JPH0412407B2 - - Google Patents

Info

Publication number
JPH0412407B2
JPH0412407B2 JP10366983A JP10366983A JPH0412407B2 JP H0412407 B2 JPH0412407 B2 JP H0412407B2 JP 10366983 A JP10366983 A JP 10366983A JP 10366983 A JP10366983 A JP 10366983A JP H0412407 B2 JPH0412407 B2 JP H0412407B2
Authority
JP
Japan
Prior art keywords
light
pout
electro
signal
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10366983A
Other languages
Japanese (ja)
Other versions
JPS59228133A (en
Inventor
Sunao Sugyama
Hideto Iwaoka
Akira Oote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10366983A priority Critical patent/JPS59228133A/en
Publication of JPS59228133A publication Critical patent/JPS59228133A/en
Publication of JPH0412407B2 publication Critical patent/JPH0412407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、PLZT等の電気光学効果を有する電
気光学材料を用いた分光装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a spectroscopic device using an electro-optic material having an electro-optic effect, such as PLZT.

〔従来技術の説明〕[Description of prior art]

第1図及び第2図は、従来公知の分光装置の一
例を示す説明図である。
FIGS. 1 and 2 are explanatory diagrams showing an example of a conventionally known spectroscopic device.

第1図に示す装置は、入射スリツト11から入
射した光を、凹面鏡12で平行光線束とし、回折
格子13に入射させ、透過光あるいは回折光を凹
面鏡14に結像させるものである。この装置にお
いては、分解能を上げるためには、受光側のスリ
ツトを細くする必要があり、分解能と精度とを同
時に向上させるのは難かしい。
In the apparatus shown in FIG. 1, light incident from an entrance slit 11 is made into a parallel beam by a concave mirror 12, and is incident on a diffraction grating 13, so that the transmitted light or diffracted light is imaged on a concave mirror 14. In this device, in order to increase resolution, it is necessary to make the slit on the light receiving side thinner, and it is difficult to improve resolution and precision at the same time.

第2図に示す装置は、2光線束干渉計を用いた
フーリエ分光法の原理に基づく分光装置で、入射
スリツト21から入射した光を、レンズ22で平
行光線とし、この平行光をハーフミラー23で2
光線束とし、各光線束をそれぞれ反射鏡24,2
5で反射させ、これらの各反射光をレンズ26を
介してスリツト27に入射させるものである。こ
の装置において、反射鏡24,25のいずれか一
方を矢印に示す方向に動かし、2光線束の光路差
を変化させると、スリツト27を通つた光を受光
する受光素子28から得られる信号のインターフ
エログラムが、入射した光のフーリエ変換になる
もので、この逆変換を行なつて、元のスペクトル
分布を知るようにしている。
The device shown in FIG. 2 is a spectroscopic device based on the principle of Fourier spectroscopy using a two-beam interferometer, in which light incident from an entrance slit 21 is converted into parallel light by a lens 22, and this parallel light is passed through a half mirror 22. So 2
A bundle of rays and each bundle of rays is reflected by mirrors 24 and 2, respectively.
5, and each of these reflected lights is made to enter a slit 27 via a lens 26. In this device, when one of the reflecting mirrors 24 and 25 is moved in the direction shown by the arrow to change the optical path difference between the two beams, the interface of the signal obtained from the light receiving element 28 that receives the light passing through the slit 27 is changed. An erogram is a Fourier transform of the incident light, and this inverse transform is performed to obtain the original spectral distribution.

