JPS63266321A - Spectral measurement method and fourier transform type spectrophotometer - Google Patents

Spectral measurement method and fourier transform type spectrophotometer

Info

Publication number
JPS63266321A
JPS63266321A JP9981987A JP9981987A JPS63266321A JP S63266321 A JPS63266321 A JP S63266321A JP 9981987 A JP9981987 A JP 9981987A JP 9981987 A JP9981987 A JP 9981987A JP S63266321 A JPS63266321 A JP S63266321A
Authority
JP
Japan
Prior art keywords
light
optical shutter
fourier transform
electro
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9981987A
Other languages
Japanese (ja)
Inventor
Tasaku Kiyono
太作 清野
Michihiro Watanabe
渡邊 道弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9981987A priority Critical patent/JPS63266321A/en
Publication of JPS63266321A publication Critical patent/JPS63266321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To eliminate the need for mechanical driving parts and to facilitate handling such in assurance of measurement accuracy by passing incident light successively through a polarizer, a substrate made of an electrooptic material with electrodes, an analyzer and a condenser lens. CONSTITUTION:The voltage to be impressed to the electrodes 11 is controlled by an optical shutter control circuit 9 to control the quantity of the light transmitted through the optical shutter 12. A condenser lens 5 is placed on the side of the optical shutter 12 opposite to the face where incident light 1 is received. The light condensed after transmitting the optical shutter 12 is converted to an electric signal by a light quantity detector 6. This electric signal is inputted via an A/D converter 7 to a Fourier transform computing device 8, by which the spectrum of the Fourier-transformed incident light is obtd. together with the voltage value impressed to the optical shutter 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分光分析の為の計測機器に係り、特にフーリエ
変換を利用したスペクトル測定方法とフーリエ変換型分
光光度計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a measuring instrument for spectroscopic analysis, and more particularly to a spectrum measuring method using Fourier transform and a Fourier transform type spectrophotometer.

〔従来の技術〕[Conventional technology]

フーリエ変換を利用したスペクトル測定方法は特開昭6
1−31930号公報、特開昭61−65122号公報
、特開昭61−149832号公報等で知られている。
Spectrum measurement method using Fourier transform was published in Japanese Patent Application Laid-open No. 6
It is known from Japanese Patent Application Laid-open No. 1-31930, Japanese Patent Application Laid-Open No. 61-65122, Japanese Patent Application Laid-open No. 149832-1983, etc.

フーリエ分光はエネルギの利用効率が分散素子使用の分
光測定に比較して高いという利点がある。
Fourier spectroscopy has the advantage of higher energy utilization efficiency than spectroscopic measurements using dispersive elements.

しかしマイケルソン干渉計を使用する必要があり、上記
従来技術のいずれもこの干渉装置を用いていた。
However, it is necessary to use a Michelson interferometer, and all of the above prior art techniques used this interferometer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

マイケルソン干渉計を使用するにはこれが機械的駆動部
分を有する故に光路長の精度確保を要し。
To use a Michelson interferometer, it is necessary to ensure the accuracy of the optical path length because it has a mechanically driven part.

その為にレーザ測定器等を用いればシステムが複雑とな
る。また干渉計は機械運動なので単位時間当たりの測定
回数に制約があるしまた各回毎常に測定系の機械的精度
の確保をするのに手間取った。
Therefore, if a laser measuring device or the like is used, the system becomes complicated. Furthermore, since the interferometer is a mechanical device, there is a limit to the number of measurements per unit time, and it takes time to ensure the mechanical accuracy of the measurement system each time.

本発明の目的は機械的駆動部分を要せず従って測定精度
の確保等取扱が容易なスペクトルの測定方法とフーリエ
変換型分光光度計を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spectrum measuring method and a Fourier transform spectrophotometer that do not require mechanically driven parts and are therefore easy to handle and ensure measurement accuracy.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は電極付きの電気光学物質製基板に光を透過さ
せることにより達成される。
The above object is achieved by transmitting light through an electro-optic material substrate provided with electrodes.

本願第1番目の発明はスペクトル測定方法であり、入射
光を偏光子、電極付電気光学物質製基板、検光子、集光
レンズに順次通過させ、この基板に印加する電気を変化
させると共に、集光レンズからの総透過光強度に基づく
フーリエ変換演算を行って基板に印加される電圧に対応
する所定波数の透過光強度を出力することを特徴とする
The first invention of the present application is a spectral measurement method in which incident light is sequentially passed through a polarizer, a substrate made of electro-optic material with electrodes, an analyzer, and a condensing lens. It is characterized in that it performs a Fourier transform calculation based on the total transmitted light intensity from the optical lens and outputs the transmitted light intensity of a predetermined wave number corresponding to the voltage applied to the substrate.

