JPS59228133A - Spectroscope device - Google Patents

Spectroscope device

Info

Publication number
JPS59228133A
JPS59228133A JP10366983A JP10366983A JPS59228133A JP S59228133 A JPS59228133 A JP S59228133A JP 10366983 A JP10366983 A JP 10366983A JP 10366983 A JP10366983 A JP 10366983A JP S59228133 A JPS59228133 A JP S59228133A
Authority
JP
Japan
Prior art keywords
light
optical modulator
receiving element
inputted
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10366983A
Other languages
Japanese (ja)
Other versions
JPH0412407B2 (en
Inventor
Sunao Sugiyama
直 杉山
Hideto Iwaoka
秀人 岩岡
Akira Ote
明 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP10366983A priority Critical patent/JPS59228133A/en
Publication of JPS59228133A publication Critical patent/JPS59228133A/en
Publication of JPH0412407B2 publication Critical patent/JPH0412407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To make it possible to obtain compact configuration and high integration and to improve resolution and accuracy, by measuring the spectrum distribution of light, which is inputted to an optical modulator by a Fourier spectroscopy method based on the wevelength dependence of the modulation degree of the optical modulator. CONSTITUTION:An operation control part 5 sweeps the output voltage of a power source 35 in a certain range. An optical modulator 3 outputs light corresponding to a voltage, which is applied across electrodes. A light receiving element 4 converts the output light into an electric signal. The signal is inputted into the operation control part 5. The operation control cirpart 5 has a CPU52 and a memory 53. The spectrum distribution of the light, which is inputted to the optical modulator 3 by a Fourier spectroscopy method, is obtained based on the wavelength dependence of the optical modulator 3. The result is displayed on a display device 6.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、PLZT等の電気光学効果を有する電気光学
材料を用いた分光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a spectroscopic device using an electro-optic material having an electro-optic effect, such as PLZT.

〔従来技術の説明〕[Description of prior art]

第1図及び第2図は、従来公知の分光装置の一例を示す
説明図である。
FIGS. 1 and 2 are explanatory diagrams showing an example of a conventionally known spectroscopic device.

第1図に示す装置は、入射スリット11から入射した光
を、凹面鏡12で平行光線束とし、回折格子13に入射
させ、透過光あるいは回折光を凹面鏡14で結像させる
ものである。この装置においては、分解能を上げるため
には、受光側のスリットを細くする必要があり、分解能
と精朋とを同時に向上させるのは難がしい。
In the apparatus shown in FIG. 1, light incident through an entrance slit 11 is made into a parallel beam bundle by a concave mirror 12, and is made incident on a diffraction grating 13, and the transmitted light or diffracted light is imaged by a concave mirror 14. In this device, in order to increase resolution, it is necessary to make the slit on the light receiving side thinner, and it is difficult to improve resolution and precision at the same time.

第2図に示す装置は、2光線東干渉計を用いたフーリエ
分光法の原理に基つく分光装置で、入射スリット21か
ら入射した光を、レンズ22で平行光線とし、この平行
光をハーフミラ−23で2光線束とし、各光線束をそれ
ぞれ反射鏡24.25で反射させ、これらの各反射光を
レンズ26を介してスリット27に入射させるものであ
る。この装置において、反射鏡24.25のいずれが一
方全矢印に示す方向に動かし、2光線束の光路差全変化
させると、スリット27を通った光音受光する受光素子
28から得られる信号のインターフェログラムが、入射
した光のフーリエ変換になるもので、この逆変換を行な
って、元のスペクトル分布を知るようにしている。
The device shown in FIG. 2 is a spectroscopic device based on the principle of Fourier spectroscopy using a two-beam East interferometer. The light incident through the entrance slit 21 is converted into parallel light by a lens 22, and this parallel light is converted into a half mirror. 23 into two beams, each beam is reflected by a reflecting mirror 24, 25, and each of these reflected beams is made to enter a slit 27 via a lens 26. In this device, when one of the reflecting mirrors 24 and 25 is moved in the direction shown by the arrow, and the optical path difference between the two beams is completely changed, the signal obtained from the light receiving element 28 that receives the light sound that has passed through the slit 27 is intersected. A ferogram is a Fourier transform of incident light, and this inverse transform is performed to determine the original spectral distribution.

