005102974A1 (en) | Method for removal of acetol from phenol | |
US8236992B2 (en) | Preparation of purified hydroquinone | |
EP2240428B1 (en) | Treatment of phenol | |
US4492807A (en) | Method for purification of bisphenol A | |
US8242314B2 (en) | Method and apparatus for producing purified methyl isobutyl ketone | |
JP4140171B2 (ja) | 高品位ビスフェノールa製造のためのビスフェノールaとフェノールとの結晶アダクトの製造方法 | |
JP3413497B2 (ja) | ビスフェノールaの製造方法 | |
US4349418A (en) | Production of methylnaphthalenes and tar bases including indole | |
JPH05331088A (ja) | ビスフェノールaの製造方法及びビスフェノールaを含むフェノール溶液の晶析生成物から分離された母液の処理方法 | |
KR100262026B1 (ko) | 페놀타르 폐기물의 환원방법 | |
US4851086A (en) | Production of high purity phenol by steam distillation | |
US4857151A (en) | Phenol purification | |
CN114230442A (zh) | 一种降低制备双酚a反应系统中异丙基苯酚的方法 | |
JPS6326734B2 (ja) | ||
US5705039A (en) | Process for purifying a 2,6-dialkylphenol | |
US6294702B1 (en) | Method for continuous production of dihydroxydiphenylalkanes | |
US4532012A (en) | Production of high purity phenol by distillation with steam and a solvent | |
KR20000053661A (ko) | 하이드록시아세톤-함유 페놀로부터 하이드록시아세톤을제거하는 방법 | |
EP1109768B2 (en) | Purification of 2, 4, 6 - tri - (tert butyl) phenol by melt crystallization | |
US20020183562A1 (en) | Bis(4-hydroxyaryl) alkanes | |
EP1776326B1 (en) | Method for removal of acetol from phenol | |
KR101131653B1 (ko) | 비스(4-히드록시아릴)알칸과 페놀계 화합물의 부가생성물의회수 방법 |