この装置は、第1図に示す装置に比べ、入射ス
リツトを必要とせず、受光素子に入る光の全スペ
クトルを同時に測定できること、光量が多いため
S/Nが良好であること、波長精度が高いこと等
の長所がある反面、光路差を変えるために反射鏡
を動かす必要があり、その機械的な精度が要求さ
れること、小型化、集積化が困難であること等の
欠点がある。
Compared to the device shown in Figure 1, this device does not require an entrance slit, can simultaneously measure the entire spectrum of light entering the photodetector, has a high S/N ratio due to the large amount of light, and has high wavelength accuracy. On the other hand, there are drawbacks such as the need to move the reflecting mirror to change the optical path difference, which requires mechanical precision, and the difficulty of miniaturization and integration.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明は機械的な構成部分を有
せず、小型、集積化が可能で、分解能及び精度の
良好な分光装置を実現しようとするものである。
Here, the present invention aims to realize a spectroscopic device that does not have mechanical components, is small in size, can be integrated, and has good resolution and accuracy.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、電気光学効果を有する電
気光学材料で構成した光変調器と、この光変調器
を通つた光を受光する受光素子と、この受光素子
からの信号を入力するとともに光変調器に印加す
る信号を制御する手段とを備え、光変調器の変調
度の波長依存性からフーリエ分光法によつて光変
調器に入射する光のスペクトル分布を知るように
した点に特徴がある。
The device according to the present invention includes an optical modulator made of an electro-optic material having an electro-optic effect, a light-receiving element that receives light that has passed through the optical modulator, and a light-receiving element that receives a signal from the light-receiving element and modulates the light. It is characterized by the fact that the spectral distribution of the light incident on the optical modulator can be determined by Fourier spectroscopy from the wavelength dependence of the modulation degree of the optical modulator. .

〔原理説明〕[Explanation of principle]

第3図は、本発明に係る装置の原理を説明する
ための図で、本発明において用いられる光変調器
の一例を示す。図において、3は電気光学効果を
有する電気光学材料(例えばPLZTやLiNbO3)、
31,32はこの電気光学材料3の平行な2面に
設けられた電極、33,34は電気光学材料3を
挾んで光の入射側と出射側とにそれぞれ設置した
偏光子と検光子で、その偏光面の方向は、電極3
1,32によつて生ずる電界Eに対して45゜傾き、
かつ平行となつている。
FIG. 3 is a diagram for explaining the principle of the device according to the present invention, and shows an example of an optical modulator used in the present invention. In the figure, 3 is an electro-optic material having an electro-optic effect (e.g. PLZT or LiNbO 3 );
31 and 32 are electrodes provided on two parallel surfaces of the electro-optic material 3, and 33 and 34 are polarizers and analyzers that are placed on the light incident side and light output side, respectively, with the electro-optic material 3 in between. The direction of the plane of polarization is
tilted at 45° with respect to the electric field E generated by 1,32,
and are parallel.

このような構成の光変調器において、電極3
1,32間に電圧Vを印加した場合、入射光Pio
と出射光POUTとの比T=POUT/Pioは(1)式で表わす
ことができる。
In the optical modulator having such a configuration, the electrode 3
When a voltage V is applied between 1 and 32, the incident light P io
The ratio T=P OUT /P io of the output light P OUT and the output light P OUT can be expressed by equation (1).

T=POUT/Pio=kCOS2{k′/λΔα(V)}……(1) ここで、k,k′は定数(k≦1)、λは入射光
の波長、Δα(V)/λは、電気光学効果による複
屈折の量(rad)である。
T=P OUT /P io =kCOS 2 {k'/λΔα(V)}...(1) Here, k and k' are constants (k≦1), λ is the wavelength of the incident light, and Δα(V) /λ is the amount of birefringence (rad) due to the electro-optic effect.

(1)式において、1/λ=f/c(c:光速度、f:
周 波数)とし、k′/cを改めてk′と書き直すと、(2)式 の通りとなる。
In equation (1), 1/λ=f/c (c: speed of light, f:
frequency) and rewriting k'/c as k', we get equation (2).

T=POUT/Pio=kCOS2(k′/λΔα(V)) =k/2{1+COS(2k′fΔα(V)} ……(2) (2)式において、入射光束のスペクトル分布をB
(f)とおくと、出射光POUTは、(2)式と同様に
(PioをB(f)で置き換える。)(3)式の通りとな
る。
T=P OUT /P io =kCOS 2 (k'/λΔα(V)) =k/2{1+COS(2k'fΔα(V)}...(2) In equation (2), the spectral distribution of the incident luminous flux is B
(f), the output light P OUT becomes as shown in equation (3) (replace P io with B(f)), similar to equation (2).