この装置は、第1図に示す装置に比べ、入射スリットヲ
必要とせず、受光素子に入る光の全スペクトルを同時に
測定できること、光量が多いため87Nが良好であるこ
と、波長精度が高いこと等の長所がある反面、光路差を
変えるために反射鏡を動かす必要があり、その機械的な
精度が要求されること、小型化、集積化が困難であるこ
と等の欠点がある。
Compared to the device shown in Figure 1, this device does not require an entrance slit, can simultaneously measure the entire spectrum of light entering the photodetector, has a large amount of light so 87N is good, and has high wavelength accuracy. Although there are advantages, there are disadvantages such as the need to move the reflecting mirror to change the optical path difference, which requires mechanical precision, and difficulty in miniaturization and integration.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明は機械的な構成部分を有せず、小
型、集積化が可能で、分解能及び精度の良好な分光装置
を実現しようとするものである。
Here, the present invention aims to realize a spectroscopic device that does not have mechanical components, is small in size, can be integrated, and has good resolution and accuracy.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、電気光学効果を有する電気光学材
料で構成した光変調器と、この光変調器を通った光を受
光する受光素子と、この受光素子からの信号を入力する
とともに光変調器に印加する信号を制御する手段とを備
え、光変調器の変調度の波長依存性からフーリエ分光法
によって光変調器に入射する光のスペクトル分布を知る
ようにした点に特徴がある。
The device according to the present invention includes an optical modulator made of an electro-optic material having an electro-optic effect, a light-receiving element that receives light that has passed through the optical modulator, and a light-receiving element that receives a signal from the light-receiving element and modulates the light. The device is characterized in that the spectral distribution of light incident on the optical modulator can be determined by Fourier spectroscopy from the wavelength dependence of the degree of modulation of the optical modulator.

〔原理説明〕[Explanation of principle]

第3図は、本発明に係る装置の原理を説明するための図
で、本発明において用いられる光変調器の一例を示す。
FIG. 3 is a diagram for explaining the principle of the device according to the present invention, and shows an example of an optical modulator used in the present invention.

図において、3は電気光学効果金有する電気光学材料(
例えばPLZTやLsNbO5)、31.32はこの電
気光学材料3の平行な2面に設けられた電極、33.3
4は電気光学材料3i挾んで光の入射側と出射側とにそ
れぞれ設置した偏光子と検光子で、その偏光面の方向は
、電極31.32によって生ずる電界Eに対して45°
傾き、かつ平行となっている。
In the figure, 3 is an electro-optic material having an electro-optic effect (
For example, PLZT or LsNbO5), 31.32 is an electrode provided on two parallel surfaces of this electro-optic material 3, 33.3
Reference numeral 4 denotes a polarizer and an analyzer placed between the electro-optic material 3i on the light incident side and the light output side, respectively, and the direction of the polarization plane is 45 degrees with respect to the electric field E generated by the electrodes 31 and 32.
It is tilted and parallel.

このような構成の光変調器において、電極31゜32間
に電圧vf:、印加した場合、入射光Plnと出射光P
OTII’l’との比T = POUT/P t n 
は(11式で表わすことができる。
In an optical modulator having such a configuration, when a voltage vf: is applied between the electrodes 31 and 32, the incident light Pln and the output light P
Ratio with OTII'l' T = POUT/P t n
can be expressed as (11).

