JPH0377030A - Reaction vapor phase monitor device - Google Patents

Reaction vapor phase monitor device

Info

Publication number
JPH0377030A
JPH0377030A JP21304789A JP21304789A JPH0377030A JP H0377030 A JPH0377030 A JP H0377030A JP 21304789 A JP21304789 A JP 21304789A JP 21304789 A JP21304789 A JP 21304789A JP H0377030 A JPH0377030 A JP H0377030A
Authority
JP
Japan
Prior art keywords
laser
temperature
light
omega2
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21304789A
Other languages
Japanese (ja)
Inventor
Masakazu Yokoo
雅一 横尾
Susumu Moriya
進 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21304789A priority Critical patent/JPH0377030A/en
Publication of JPH0377030A publication Critical patent/JPH0377030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure temperature and density at the same time by measuring atmospheric temperature by a rotational Curtis spectral method and the density of species of molecules and atoms in reaction vapor phase by a laser inductive fluorescence method with one laser device. CONSTITUTION:The coloring matter laser light omega2 of a laser 2 for measurement is passed through a nonlinear optical element 2 to generate a secondary higher harmonic wave omega3, so the laser light is separated by a dichroic mirror 4. Laser light omega1 with fixed oscillation wavelength and laser light beams omega2' and omega2'' separated by a half-virror 5 form the coloring matter laser light omega2 are made incident on a reaction furnace 10 to generate rotational Curtis light omega4 of nitrogen. Only the light omega4 among them is guided to a spectroscope 15, detected by a multi-channel detector 16, and sent to a computing element 17 to find the temperature. The secondary higher harmonic wave omega3, on the other hand, is monitored by a photodetector 20 and laser induced fluorescent light omega5 which is guided to the reaction furnace 10 and generated is detected by a photodetector 19. A computing element 17 finds the density of NH radicals from the detection signals of the photodetectors 19 and 20.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、カース分光法およびレーザ誘起蛍光法を用い
て、例えばプラズマCVDやfic V D。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention uses Kerse spectroscopy and laser-induced fluorescence, such as plasma CVD and fic VD.

ドライエツチングなどの反応気相中の雰囲気温度および
分子・原子種の濃度を測定する装置に関する。
This invention relates to a device for measuring the atmospheric temperature and the concentration of molecules and atomic species in a reaction gas phase during dry etching, etc.

〈従来の技術〉 周知のように、カース(CaB6)分光法やレーザ誘起
蛍光法は、高出力レーザや色素レーザの発達にともなっ
て進歩してきたレーザ分光法の一種であり、非接触で高
感度さらに高時間分解能などの特長を有するため、その
応用面に多くの期待が凭れている。
<Prior art> As is well known, Kaas (CaB6) spectroscopy and laser-induced fluorescence spectroscopy are types of laser spectroscopy that have progressed with the development of high-power lasers and dye lasers, and are non-contact and highly sensitive methods. Furthermore, because it has features such as high temporal resolution, there are many expectations for its applications.

例えばカース分光法を用いた温度測定法としては、特開
昭59−10822号公報に、所定物質を含む系に励起
用の第1のレーザ光と該所定物質のストークス振動数を
含む第2のレーザ光とを合わせて加え、前記系から放出
されたレーザ光をマルチチャンネルのデテクタで検出し
、咳マルチチャンネルのデテクタから出力されるスペク
トル形状から前記系の温度を検出するカース分光法を用
いた温度測定法が記載されている。
For example, as a temperature measurement method using Kars spectroscopy, Japanese Patent Application Laid-Open No. 10822/1983 discloses that a first laser beam for excitation is applied to a system containing a predetermined substance, and a second laser beam containing the Stokes frequency of the predetermined substance is used. Curse spectroscopy was used to detect the temperature of the system from the spectral shape output from the cough multi-channel detector. A temperature measurement method is described.