POUT(V)=∫ 0B(f)・k/2{1 +COS(2k′fΔα(V)}df=k/2∫ 0B(f
)df+ k/2 ∫ 0B(f)COS(2k′fΔα(V))df ……(3) (3)式右辺第2項は、B(f)のフエーリエ余弦
変換である。したがつて入射光のスペクトル分布
B(f)は、これをフエーリエ逆変換して求める
ことができる。
P OUT (V)=∫ 0 B(f)・k/2{1 +COS(2k′fΔα(V)}df=k/2∫ 0 B(f
)df+k/2 ∫ 0 B(f)COS(2k'fΔα(V))df...(3) The second term on the right side of equation (3) is the Fourier cosine transformation of B(f). Therefore, the spectral distribution B(f) of the incident light can be obtained by performing inverse Farier transformation.

ここで、V0をΔα(V0)=0(通常はV0=0)と
選ぶことは容易であるから、これを(3)式に代入す
ると、(4)式が得られる。
Here, since it is easy to select V 0 as Δα(V 0 )=0 (usually V 0 =0), by substituting this into equation (3), equation (4) is obtained.

POUT(V0)=k/2∫ 0B(f)df+k/2
0B(f)=k∫ 0B(f)df……(4) (4)式を(3)式に代入すれば(5)式の通りとなる。
P OUT (V 0 )=k/2∫ 0 B(f)df+k/2
0 B(f)=k∫ 0 B(f)df...(4) If equation (4) is substituted into equation (3), equation (5) is obtained.

POUT(V)=1/2POUT(V0)+k/2∫ 0
B(f)COS(2k′fΔα(V))df……(5) (5)式から明らかなように、POUT(V)から、1/2 POUT(V0)を引き、残りの項を逆フエーリエ余弦
変換すれば、入射光Pioのスペクトル分布B(f)
を知ることができる。
P OUT (V) = 1/2P OUT (V 0 ) + k/2∫ 0
B(f) COS (2k'fΔα(V)) df...(5) As is clear from equation (5), subtract 1/2 P OUT (V 0 ) from P OUT (V) and calculate the remaining If we apply the inverse Fourier cosine transform to the term, we get the spectral distribution B(f) of the incident light P io
can be known.

〔実施例の説明〕[Explanation of Examples]

第4図は本発明に係る装置の一例を示す構成ブ
ロツク図である。この図において、3は第3図で
示したような構成の光変調器で、(1)式を満たすも
のとする。35はこの光変調器の電極間に電圧を
印加する電源、4は光変調器3から出射した光を
受光する受光素子、5はこの受光素子からの信号
を入力し記憶するとともに、電源35に制御信号
を与え、光変調器3に印加する電圧を制御する演
算制御部で、例えば、受光素子4からの信号を
A/D変換するA/D変換器51と、ここからの
デイジタル信号を入力とするマイクロプロセツサ
52と、これに結合しているメモリ53とで構成
される。6は演算制御部5での演算結果を表示す
る表示装置である。
FIG. 4 is a block diagram showing an example of a device according to the present invention. In this figure, 3 is an optical modulator having the configuration shown in FIG. 3, which satisfies equation (1). 35 is a power source that applies a voltage between the electrodes of this optical modulator, 4 is a light receiving element that receives the light emitted from the optical modulator 3, and 5 is a signal that inputs and stores the signal from this light receiving element. An arithmetic control unit that provides a control signal and controls the voltage applied to the optical modulator 3. For example, it inputs an A/D converter 51 that A/D converts the signal from the light receiving element 4 and a digital signal from this. It consists of a microprocessor 52 and a memory 53 coupled to it. Reference numeral 6 denotes a display device for displaying the calculation results of the calculation control section 5.