2に′ T = pO,T/pin=kCO8(i  Δα(V
))     ・・・・・−illここで、k、lc’
は定数(k≦1)、λは入射光の波長、Δα(V)/λ
は、電気光学効果による複屈折の量(rad )である
2′ T = pO, T/pin=kCO8(i Δα(V
)) ......-ill where k, lc'
is a constant (k≦1), λ is the wavelength of the incident light, Δα(V)/λ
is the amount of birefringence (rad) due to the electro-optic effect.

数)とし、hI  ヲ改めてに′と誉゛き直すと、(2
)式の通りとなる。
number), and if we rewrite hI as ′, we get (2
) is as follows.

T = POUT/PIn= k C082(k’fΔ
α(v))=  (x+cos(2に’r Jα(V)
) ) −・・(21(2)式において、入射光束のス
ペクトル分布をB (f)とおくと、出射光P OUT
は、(2)式と同様に(PinをB (f)で置き換え
る。)(3)式の通りとなる。
T = POUT/PIN = k C082 (k'fΔ
α(v)) = (x+cos(2 to 'r Jα(V)
) ) -... (21 In equation (2), if the spectral distribution of the incident light flux is set as B (f), the output light P OUT
is as shown in equation (3) (Pin is replaced by B (f)) in the same way as equation (2).

(3)式右辺第2項は、B (f)のフーリエ余弦変換
である。したがって入射光のスペクトル分布B (f)
は、これをフーリエ逆変換して求めることができる。
The second term on the right side of equation (3) is the Fourier cosine transform of B (f). Therefore, the spectral distribution of the incident light B (f)
can be obtained by inverse Fourier transform.

ここで、VoをΔα(Vo)=0  (通常はV。=o
)  と選ぶことは容易であるから、これを(3)式に
代入すると、(4)式が得られる。
Here, Vo is Δα(Vo)=0 (usually V.=o
) is easy to choose, so by substituting this into equation (3), equation (4) is obtained.

(4)式ヲ(3)式に代入すれば(5)式のiBi ’
)となる。
By substituting equation (4) into equation (3), iBi' of equation (5)
).

(5)式から明らかなように、PoUT(■)から、−
PO[TT (VD)金引き、残りの項を逆フーリエ余
弦変換すれば、入射光P1nのスペクトル分布B(f)
 ’!r知ることかできる。
As is clear from equation (5), from PoUT(■), −
PO[TT (VD), and if the remaining terms are inverse Fourier cosine transformed, the spectral distribution B(f) of the incident light P1n is obtained.
'! r I can know.

〔実施例の説明〕[Explanation of Examples]

第4図は本発明に係る装置の一例を示す構成ブロック図
である。この図において、3は第3図で示したような構
成の光変調器で、(1)式を満たすものとする。35は
この光変調器の電極間に電圧を印加する電源、4は光変
調器3から出射した光を受光する受光素子、5はこの受
光素子からの信号を入力し記憶するとともに、電源35
に制御信号を与え、光変調器3に印加する電圧を制御す
る演算制御部で、例えば、受光素子4からの信号を人/
D変換するA/D変換器51と、ここからのディジタル
信号を入力とするマイクロプロセッサ52と、これに結
合l−ているメモリ53とで構成される。6は演算制御
部5での演算結果を表示する表示装置である。
FIG. 4 is a block diagram showing an example of a device according to the present invention. In this figure, 3 is an optical modulator having the configuration shown in FIG. 3, which satisfies equation (1). 35 is a power source that applies a voltage between the electrodes of this optical modulator; 4 is a light receiving element that receives the light emitted from the optical modulator 3; 5 is a power source that inputs and stores a signal from this light receiving element;
For example, the signal from the light receiving element 4 is sent to a human/
It is composed of an A/D converter 51 that performs D conversion, a microprocessor 52 that inputs digital signals from the A/D converter 51, and a memory 53 coupled thereto. Reference numeral 6 denotes a display device for displaying the calculation results of the calculation control section 5.