また、精度よく温度を測定する方法としては、分子の回
転ラマンシフL 200cm−’をカバーする半値幅6
mの広(1)域色素レーザを用いたローティショナル・
カース法が、文献rローティショナルカース ジェネレ
ーション スルー ア マルチプル フォーカラー イ
ンクラクション(Rotat−ional (:AR5
generation Lhrougb a mult
iple f。
In addition, as a method of measuring temperature with high accuracy, the half-value width 6 that covers the rotational Raman schiff L of the molecule 200 cm-' is used.
Rotational laser beams using m wide (1) spectral dye laser
The curse method is based on the literature Rotational Curse Generation Through a Multiple Four-Color Inscription (Rotat-ional (:AR5
generation
iple f.

ur−color 1ntrraetion ; AP
PLI[!D 0PTIC5Vol、 25+恥、23
゜December 1986)Jなどに紹介されてい
る。
ur-color 1ntrration; AP
PLI [! D 0PTIC5Vol, 25+shame, 23
゜December 1986) J.

一方、レーザ誘起蛍光法を用いた濃度測定法としては、
例えば特開昭59−240140号公報に、仏素しノー
ザ光を照射4゛ることにより励起されてプラズマ利用装
置内でプラズマから発生ずる蛍光の強度から化学種の分
布を測定する装置が記載されている。
On the other hand, as a concentration measurement method using laser-induced fluorescence method,
For example, Japanese Unexamined Patent Publication No. 59-240140 describes a device that measures the distribution of chemical species from the intensity of fluorescence generated from plasma in a plasma utilization device that is excited by irradiating a laser beam with laser light. ing.

〈発明が解決しようとする課題〉 しかしながら、上記した方法や装置はいずれも、l白の
レーザ装置では瞬時的には温度あるいは濃度のどちらか
−・方の情報しか得られず、プラズマ点火時などの短時
間の過渡現象において温度と濃度を同時に測定すること
は不可能であった。
<Problems to be Solved by the Invention> However, in all of the above-mentioned methods and devices, the white laser device can only obtain information on either temperature or concentration instantaneously, and when plasma is ignited, etc. It has been impossible to measure temperature and concentration simultaneously during short-term transient phenomena.

また、温度と濃度の測定を同時に行おうとずれば、2台
以−にのレーザ装置が必要となるが、測定装置が大型化
するので、非実用的ごあった。
Furthermore, if temperature and concentration were to be measured simultaneously, two or more laser devices would be required, but this would increase the size of the measuring device, making it impractical.

本発明は、4〜.記のような従来例の有する課題を解決
すべくなされたものであって、同時に温度・濃度の測定
を行うことの可能な反応気相モニター装置を提供するこ
とを目的とする。
The present invention comprises 4 to 4. The object of the present invention is to provide a reaction gas phase monitoring device that is designed to solve the problems of the conventional examples as described above, and can simultaneously measure temperature and concentration.

く課題を解決するための手段〉 本発明は、反応気相中の温度ならびに濃度をモニターす
る装置であっ゛C2発振波長固定のレーザ光と6rv以
七の半値幅をイ1する測定用レーザ光を用いたローティ
シボナル・カース分光法による反応気相温度測定手段と
、tiil記測定用レーザ光と波長分離手段で分離され
た1r1記測定用レーザ光の2次以上の高調波を用いた
レーザ誘起蛍光法による反応気相中の分子・原7− f
illの濃度測定手段と、前記温度ならびに濃度の測定
結果を同時に処理する演算手段とからなることを特徴と
する反応気相モニター装置である。
Means for Solving the Problems> The present invention is a device for monitoring the temperature and concentration in a reaction gas phase, which uses a laser beam with a fixed C2 oscillation wavelength and a measurement laser beam with a half-value width of 6 rv or more. A reaction gas phase temperature measuring means by rotissibinal curse spectroscopy using Molecules and elements in the reaction gas phase by method 7-f
This is a reaction gas phase monitoring device characterized by comprising a concentration measuring means for ill, and a calculation means for simultaneously processing the measurement results of the temperature and concentration.