このように構成した装置の動作は次の通りであ
る。はじめに、演算制御部5は、電源35の出力
電圧をある範囲で、V1からV2までスイーブさせ
る。光変調器3は、電極間に印加される電圧に応
じて、(5)式で表わされる様な光POUTを出射する。
受光素子4は、出力光POUTを電気信号に変換し、
演算制御部5に入力させる。この演算制御部5内
のメモリ手段53は、光変調器3に印加される電
圧と、その時の受光素子4からの信号を、V1
らV2の間、記憶する。ここで、必要あらば、V1
からV2まで数回スイープさせ、いくつかのデー
タをとり、平均加算した結果を得るようにし、
S/Nの向上をはかるようにしてもよい。
The operation of the device configured as described above is as follows. First, the arithmetic control unit 5 sweeps the output voltage of the power supply 35 from V 1 to V 2 within a certain range. The optical modulator 3 emits light P OUT as expressed by equation (5) depending on the voltage applied between the electrodes.
The light receiving element 4 converts the output light P OUT into an electrical signal,
It is input to the calculation control section 5. The memory means 53 in the arithmetic control section 5 stores the voltage applied to the optical modulator 3 and the signal from the light receiving element 4 at that time from V1 to V2 . Here, if necessary, V 1
Sweep from to V 2 several times, take some data, and get the average result.
The S/N ratio may be improved.

メモリ手段53に蓄えられたデータは、(5)式か
らB(f)を求めるための逆フエーリエ変換演算、
受光素子4の波長−感度特性や、光変調器3自体
の波長−透過率特性等の補正演算を行なつて、入
射光Pioのスペクトルを求め、この演算結果を表
示器6に表示させる。
The data stored in the memory means 53 is subjected to an inverse Fourier transform operation to obtain B(f) from equation (5);
A spectrum of the incident light P io is obtained by performing correction calculations on the wavelength-sensitivity characteristics of the light receiving element 4 and the wavelength-transmittance characteristics of the optical modulator 3 itself, and the results of this calculation are displayed on the display 6.

第5図〜第8図は、本発明装置に使用可能な光
変調器の他の構成例を示す説明図である。
FIGS. 5 to 8 are explanatory diagrams showing other configuration examples of optical modulators that can be used in the apparatus of the present invention.

第5図、第6図において、いずれもイは平面
図、ロはイ図におけるX−X断面図である。
In FIGS. 5 and 6, A is a plan view, and B is a sectional view taken along line X-X in FIG.

第5図に示す光変調器は、誘電体基板30に分
岐位相変調−干渉型の光導波路35,36を形成
するとともに、光導波路35を挾んで電極31,
32を設置したものである。ここで、基板30と
光導波路35,36の形成は例えば次のものがあ
る。
The optical modulator shown in FIG. 5 has branched phase modulation/interference type optical waveguides 35 and 36 formed on a dielectric substrate 30, and electrodes 31 and 36 sandwiching the optical waveguide 35.
32 was installed. Here, the substrate 30 and the optical waveguides 35 and 36 may be formed, for example, as follows.

(i) LiNbO3基板にTiを熱拡散する。(i) Thermal diffusion of Ti onto the LiNbO 3 substrate.

(ii) LiNbO3基板にAg+やK+のイオン拡散を行な
う。この場合、いわゆるオプテイカルダメージ
(Optical−damage)が少なくできる。
(ii) Ag + and K + ions are diffused into the LiNbO 3 substrate. In this case, so-called optical damage can be reduced.

(iii) LiTaO3基板にCu拡散を行なう。(iii) Diffusion of Cu into the LiTaO 3 substrate.

(iv) PLZT透明セラミツクス基板に金属イオン交
換を行なう。
(iv) Perform metal ion exchange on the PLZT transparent ceramic substrate.

(v) GaAS、In−P基板に、プロトン照射する。(v) GaAS and In-P substrates are irradiated with protons.