このように構成した装置の動作は次の通りである。はじ
めに、演算制御部5は、電源35の出力電圧をある範囲
で、■、からv2までスイープさせる。光変調器3は、
電極間に印加される電圧に応じて、(5)式で表わされ
る様な光P OUTを出射する。
The operation of the device configured as described above is as follows. First, the arithmetic control unit 5 sweeps the output voltage of the power supply 35 from ■ to v2 within a certain range. The optical modulator 3 is
Depending on the voltage applied between the electrodes, light P OUT as expressed by equation (5) is emitted.

受光素子4は、出力光P OUTを電気信号に変換し、
演算制御H(55K入力させる。この演算制御部5内の
メモリ手段53は、光変調器3に印加される電圧と、そ
の時の受光素子4からの信号を、■、からv2 の間、
記憶する。ここで、必要あらば、■、からv2まで数回
スイープさせ、いくつかのデータをとり、平均加算した
結果を得るようにし、S/Hの向上をはかるようにして
もよい。
The light receiving element 4 converts the output light P OUT into an electrical signal,
Arithmetic control H (55K is input. The memory means 53 in this arithmetic control unit 5 stores the voltage applied to the optical modulator 3 and the signal from the light receiving element 4 at that time between ■ and v2.
Remember. Here, if necessary, the S/H may be improved by sweeping from ■ to v2 several times, taking several pieces of data, and averaging the results.

メモリ手段53に蓄えられたデータは、(5)式からB
(f)を求めるための逆フーリエ変換演算、受光素子4
0波長−感度特性や、光変調器3自体の波長−透過率特
性等の補正演算を行なって、入射光P、nのスペクトル
を求め、この演算結果を表示器6に表示させる。
The data stored in the memory means 53 can be calculated from equation (5) by B
Inverse Fourier transform calculation for determining (f), light receiving element 4
A correction calculation is performed on the zero wavelength-sensitivity characteristic, the wavelength-transmittance characteristic of the optical modulator 3 itself, etc., to obtain the spectra of the incident lights P and n, and the result of this calculation is displayed on the display 6.

第5図〜第8図は、本発明装置に使用可能な光変調器の
他の構成例を示す説明図である。
FIGS. 5 to 8 are explanatory diagrams showing other configuration examples of optical modulators that can be used in the apparatus of the present invention.

第5図、第6図において、いずれも(イ)は平面図、(
ロ)は(イ)図におけるX−X断面図である。
In both Figures 5 and 6, (A) is a plan view, (
B) is a sectional view taken along line XX in FIG.

第5図に示す光変調器は、誘電体基板3oに分岐位相変
調−干渉型の光導波路35.36’に形成するとともに
、光導波路35を挾んで電極31゜32を設置したもの
である。ここで、基板3oと光導波路35.36の形成
は例えば次のものがある。
The optical modulator shown in FIG. 5 has branched phase modulation/interference type optical waveguides 35 and 36' formed on a dielectric substrate 3o, and electrodes 31 and 32 placed between the optical waveguides 35 and 35. Here, the substrate 3o and the optical waveguides 35 and 36 may be formed, for example, as follows.

(i)  LINbO3基板にTi ’i!”熱拡散す
る。
(i) Ti 'i! on LINbO3 board. ``Heat spreads.

(ii)  LINbos  基板にAg+やに+のイ
オン拡散を行なう。この場合、いわゆるオプティ汝ルダ
メージ(Optical−damage)が少なくでき
る。
(ii) Ion diffusion of Ag+ into the LINbos substrate. In this case, so-called optical damage can be reduced.

(iii)  LITa05 基板にCu拡散を行なう
(iii) Cu is diffused into the LITa05 substrate.

(1y)PLZT 透明セラミックス基板に金属イオン
交換を行なう。
(1y) PLZT Metal ion exchange is performed on a transparent ceramic substrate.

(V)  GaAS、 In−P  基板に、プロトン
照射する。
(V) GaAS, In-P substrate is irradiated with protons.