〈作 用〉 本発明によれば、気体分子の回転準位を検出するローテ
ィショナル・カース分光法は、測定用レーザ光の半値幅
が6I以りあればその波長に依存せずに温度測定が可能
なことを利用して、測定用レーザ光の2次組りの高調波
が反応気相中の分子・原子種を励起する波長となるよう
に測定用レーザ光の波長を設定するようにしたので、ロ
ーティシジナル・カース分光法による雰囲気温度測定と
レーザ誘起蛍光法による反応気相中の分子・環7種の濃
度測定とを1台のレーザ装置で同時に行うことができ、
これによって過渡現象の温度・濃度同時測定が可能であ
る。
<Function> According to the present invention, the rotational curse spectroscopy that detects the rotational level of gas molecules can measure temperature independently of the wavelength if the half-width of the measurement laser beam is 6I or more. Taking advantage of this possibility, the wavelength of the measurement laser beam was set so that the harmonics of the second-order set of the measurement laser beam were wavelengths that excited molecules and atomic species in the reaction gas phase. Therefore, it is possible to simultaneously measure the ambient temperature using roticiginal curse spectroscopy and the concentration of seven molecules and rings in the reaction gas phase using laser-induced fluorescence, using a single laser device.
This allows simultaneous measurement of temperature and concentration of transient phenomena.

(実施例〉 以下に、本発明の実施例について、図面を参照して詳し
く説明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明に係る反応気相モニター装置の実施例
を示ず構成図であり、反応気相とし”では例えばシラン
とアンモニア、窒素の混合ガスのプラズマが用いられる
FIG. 1 is a block diagram, not showing an embodiment, of a reaction gas phase monitoring device according to the present invention, in which plasma of a mixed gas of silane, ammonia, and nitrogen, for example, is used as the reaction gas phase.

図において、Nd:YAGレーザ1は、発振波長固定で
あって、その出力レーザ光ω、の波長は第2高ll波の
532nm−である、測定用レーザ2は、例えば広11
)域色素レーザなどが用いられ、その色素レーザ光ω、
は中心波長648nm、半値幅61111である。
In the figure, the Nd:YAG laser 1 has a fixed oscillation wavelength, and the wavelength of its output laser beam ω is 532 nm, which is the second high ll wave.The measurement laser 2 is, for example, a wide 11
) region dye laser etc. are used, and the dye laser beam ω,
has a center wavelength of 648 nm and a half-width of 61111.

この色素レーザ光ω2を例えばKDPなどの非線形光学
素子3の中を通過させると、波長324nmの第2高調
波ω、が発生するので、グイクロイックミラー4で分離
する。このとき発生ずる第2高調波ω、が被測定分子N
 Hラジカルを励起する波長になる。
When this dye laser beam ω2 is passed through a nonlinear optical element 3 such as a KDP, a second harmonic wave ω having a wavelength of 324 nm is generated, which is separated by a gicroic mirror 4. The second harmonic ω generated at this time is the molecule N to be measured.
This is the wavelength that excites H radicals.

色素レーザ光ω2は、ハーフミラ−5でω2゛とω1と
に分けられ、そのうちω□”はグイクロイックミラー7
によりミラー6を介して入光するレーザ光ω、と同軸上
に調整される。そして、レーザ光oh、ω2°およびω
/は、レンズ8aを介してレーザ光4人窓10aから反
応炉lOに入射し、反応炉10内で測定点Sで交差して
窒素のローティク3ナル・カース光ω4を発生させる。
The dye laser beam ω2 is divided into ω2゛ and ω1 by a half mirror 5, of which ω□” is divided by a gyroic mirror 7.
The laser beam ω is adjusted coaxially with the laser beam ω that enters through the mirror 6. And the laser beam oh, ω2° and ω
/ enters the reactor lO from the laser beam quadruple window 10a via the lens 8a, intersects at the measurement point S in the reactor 10, and generates nitrogen rhotic three-null curse light ω4.