本願第2番目の発明はフーリエ変換型分光光度計であり
、電気光学効果を利用した光シャッタと、このシャッタ
の透過光量を制御する回路と、シャッタの透過光を検出
する受光光量検出装置と、この装置の出力をフーリエ変
換する演算装置とを備え、前記光シャッタを電極付きの
電気光学物質製基板にて形成することを特徴とする。
The second invention of the present application is a Fourier transform spectrophotometer, which includes an optical shutter using an electro-optic effect, a circuit for controlling the amount of transmitted light of the shutter, and a received light amount detection device for detecting the transmitted light of the shutter. The apparatus is characterized in that it includes an arithmetic unit that performs Fourier transform on the output of this apparatus, and that the optical shutter is formed of an electro-optic material substrate with electrodes.

電気光学物質製基板への電極配置は+ニーの櫛歯組合せ
型が簡便であり、透過光強度の測定誤差に悪影響を及ぼ
さない限り電極間隔は均等かつ極力狭くした方が大きな
電場を与え得るので有利である。更に電極は電気光学物
質製基板表面に配しても電極の厚さ方向の一部乃至全部
を埋設しても良い。
It is convenient to arrange the electrodes on the electro-optical material substrate by using a combination of +knee comb teeth, and as long as it does not adversely affect the measurement error of the transmitted light intensity, it is better to keep the electrode spacing uniform and as narrow as possible to provide a larger electric field. It's advantageous. Further, the electrode may be disposed on the surface of the electro-optical material substrate, or may be partially or entirely buried in the thickness direction of the electrode.

〔作用〕[Effect]

電気光学効果を利用した光シャッタの透過光強度工は、
シャッタに印加する電圧Vに対して次のような形になる
The transmitted light intensity of the optical shutter using the electro-optic effect is
The voltage V applied to the shutter has the following form.

I(V)=/  Ih−5in”(k−gV″)dk 
 −a)には透過光の波数で波長の逆数である。またI
hは波数にの光についての透過光強度、gは光シャッタ
の形状、材質等により決まる定数である。
I(V)=/Ih-5in"(k-gV")dk
-a) is the wave number of transmitted light, which is the reciprocal of the wavelength. Also I
h is the intensity of transmitted light at the wave number, and g is a constant determined by the shape, material, etc. of the optical shutter.

−次の電気光学効果、つまりポッケルス効果を用いた場
合nは1であり、二次の電気光学効果であるカー効果を
用いた場合nは2となる。
- n is 1 when using the next electro-optic effect, that is, the Pockels effect, and n is 2 when using the Kerr effect, which is the second-order electro-optic effect.

上式より ・・・(2) v=Oとき、 I(0)=/  Ihdk      より(2)式は ・・・(3) x=2gV”とおいて(3)式右辺第2項をフーリエ変
換してやると となりIbが導かれる。 Is=は光シャッタの入射光
の分光強度に比例するため、光シャッタに対する印加電
圧を変化させ、透過光強度の印加電圧特性を測定し、そ
れをフーリエ変換することにより、入射光のスペクトル
が得られる。
From the above equation...(2) When v=O, I(0)=/Ihdk From the formula (2)...(3) Set x=2gV'' and perform Fourier transform on the second term on the right side of equation (3) Then, Ib is derived. Since Is= is proportional to the spectral intensity of the incident light on the optical shutter, change the applied voltage to the optical shutter, measure the applied voltage characteristics of the transmitted light intensity, and perform Fourier transformation on it. The spectrum of the incident light is obtained.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に従って説明する。 Embodiments of the present invention will be described below with reference to the drawings.

入射光1の最大力側に偏光子2を置き、その後方に電気
光学物質製基板3を配す。更にその後方に検光子4.集
光レンズ5を順次設け、出射光側に光量検出器6を配す
A polarizer 2 is placed on the maximum power side of the incident light 1, and an electro-optical material substrate 3 is placed behind it. Furthermore, there is an analyzer 4 behind it. Condensing lenses 5 are sequentially provided, and a light amount detector 6 is arranged on the output light side.

偏光子2と検光子4とは各偏光方向が直交するように位
置させる。更に電気光学物質製基板3に印加する電界の
方向は偏光子の偏光方向と45゜の角度をなすように夫
々配置する。
The polarizer 2 and the analyzer 4 are positioned so that their respective polarization directions are orthogonal. Further, the direction of the electric field applied to the electro-optical material substrate 3 is arranged at an angle of 45° with the polarization direction of the polarizer.

図に示す如く少なくとも入射光側の偏光子1から光量検
出器6の受光部までの光軸は同一直線とすべきである。
As shown in the figure, the optical axes from at least the polarizer 1 on the incident light side to the light receiving section of the light amount detector 6 should be in the same straight line.