第6図に示す光変調器は、第5図のものと同様
の原理によるもので、半導体基板30に分岐−位
相変調−干渉型の光導波路35,36を形成する
ようにしたものである。半導体基板30は、n−
GaAS基板30n上にn−GaAS30Pを数μm程
度エピタキシヤル成長させ、この上にオーミツク
電極31a,31bを形成するとともに、n−
GaAS基板30n側全面にオーミツク電極32を
形成してある。この構成において、P−n接合に
逆バイアスとなるように電極31a(31b)と
32間に電圧を印加すると、Pn接合近傍の空乏
層が広がり、同時にキヤリア濃度の低下により、
屈折率が上昇して、印加電圧により選択的に光導
波路35,36がP−GaAS基板30P側の電極
下に形成される。なお空乏層にn−GaAS側に広
く、P−GaAS側に狭い。ここで、電極31,3
2間に印加する電圧を調整すると、光導波路3
5,36を通る導波光は、GaASの電気光学効果
によつて位相変化を受けるため、それぞれの導波
光の間に位相差が生じ、光変調させることができ
る。
The optical modulator shown in FIG. 6 is based on the same principle as that shown in FIG. 5, and has branching-phase modulation-interference type optical waveguides 35 and 36 formed on a semiconductor substrate 30. The semiconductor substrate 30 is n-
N-GaAS 30P is epitaxially grown on a GaAS substrate 30n to a thickness of several μm, and ohmic electrodes 31a and 31b are formed thereon.
An ohmic electrode 32 is formed on the entire surface of the GaAS substrate 30n side. In this configuration, when a voltage is applied between the electrodes 31a (31b) and 32 so as to provide a reverse bias to the P-n junction, the depletion layer near the P-n junction expands, and at the same time, the carrier concentration decreases, resulting in
The refractive index increases, and optical waveguides 35 and 36 are selectively formed under the electrode on the P-GaAS substrate 30P side by the applied voltage. Note that the depletion layer is wide on the n-GaAS side and narrow on the P-GaAS side. Here, the electrodes 31, 3
By adjusting the voltage applied between 2, the optical waveguide 3
Since the guided light passing through 5 and 36 undergoes a phase change due to the electro-optic effect of GaAS, a phase difference occurs between the respective guided light, allowing optical modulation.

なお、この実施例では、GaASを例にとつた
が、n−Inp基板、P−Inpエピタキシヤル層とし
てもよい。
In this embodiment, GaAS is used as an example, but an n-Inp substrate and a P-Inp epitaxial layer may also be used.

第7図イ,ロに示す光変調器は、いずれも基板
30上に受光素子4を共に集積したものである。
The optical modulators shown in FIGS. 7A and 7B both have a light receiving element 4 integrated on a substrate 30.

イに示すものは、基板30上に形成した光導波
路35(36)の光出射部分に透明電極41を設
けるとともに、この透明電極41上にアモルフア
スシリコン(a−Si)やCdS又はZnSなどの光電
層42を設け、その上にAl等の電極層43を形
成させたものである。ここで、透明電極41とし
ては、In2O3・SnO2などの材料が用いられ、真空
蒸着法やプラズマ蒸着法等によつて形成できる。
また、a−Si光電層42は、膜厚が0.5〜1.0μm程
度で、モノシラン(SiH4)や、SiF4のプラズマ
分解あるいは、反応性スパツタリングや、CVD
法等で作成できる。
In the device shown in A, a transparent electrode 41 is provided at the light output portion of the optical waveguide 35 (36) formed on the substrate 30, and a layer of amorphous silicon (a-Si), CdS, or ZnS is formed on the transparent electrode 41. A photoelectric layer 42 is provided, and an electrode layer 43 made of Al or the like is formed thereon. Here, the transparent electrode 41 is made of a material such as In 2 O 3 or SnO 2 and can be formed by a vacuum evaporation method, a plasma evaporation method, or the like.
The a-Si photoelectric layer 42 has a film thickness of about 0.5 to 1.0 μm, and is made of monosilane (SiH 4 ), SiF 4 plasma decomposition, reactive sputtering, or CVD.
It can be created by law etc.

ロに示すものは、受光素子4をPIN型にしたも
ので、透明電極41上に順番に、n−aSi層42
n,i−aSi層42i,P−aSi層42Pを形成さ
せたものである。なお、PIN層は多層(PIN
PIN……)としてもよい。また、a−Siの代りに
a−SiCとしてもよい。
In the one shown in FIG.
n, i-aSi layer 42i and P-aSi layer 42P are formed. Note that the PIN layer is multi-layered (PIN
PIN...) may also be used. Also, a-SiC may be used instead of a-Si.