第6図に示す光変調器は、第5図のものと同様の原理に
よるもので、半導体基板30に分岐−位相変調−干渉型
の光導波路35.36’t−形成するようにしたもので
ある。半導体基板30は、n−Ga As基板30n上
に1−GaA830Pを数pm程度エピタキシアル成長
させ、この上にオーミック電極31a、31b  を形
成するとともに、n −Ga As基板30n側全面に
オーミック電極32t−形成しである。この構成におい
て、P−n接合に逆バイアスとなるように電極31a(
31b)と32間に電圧を印加すると、Pn接合近傍の
空乏層が広が9、同時にキャリア濃度の低下により、屈
折率が上昇して、印加電圧によ!l1選択的に光導波路
35.36がP−GaAS基板30P側の電極下に形成
される。
The optical modulator shown in FIG. 6 is based on the same principle as the one shown in FIG. be. The semiconductor substrate 30 is made by epitaxially growing 1-GaA830P to a thickness of several pm on an n-GaAs substrate 30n, on which ohmic electrodes 31a and 31b are formed, and an ohmic electrode 32t on the entire surface of the n-GaAs substrate 30n side. - It is not formed. In this configuration, the electrode 31a (
When a voltage is applied between 31b) and 32, the depletion layer near the Pn junction expands9, and at the same time, the carrier concentration decreases, causing the refractive index to rise, and depending on the applied voltage! Optical waveguides 35 and 36 are selectively formed under the electrode on the P-GaAS substrate 30P side.

なお、空乏層はn −Ga As側に広く、P −Ga
 As側に狭い。ここで、電極3i、32間に印加する
電圧を調整すると、光導波路35.36t−通る導波光
は、GaAS の電気光学効果によって位相変化を受け
るため、それぞれの導波光の間に位相差が生じ、光変調
させることができる。
Note that the depletion layer is wide on the n -GaAs side and on the P -GaAs side.
Narrow on the As side. Here, when the voltage applied between the electrodes 3i and 32 is adjusted, the guided light passing through the optical waveguides 35 and 36t undergoes a phase change due to the electro-optic effect of GaAS, so a phase difference occurs between each guided light. , can be optically modulated.

なお、この実施例では、GaAS f例にとりたが、n
−1np基板、P−Inpエピタキシアル層としてもよ
い。
In this example, GaAS f is used as an example, but n
-1np substrate and P-Inp epitaxial layer.

第7図(イ)、(=)に示す光変調器は、いずれも基板
30上に受光素子4を共に集積したものである。
The optical modulators shown in FIGS. 7(A) and 7(=) each have a light receiving element 4 integrated on a substrate 30.

(イ)に示すものは、基板30上に形成した光導波路3
5(36)の光出射部分に透明電極41を設けるととも
に、この透明電極41上にアモルファスシリコン(a 
−S+)やCdS又はznSなどの光電層42を設け、
その上にAt等の電極層43を形成させたものである。
What is shown in (a) is an optical waveguide 3 formed on a substrate 30.
A transparent electrode 41 is provided on the light emitting portion of the 5 (36), and amorphous silicon (a
-S+), CdS or znS is provided,
An electrode layer 43 made of At or the like is formed thereon.

ここで、透明電極41としては、In2O3・5n02
などの材料が用いられ、真空蒸着法やプラズマ蒸着法等
によって形成できる。また、a−8t光電層42は、膜
厚が0.5〜1.07’m  程度で、モノシラン(S
iH4)や、JF4のプラズマ分解あるいは、反応性ス
パッタリングや、CVD法等で作成できる。
Here, as the transparent electrode 41, In2O3.5n02
It can be formed by a vacuum deposition method, a plasma deposition method, or the like. Further, the a-8t photoelectric layer 42 has a film thickness of about 0.5 to 1.07'm, and has a monosilane (S
iH4), JF4 plasma decomposition, reactive sputtering, CVD method, etc.