電気光学物質製基板3に用いる電気光学物質は例えばタ
ンタル酸リチウム(L i T a Oδ)、ニオブ酸
すチウA(LiNbOa)、所謂PLZT(Pbt−x
Lax(Zrt−yT’1y)t−x八Og)である。
The electro-optic material used for the electro-optic material substrate 3 is, for example, lithium tantalate (L i T a O δ), lithium niobate A (LiNbOa), so-called PLZT (Pbt-x
Lax(Zrt-yT'1y)t-x8Og).

光量検出器6の出力側端子とA/D変換器7とを電気的
に接続し、A/D変換器7の出力側とフーリエ変換演算
装置8とを電気的に接続し、フーリエ変換演算装置8の
出力側と光シヤツタ制御回路9と電気的に接続する。ま
たフーリエ変換演算装!!!8の出力側にはスペクトル
(Ih値)或いはこれを用いた各種データの出力装M1
0を付設する。
The output side terminal of the light amount detector 6 and the A/D converter 7 are electrically connected, and the output side of the A/D converter 7 and the Fourier transform calculation device 8 are electrically connected, and the Fourier transform calculation device The output side of 8 is electrically connected to the optical shutter control circuit 9 . Another Fourier transform calculation unit! ! ! On the output side of 8, there is an output device M1 for the spectrum (Ih value) or various data using this.
Add 0.

光シヤツタ制御回路9からは2本のリード線を出して前
記の電気光学物質製基板3上の+、−の電極11に接続
する。
Two lead wires are taken out from the optical shutter control circuit 9 and connected to the + and - electrodes 11 on the electro-optical material substrate 3.

上記のようにして偏光子2.電極11付きの電気光学物
質製基板3.検光子4から光シャッタ12を構成する。
Polarizer 2. Substrate made of electro-optic material with electrode 11 3. The analyzer 4 constitutes an optical shutter 12.

尚、符号13は光軸を示す。Note that reference numeral 13 indicates an optical axis.

光シヤツタ制御回路9により電気光学物質製基板3の電
極11に印加する電圧を制御して光シャッタ12の透過
光量を制御する。上記光シャッタ12において、入射光
1を受光する面と反対側に集光レンズ5を置き、光シャ
ッタ12を透過したのち集光された光を光量検出器6で
電気信号に変える。この電気信号はA/D変換器7でデ
ィジタル信号に変換された後フーリエ変換演算装置ff
8に入力され、光シャッタ12に印加される電圧値と共
にフーリエ変換され入射光のスペクトルを得る。
The optical shutter control circuit 9 controls the voltage applied to the electrode 11 of the electro-optic material substrate 3 to control the amount of light transmitted through the optical shutter 12. In the optical shutter 12, a condensing lens 5 is placed on the side opposite to the surface that receives the incident light 1, and the light transmitted through the optical shutter 12 and condensed is converted into an electrical signal by a light amount detector 6. This electric signal is converted into a digital signal by the A/D converter 7, and then is processed by the Fourier transform calculation device ff.
8 and is Fourier-transformed together with the voltage value applied to the optical shutter 12 to obtain the spectrum of the incident light.

以上の手順においてフーリエ変換の要領は前記の〔作用
〕の項で述べた通りである。
In the above procedure, the Fourier transform procedure is as described in the [Operation] section above.

要するにフーリエ変換演算装置ではA/D変換された透
過光量データの記録と、光シヤツタ制御回路8への電気
制御と、フーリエ変換等の演算と、出力装!10へのデ
ータ供給とを行う。
In short, the Fourier transform calculation device records A/D converted transmitted light amount data, electrically controls the optical shutter control circuit 8, performs calculations such as Fourier transform, and performs output equipment! 10.

本実施例によれば分光器の機械駆動部が無くなるから取
り相いが簡便でかつ精度も向上する。
According to this embodiment, since the mechanical drive part of the spectrometer is eliminated, the arrangement is simple and the accuracy is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フーリエ変換分光光度計において機械
的駆動部分をなくすことができるので、較正が容易であ
りそのため較正用の装置を組み込む必要のないことから
システムの小型化が可能で、なおかつ高速の分光測定が
可能である。
According to the present invention, it is possible to eliminate mechanically driven parts in a Fourier transform spectrophotometer, so calibration is easy and there is no need to incorporate a calibration device, so the system can be made smaller and faster. spectroscopic measurements are possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例に係るフーリエ変換型分光光度
計の装置配置図である。 1・・・入射光、2・・・偏光子、3・・・電気光学物
質製基板、4・・・検光子、5・・・集光レンズ、6・
・・光量検出器、7・・・A/D変換器、8・・・フー
リエ変換演算装置、9・・・光シヤツタ制御回路、10
・・・出力装置、11・・・電極、12・・・光シャッ
タ。
The drawing is a device layout diagram of a Fourier transform spectrophotometer according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Incident light, 2... Polarizer, 3... Electro-optical substance substrate, 4... Analyzer, 5... Condensing lens, 6...
. . . Light amount detector, 7 . . A/D converter, 8 . . Fourier transform calculation device, 9 . . . Optical shutter control circuit, 10
... Output device, 11... Electrode, 12... Optical shutter.