第8図イ,ロに示す光変調器は、いずれも半導
体導波路上に受光素子4を集積したものである。
The optical modulators shown in FIGS. 8A and 8B each have a light receiving element 4 integrated on a semiconductor waveguide.

イに示すものは、n−GaASなどの基板30n
上にP−GaASなどの層30Pを形成させ、半導
体導波路をつくり、この上に電極43を設けて、
PN接合を利用したホトダイオードPDを構成した
ものである。
The one shown in A is a 30n substrate such as n-GaAS.
A layer 30P of P-GaAS or the like is formed on top to create a semiconductor waveguide, and an electrode 43 is provided on this.
This is a photodiode PD using a PN junction.

ロに示すものは、電極43としてシヨツトキー
接合可能な金属材料を用い、シヨツトキー接合を
利用したシヨツトキーバリアダイオードSDを構
成したものである。
In the example shown in FIG. 4, a metal material that can be subjected to a Schottky junction is used as the electrode 43, and a Schottky barrier diode SD that utilizes a Schottky junction is constructed.

なお、上記の実施例において、光変調器3に光
を導びく手段については、特に説明しなかつた
が、公知の手法、例えばプリズムカツプラや、グ
レイテイングカツプラ等が用いられる。また、光
変調器3は、第5図〜第8図に示した構造以外の
ものも使用可能であり、例えば、変調器を構成す
る基板上に、メモリ手段や、マイクロプロセツサ
等を集積したものでもよい。
Although the means for guiding light to the optical modulator 3 was not specifically described in the above embodiments, a known method such as a prism coupler or a grating coupler may be used. Furthermore, the optical modulator 3 may have a structure other than that shown in FIGS. 5 to 8. For example, a structure in which memory means, a microprocessor, etc. are integrated on the substrate constituting the modulator can be used. It can be anything.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、機械的
構成部分を有しないので、小型、集積化が可能
で、信頼性の高い分光装置が実現できる。また、
スリツト等が不要であるところから、S/Nが高
く、精度の良好な装置が実現できる。
As described above, according to the present invention, since it does not have mechanical components, it is possible to realize a spectroscopic device that is small in size, can be integrated, and has high reliability. Also,
Since slits and the like are not required, an apparatus with high S/N and good accuracy can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、従来公知の分光装置の一
例を示す説明図、第3図は本発明装置の原理を説
明するための図、第4図は本発明に係る装置の一
例を示す構成ブロツク図、第5図〜第8図は本発
明装置に使用可能な光変調器の他の例を示す構成
図である。 3……光変調器、4……受光素子、5……演算
制御部、6……表示装置。
1 and 2 are explanatory diagrams showing an example of a conventionally known spectroscopic device, FIG. 3 is a diagram for explaining the principle of the device of the present invention, and FIG. 4 is a diagram showing an example of the device according to the present invention. The configuration block diagrams of FIGS. 5 to 8 are configuration diagrams showing other examples of optical modulators that can be used in the apparatus of the present invention. 3... Light modulator, 4... Light receiving element, 5... Arithmetic control unit, 6... Display device.

Claims (1)