(ロ)に示すものは、受光素子4をPIN型にしたもの
で、透明電極41上に順番に、n−as1層42n。
In the one shown in (b), the light receiving element 4 is of a PIN type, and an n-as1 layer 42n is formed on the transparent electrode 41 in order.

1−asi層42 i 、 P−asi層42P ′f
:形成させたものである。なお、PIN層は多層(PI
N PIN・・・)としてもよい。また、a−8iの代
りにa−8ICとしてもよい。
1-asi layer 42i, P-asi layer 42P'f
: It is formed. Note that the PIN layer is multi-layered (PI
N PIN...) may be used. Also, a-8IC may be used instead of a-8i.

第8図(イ)9(ロ)に示す光変調器は、いずれも半導
体導波路上に受光素子4を集積したものである。
The optical modulators shown in FIGS. 8(a) and 9(b) each have a light receiving element 4 integrated on a semiconductor waveguide.

(イ)に示すものは、H−Ga ASなどの基板30n
上にP −Ga Asなどの層30P ’r影形成せ、
半導体導波路をつくり、この上に電極43を設けて、P
N接合を利用したホトダイオードPDI構成したもので
ある。
The one shown in (a) is a substrate 30n such as H-Ga AS.
Form a layer 30P'r of P-GaAs on top,
A semiconductor waveguide is made, an electrode 43 is provided on it, and P
It has a photodiode PDI configuration using an N junction.

(ロ)に示すものは、電極43としてショットキー接合
可能な金属材料を用い、ショットキー接合全利用したシ
ョットキーバリアダイオードSDを構成したものである
In the example shown in (b), a metal material capable of Schottky junction is used as the electrode 43, and a Schottky barrier diode SD that fully utilizes the Schottky junction is constructed.

なお、上記の実施例において、光変調器3に光を導び〈
手段については、特に説明しなかったが、公知の手法、
例えばプリズムカップラや、グレイティングカップラ等
が用いられる。また、光変調器3は、第5図〜第8図に
示した構造以外のものも使用可能であり、例えば、変調
器を構成する基板上に、メモリ手段や、マイクロプロセ
ッサ等を集積したものでもよい。
Note that in the above embodiment, the light is guided to the optical modulator 3 and
The means were not specifically explained, but known methods,
For example, a prism coupler, a grating coupler, etc. are used. Further, the optical modulator 3 may have a structure other than those shown in FIGS. 5 to 8, for example, a structure in which memory means, a microprocessor, etc. are integrated on a substrate constituting the modulator. But that's fine.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、機械的構成部分
を有しないので、小型、集積化が可能で、信頼性の高い
分光装置が実現できる。また、スリット等が不要である
ところから、S/Nが高く、精度の良好な装置が実現で
きる。
As described above, according to the present invention, since it does not have mechanical components, it is possible to realize a spectroscopic device that is small in size, can be integrated, and has high reliability. Furthermore, since slits and the like are not required, an apparatus with high S/N and good accuracy can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来公知の分光装置の一例を示す
説明図、第3図は本発明装置の原理を説明するための図
、第4図は本発明に係る装置の一例を示す構成ブロック
図、第5図〜第8図は本発明装置に使用可能な光変調器
の他の例を示す構成図である。 3・・・光変調器    4・・・受光素子5・・・演
算制御部   6・・・表示装置第6図 げ)         (ロ) 冗7図 (ロ) %8図 (イ) (ロ) 3z       甲 4
1 and 2 are explanatory diagrams showing an example of a conventionally known spectroscopic device, FIG. 3 is a diagram for explaining the principle of the device of the present invention, and FIG. 4 is a diagram showing an example of the device according to the present invention. The configuration block diagrams of FIGS. 5 to 8 are configuration diagrams showing other examples of optical modulators that can be used in the apparatus of the present invention. 3... Light modulator 4... Light receiving element 5... Arithmetic control unit 6... Display device (Figure 6) (B) Figure 7 (B) %8 Figure (A) (B) 3z A4