レーザ光導出窓10bから反応炉IOの外部にiJ4た
レーザ光ω4.ω2゛およびω2“はレンズ8bを介し
てグイクロインクミラー11.ビームダンプ12゜I3
によって除去され、ローティシリナル・カース光ω4の
みがミラー14を介して分光器15へ導かれて、ついで
マルチチャンネルデテクタ16によって検出され、その
検出信号は演算器17に送られて温度が求められる。
Laser light ω4. ω2゛ and ω2″ are transmitted through the lens 8b to the micro ink mirror 11.Beam dump 12°I3
The rotary serial curse light ω4 alone is guided to the spectroscope 15 via the mirror 14, and then detected by the multichannel detector 16, and the detection signal is sent to the calculator 17 to determine the temperature. .

一方、第2高調波ω、はミラー9a、9bを介してレー
ザ光導入窓10aから反応炉10へ導かれ、測定点Sで
波長450.2 n−のレーザ誘起蛍光ωSを発生させ
る。この蛍光ω、は蛍光測定窓10cから出てレンズ1
8を介して受光器19により検出され、また受光器20
は第2高調波ω、の出力をモニターする。これら受光器
19および受光器20の検出信号の値より、演算器17
においてNHラジカルの濃度が求められる。
On the other hand, the second harmonic ω is guided from the laser light introduction window 10a to the reactor 10 via the mirrors 9a and 9b, and generates laser-induced fluorescence ωS with a wavelength of 450.2 n− at the measurement point S. This fluorescence ω is emitted from the fluorescence measurement window 10c and is emitted from the lens 1.
8 and is detected by the photoreceiver 19, and the photoreceiver 20
monitors the output of the second harmonic ω. Based on the values of the detection signals of the light receiver 19 and the light receiver 20, the arithmetic unit 17
The concentration of NH radicals is determined at .

演算器17で求められた温度および濃度は、例えばCR
Tなどのデイスプレィ21や記録装置22に出力表示さ
れる。
The temperature and concentration determined by the calculator 17 are, for example, CR
The output is displayed on a display 21 such as T or a recording device 22.

このようにして、演算器17においてローティシリナル
・カース光ω、およびレーザ誘起蛍光ω5の両信号を同
時に処理するので、温度と濃度の測定を同時かつ高速に
行うことができ、したがって短時間の過渡現象の瞬時測
定を行うことが可能である。
In this way, since both the signals of the rotary serial curse light ω and the laser-induced fluorescence ω5 are processed simultaneously in the computing unit 17, temperature and concentration measurements can be performed simultaneously and at high speed. It is possible to make instantaneous measurements of transient phenomena.

なお、色素レーザ光ω、と第2高調波ω、とを分離する
装置としては、グイクロイックミラ−4の代わりに、第
2図に示すように、ペリン・ブロカ・プリズム23とミ
ラー24を用いても同様の効果を得ることができる。
As a device for separating the dye laser beam ω and the second harmonic ω, a Perrin-Broca prism 23 and a mirror 24 are used instead of the gicroic mirror 4, as shown in FIG. Similar effects can be obtained by using

また、上記実施例において、第2高調波ω、を利用する
として説明したが、測定用レーザ2の色素レーザ光ω8
の波長の3次以上の高調波を被測定分子・原子種を励起
し得るように調整することにより、第2高調波の代わり
に用いることができる。
In addition, in the above embodiment, it was explained that the second harmonic wave ω is used, but the dye laser beam ω8 of the measurement laser 2 is used.
By adjusting harmonics of the third or higher order of the wavelength of , it can be used in place of the second harmonic by adjusting it so that it can excite the molecule or atomic species to be measured.

すなわち、上記のシラン、アンモニア、窒素の混合ガス
プラズマにおいて、色素レーザ光ω1の中心波長を75
2.1n−に調整し、波長250.7n−の第3高調波
を得てシリコン原子を励起して、251.6n−の蛍光
よりシリコン原子の濃度が求められる。
That is, in the above mixed gas plasma of silane, ammonia, and nitrogen, the center wavelength of the dye laser beam ω1 is set to 75
2.1n-, the third harmonic of wavelength 250.7n- is obtained to excite silicon atoms, and the concentration of silicon atoms is determined from the fluorescence of 251.6n-.