【特許請求の範囲】 1 電気光学効果を有する電気光学材料で構成さ
れ印加される信号(V)に対して入射光(Pin)
と出射光(Pout)との比(T)が、 T=(Pout)/(Pin) =k・cos2{(k-/λ)Δα(V)} ただし、k、k-は定数(k≦1) λは入射光の波長 Δα(V)/λは、電気光学効果による複屈折の
量(rad) で与えられる光変調器と、 この光変調器からの出射光を受光する受光素子
と、 この受光素子からの信号を入力し当該信号を記
憶する機能と、演算を行う機能と、前記光変調器
に印加する電圧信号を制御する機能とを有する演
算制御部とを備え、 前記演算制御部は、前記光変調器に印加する信
号をある電圧(Vo)からある電圧(V)までス
イープし、その時受光素子から出力される出射光
(Pout)に関連する下記の式を用い、入射光
(Pin)のスペクトル分布B(f)を逆フエーリエ
余弦変換演算を行つて求めることを特徴とする分
光装置。 Pout(Vo) =(1/2)Pout(Vo) +(k/2)∫ pB(f) cos(2k-fΔα(V))df ただし、fは周波数。
[Scope of Claims] 1. Made of an electro-optic material having an electro-optic effect, the incident light (Pin) with respect to the applied signal (V)
The ratio (T) between the output light and the output light (Pout) is T=(Pout)/(Pin) =k・cos 2 {(k - /λ)Δα(V)} However, k and k - are constants (k ≦1) λ is the wavelength of the incident light, and Δα(V)/λ is the amount of birefringence (rad) due to the electro-optic effect. , a calculation control unit having a function of inputting a signal from the light receiving element and storing the signal, a function of performing calculation, and a function of controlling a voltage signal applied to the optical modulator; The part sweeps the signal applied to the optical modulator from a certain voltage (Vo) to a certain voltage (V), and calculates the incident light by using the following equation related to the output light (Pout) output from the light receiving element at that time. A spectroscopic device characterized in that a spectral distribution B(f) of (Pin) is obtained by performing an inverse Fourier cosine transform operation. Pout (Vo) = (1/2) Pout (Vo) + (k/2)∫ p B (f) cos (2k - fΔα (V)) df where f is the frequency.
JP10366983A 1983-06-10 1983-06-10 Spectroscope device Granted JPS59228133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366983A JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10366983A JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Publications (2)

Publication Number Publication Date
JPS59228133A JPS59228133A (en) 1984-12-21
JPH0412407B2 true JPH0412407B2 (en) 1992-03-04

Family

ID=14360194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366983A Granted JPS59228133A (en) 1983-06-10 1983-06-10 Spectroscope device

Country Status (1)

Country Link
JP (1) JPS59228133A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8625486D0 (en) * 1986-10-24 1986-11-26 British Telecomm Optical signal modulation device
JPS63266321A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Spectral measurement method and fourier transform type spectrophotometer

Also Published As

Publication number Publication date
JPS59228133A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
US4273445A (en) Interferometer gyroscope formed on a single plane optical waveguide
US6175412B1 (en) Optical component for polarization modulation, a mueller polarimeter and ellipsometer containing such an optical component, a process for the calibration of this ellipsometer, and an ellipsometric measurement process
JPH06102295A (en) Non-contact type probe and non-contact voltage measuring device
US5629793A (en) Frequency shifter and optical displacement measurement apparatus using the same
US4725774A (en) Integrated interferometric acousto-optic spectrum analyzer
KR100496309B1 (en) Optical modulation device equipped with a reflector plate slanting against a reflective side plane of an optical waveguide path
JP4643126B2 (en) Optical spectrum measuring method and apparatus
JPH0412407B2 (en)
EP0735350B1 (en) Spectroscope comprising an optical fibre branching
US5387972A (en) Coherent phase and frequency detection using sum-frequency mixing in non-linear waveguides
US5361160A (en) Large angle broadband multilayer deflectors
JPS59166873A (en) Optical applied voltage and electric field sensor
Houston Jr The potential for acousto-optics in instrumentation: an overview for the 1980s
JPH063375A (en) Electric field distribution measuring instrument utilizing electro-optic effect
Spaulding et al. Achromatic waveguide couplers
JPH06258018A (en) Optical ic displacement measuring equipment
KR100368789B1 (en) Measuring apparatus of the facet reflectivity of an electroabsorption modulator
JPS60257325A (en) Photovoltage sensor
JP2787345B2 (en) Two-wavelength light source element
JP2760668B2 (en) Voltage detector
JPH11288011A (en) Wavelength variable pseudo phase matching element
JP2948645B2 (en) Two-wavelength light source element
SU1741034A1 (en) Device for measuring parameters of signal reflections from input of microwave components
JPH07159464A (en) Method for adjusting optical bias of opto-electric field sensor
Rediker et al. Performance and reproducibility of Mach-Zehnder interferometer arrays in Ti: LiNbO3 operating at wavelengths from 0.458 to 3.39 μm