Claims (1)

【特許請求の範囲】[Claims] (1)電気光学効果を有する電気光学材料で構成した光
変調器と、この光変調器を通った光を受光する受光素子
と、この受光素子からの信号を記憶し所定の演算を行な
うとともに前記光変調器に印加する信号を制御する演算
制御部とを備え、前記光変調器の変調度の波長依存性か
らフーリエ分光法によって前記光変調器に入射する光の
スペクトル分布を知るようにした分光装置。
(1) An optical modulator made of an electro-optic material having an electro-optic effect, a light-receiving element that receives the light that has passed through the optical modulator, and a signal from the light-receiving element that is stored and performs predetermined calculations. and an arithmetic control unit that controls a signal applied to the optical modulator, and the spectrometer is configured to determine the spectral distribution of light incident on the optical modulator by Fourier spectroscopy from the wavelength dependence of the degree of modulation of the optical modulator. Device.
JP10366983A 1983-06-10 1983-06-10 Spectroscope device Granted JPS59228133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366983A JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10366983A JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Publications (2)

Publication Number Publication Date
JPS59228133A true JPS59228133A (en) 1984-12-21
JPH0412407B2 JPH0412407B2 (en) 1992-03-04

Family

ID=14360194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366983A Granted JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Country Status (1)

Country Link
JP (1) JPS59228133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266321A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Spectral measurement method and fourier transform type spectrophotometer
JPH01501575A (en) * 1986-10-24 1989-06-01 ブリテッシュ・テレコミュニケイションズ・パブリック・リミテッド・カンパニー How to modulate optical signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501575A (en) * 1986-10-24 1989-06-01 ブリテッシュ・テレコミュニケイションズ・パブリック・リミテッド・カンパニー How to modulate optical signals
JPS63266321A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Spectral measurement method and fourier transform type spectrophotometer

Also Published As

Publication number Publication date
JPH0412407B2 (en) 1992-03-04

Similar Documents

Publication Publication Date Title
EP0300508B1 (en) Film thickness-measuring apparatus
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US6175412B1 (en) Optical component for polarization modulation, a mueller polarimeter and ellipsometer containing such an optical component, a process for the calibration of this ellipsometer, and an ellipsometric measurement process
Jungerman et al. High-speed optical modulator for application in instrumentation
JPH06102295A (en) Non-contact type probe and non-contact voltage measuring device
US5629793A (en) Frequency shifter and optical displacement measurement apparatus using the same
JP4643126B2 (en) Optical spectrum measuring method and apparatus
JPS59228133A (en) Spectroscope device
EP0735350B1 (en) Spectroscope comprising an optical fibre branching
US5387972A (en) Coherent phase and frequency detection using sum-frequency mixing in non-linear waveguides
Hallikainen et al. Acousto‐optic color spectrometer
US5420686A (en) Polarization interferometer optical voltage detector utilizing movement of interference fringe
Houston Jr The potential for acousto-optics in instrumentation: an overview for the 1980s
JPS59166873A (en) Optical applied voltage and electric field sensor
JPH063375A (en) Electric field distribution measuring instrument utilizing electro-optic effect
RU2433414C1 (en) Fibre-optic current sensor
JPH11288011A (en) Wavelength variable pseudo phase matching element
JP2760668B2 (en) Voltage detector
JP2787345B2 (en) Two-wavelength light source element
SU1741034A1 (en) Device for measuring parameters of signal reflections from input of microwave components
JPH06258018A (en) Optical ic displacement measuring equipment
JPH05264687A (en) Optical magnetic field sensor
JPH01189525A (en) Real time fourier spectrophotometer
Rediker et al. Performance and reproducibility of Mach-Zehnder interferometer arrays in Ti: LiNbO3 operating at wavelengths from 0.458 to 3.39 μm
Szemendera et al. In-lab ALOHA mid-infrared up-conversion interferometer in the photon counting regime@ λ= 3.39