さらにまた、ミラー9bの角度を変化させ、レンズ18
の位置および角度を調整することにより、反応炉10内
の濃度測定が3次元的に行うことも可能である。
Furthermore, by changing the angle of the mirror 9b, the lens 18
By adjusting the position and angle of the reactor 10, it is also possible to measure the concentration in the reactor 10 three-dimensionally.

〈発明の効果〉 以上説明したように、本発明によれば、ローティシリナ
ル・カース分光法による温度測定とレーザ励起蛍光法に
よる反応気相中の分子・原子種の濃度測定が1台のレー
ザ装置で同時に行うことができるので、プラズマCVD
や2CV D、  ドライエツチングなどの反応気相中
の過渡現象の温度と濃度の同時測定を実現し得るという
効果は多大である。
<Effects of the Invention> As explained above, according to the present invention, temperature measurement by rotary serial curse spectroscopy and concentration measurement of molecules and atomic species in the reaction gas phase by laser excitation fluorescence can be performed using a single laser. Plasma CVD
This method has a great effect in that it is possible to simultaneously measure the temperature and concentration of transient phenomena in the reaction gas phase such as 2CVD, dry etching, etc.

また、ローティシリナル・カース分光法とレーザ励起蛍
光法とを1台のレーザ装置で行うことにより、従来のカ
ース分光法だけでは測定が困難であった低濃度のラジカ
ル種の測定がレーザ励起蛍光法で行うことができるから
、効率のよい反応気相の測定が可能であり、その経済的
な効果も多大である。
In addition, by performing rotary serial curse spectroscopy and laser-excited fluorescence with a single laser device, it is possible to measure low-concentration radical species, which was difficult to measure using only conventional curse spectroscopy, using laser-excited fluorescence. Since it can be carried out by the method, it is possible to measure the reaction gas phase with high efficiency, and its economical effects are also significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る反応気相モニター装置の実施例
を示す構成図、第2図は、本発明の他の実施例を示す構
成図である。 1・・・Nd:YAGレーザ、  2・・・測定用レー
ザ、  3・・・非線形光学素子、4,7.11・・・
グイクロイックミラー、  5・・・ハーフミラ−,6
,9゜14、24・・・ξシー。8.18・・・レンズ
、  10・・・反応炉、12.13・・・ビームダン
プ、  15・・・分光器。 I6・・・マルチチャンネルデテクタ、  17・・・
演算器。 19、20・・・受光器、  21・・・デイスプレィ
、22・・・記録装置、23・・・ペリン・ブロカ・プ
リズム。 S・・・測定点。
FIG. 1 is a block diagram showing an embodiment of a reaction gas phase monitoring device according to the present invention, and FIG. 2 is a block diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Nd:YAG laser, 2...Measurement laser, 3...Nonlinear optical element, 4,7.11...
Guicroic mirror, 5...Half mirror, 6
,9゜14,24...ξC. 8.18... Lens, 10... Reactor, 12.13... Beam dump, 15... Spectrometer. I6...Multi-channel detector, 17...
Arithmetic unit. 19, 20... Light receiver, 21... Display, 22... Recording device, 23... Perrin-Broca prism. S...Measurement point.