Claims (1)

【特許請求の範囲】 1、入射光を偏光子、電極付電気光学物質製基板、検光
子、集光レンズに順次通過させ、前記基板に印加する電
圧を変化させると共に前記集光レンズからの総透過光強
度に基づくフーリエ変換演算を行つて前記基板に印加さ
れる電圧に対応する所定波数の透過光強度を出力するこ
とを特徴とするスペクトル測定方法。 2、電気光学効果を利用した光シャッタと、該シャッタ
の透過光量を制御する回路と、前記シャッタの透過光を
検出する受光光量検出装置と、該装置の出力をフーリエ
変換する演算装置とを備え、前記光シャッタを電極付き
の電気光学物質製基板にて形成することを特徴とするフ
ーリエ変換型分光光度計。
[Scope of Claims] 1. The incident light is sequentially passed through a polarizer, a substrate made of electro-optic material with electrodes, an analyzer, and a condensing lens, and the voltage applied to the substrate is changed, and the total amount of light from the condensing lens is changed. A spectral measurement method comprising performing a Fourier transform calculation based on the intensity of transmitted light and outputting the intensity of transmitted light at a predetermined wave number corresponding to the voltage applied to the substrate. 2. Equipped with an optical shutter that utilizes an electro-optic effect, a circuit that controls the amount of light transmitted through the shutter, a received light amount detection device that detects the light transmitted through the shutter, and an arithmetic device that performs Fourier transform on the output of the device. . A Fourier transform spectrophotometer, wherein the optical shutter is formed of a substrate made of an electro-optic material with electrodes.
JP9981987A 1987-04-24 1987-04-24 Spectral measurement method and fourier transform type spectrophotometer Pending JPS63266321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9981987A JPS63266321A (en) 1987-04-24 1987-04-24 Spectral measurement method and fourier transform type spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9981987A JPS63266321A (en) 1987-04-24 1987-04-24 Spectral measurement method and fourier transform type spectrophotometer

Publications (1)

Publication Number Publication Date
JPS63266321A true JPS63266321A (en) 1988-11-02

Family

ID=14257444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9981987A Pending JPS63266321A (en) 1987-04-24 1987-04-24 Spectral measurement method and fourier transform type spectrophotometer

Country Status (1)

Country Link
JP (1) JPS63266321A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228133A (en) * 1983-06-10 1984-12-21 Yokogawa Hokushin Electric Corp Spectroscope device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228133A (en) * 1983-06-10 1984-12-21 Yokogawa Hokushin Electric Corp Spectroscope device

Similar Documents

Publication Publication Date Title
US5631735A (en) Spectrometer provided with an optical shutter
US4822169A (en) Measuring assembly for analyzing electromagnetic radiation
JPH06213813A (en) Method and device for determining substance and/or characteristic thereof
US3927945A (en) Optical coherence and wavelength measurement
US5457530A (en) Spectrometer provided with an optical shutter
US2829555A (en) Polarimetric method and apparatus
CN100378445C (en) Intelligent comprehensive measuring instrument for half-wave voltage and wave plate phase delay of extinction ratio of crystal
Radzewicz et al. A poor man’s FROG
RU2135983C1 (en) Process measuring transmission, circular dichroism and optical rotation of optically active substances and dichrograph for its realization
JPS63266321A (en) Spectral measurement method and fourier transform type spectrophotometer
EP0080540A1 (en) Method and apparatus for measuring quantities which characterize the optical properties of substances
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
JP2810976B2 (en) Electrical signal measuring method and apparatus
US11143556B1 (en) Birefringent interferometer and fourier transform spectrometer
Hallikainen et al. Acousto‐optic color spectrometer
CN1034883C (en) Design method for elliptical polarization spectrograph
JP2780988B2 (en) Spectropolarimeter
JPH04297835A (en) Method for measuring polarization and polarization measuring device using it
JPH0377030A (en) Reaction vapor phase monitor device
SU1262392A1 (en) Magnetooptical method for measuring current and device for effecting same
SU958922A1 (en) Device for measuring non-uniformity of double refraction in crystals
US3361027A (en) Spectrophotometer
JP4163104B2 (en) Polarization state conversion in optically active spectroscopy
KR0135954B1 (en) Spectrophotometer for simultaneously measuring all wavelength using optical fiber bundle of tape
CN116819183A (en) DC electric field intensity measuring device and method based on electromagnetic induction transparent spectrum