Claims (1)

【特許請求の範囲】[Claims] 反応気相中の温度ならびに濃度をモニターする装置であ
って、発振波長固定のレーザ光と6nm以上の半値幅を
有する測定用レーザ光を用いたローティショナル・カー
ス分光法による反応気相温度測定手段と、前記測定用レ
ーザ光と波長分離手段で分離された前記測定用レーザ光
の2次以上の高調波を用いたレーザ誘起蛍光法による反
応気相中の分子・原子種の濃度測定手段と、前記温度な
らびに濃度の測定結果を同時に処理する演算手段とから
なることを特徴とする反応気相モニター装置。
A device for monitoring the temperature and concentration in the reaction gas phase, which is a means for measuring the temperature of the reaction gas phase using rotational curse spectroscopy using a laser beam with a fixed oscillation wavelength and a measurement laser beam with a half-width of 6 nm or more. and a means for measuring the concentration of molecules and atomic species in the reaction gas phase by a laser-induced fluorescence method using second or higher harmonics of the measuring laser beam separated by a wavelength separation means; A reaction gas phase monitoring device comprising a calculation means for simultaneously processing the temperature and concentration measurement results.
JP21304789A 1989-08-21 1989-08-21 Reaction vapor phase monitor device Pending JPH0377030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21304789A JPH0377030A (en) 1989-08-21 1989-08-21 Reaction vapor phase monitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21304789A JPH0377030A (en) 1989-08-21 1989-08-21 Reaction vapor phase monitor device

Publications (1)

Publication Number Publication Date
JPH0377030A true JPH0377030A (en) 1991-04-02

Family

ID=16632643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21304789A Pending JPH0377030A (en) 1989-08-21 1989-08-21 Reaction vapor phase monitor device

Country Status (1)

Country Link
JP (1) JPH0377030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698920B1 (en) * 2000-05-08 2004-03-02 General Electric Company Temperature measuring system and optical switch used therein
US7633066B2 (en) 2006-05-22 2009-12-15 General Electric Company Multiwavelength pyrometry systems
US8790006B2 (en) 2009-11-30 2014-07-29 General Electric Company Multiwavelength thermometer
JP2017228671A (en) * 2016-06-23 2017-12-28 ウシオ電機株式会社 Laser drive light source apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698920B1 (en) * 2000-05-08 2004-03-02 General Electric Company Temperature measuring system and optical switch used therein
US7633066B2 (en) 2006-05-22 2009-12-15 General Electric Company Multiwavelength pyrometry systems
US8790006B2 (en) 2009-11-30 2014-07-29 General Electric Company Multiwavelength thermometer
JP2017228671A (en) * 2016-06-23 2017-12-28 ウシオ電機株式会社 Laser drive light source apparatus

Similar Documents

Publication Publication Date Title
US20070223006A1 (en) Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
Hiramatsu et al. Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved<? format?> Coherent Anti-Stokes Raman Scattering
Marks et al. Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes
JPS63500267A (en) Method and device for improving separation characteristics in spectroscopic measurements
US3973134A (en) Generation of coherent rotational anti-Stokes spectra
GB2023822A (en) Photoacoustic raman spectroscopy
Kaatz et al. Spectral measurements of hyper‐Rayleigh light scattering
Kumar et al. Invited Article: Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering
JPH0377030A (en) Reaction vapor phase monitor device
Chollet et al. High-information infrared spectroscopy of unstable molecules
Long et al. Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism
New et al. Multiplex polarization spectroscopy of OH for flame thermometry
US20140268148A1 (en) Dual-Modulation Faraday Rotation Spectroscopy
CA1143587A (en) Photoacoustic rotational raman spectroscopy
JPH11211658A (en) Spectrochemical analysis method of impurity in gas
JP3979611B2 (en) Stress measuring device
CN212031303U (en) Enhanced variable frequency Raman spectrum analyzer
JP7110686B2 (en) Concentration measuring device
JP2666038B2 (en) Sum frequency measuring device
JP2744221B2 (en) Liquid crystal element evaluation method and evaluation apparatus
JP3305174B2 (en) High sensitivity sodium monitoring device
JPS58100741A (en) Laser raman spectroscopic apparatus removing fluorescence
Chen et al. Low-frequency Raman spectra using synchronously scanned optical parametric oscillator CARS
JPS5961758A (en) Cars spectroscopic apparatus
JPH0566200A (en) Method and device for measuring iodine concentration in gas