JPS63265869A - Refractory composition for spraying - Google Patents

Refractory composition for spraying

Info

Publication number
JPS63265869A
JPS63265869A JP62100500A JP10050087A JPS63265869A JP S63265869 A JPS63265869 A JP S63265869A JP 62100500 A JP62100500 A JP 62100500A JP 10050087 A JP10050087 A JP 10050087A JP S63265869 A JPS63265869 A JP S63265869A
Authority
JP
Japan
Prior art keywords
aluminum lactate
spraying
spray
basic aluminum
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62100500A
Other languages
Japanese (ja)
Other versions
JPH07115954B2 (en
Inventor
Shinya Yamauchi
山内 新也
Masao Miyawaki
宮脇 正夫
Yasuro Hongo
本郷 靖郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Rozai KK
Original Assignee
Nippon Tokushu Rozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tokushu Rozai KK filed Critical Nippon Tokushu Rozai KK
Priority to JP62100500A priority Critical patent/JPH07115954B2/en
Publication of JPS63265869A publication Critical patent/JPS63265869A/en
Publication of JPH07115954B2 publication Critical patent/JPH07115954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a titled compsn. which is improved in adhesiveness in hot application by using basic aluminum lactate as an essential component. CONSTITUTION:An alumina hydrate obtd. by bringing a water soluble aluminum salt and carbonic acid (carbonate) into reaction is brought into reaction with lactic acid to obtain the basic aluminum lactate having 0.3-2.0 Al2O3/lactic acid molar ratio. Outer 0.2-10wt.% basic aluminum lactate and if necessary, binder, hardener, hardening accelerator, etc., are compounded with refractory aggregate (e.g.: clay) having <=10mum grain size.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吹付用耐大物に係わり、特に熱間吹付施工に
於いて、付着性を大きく改良した吹付用耐火組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to large spray-resistant objects, and particularly to a spray-on fire-resistant composition that has significantly improved adhesion in hot spray construction.

〔従来の技術〕[Conventional technology]

従来吹付用耐火物はアルミナセメント結合のキャスタブ
ル耐火物、或いはこれにLi塩やアルミン酸ソーダ等の
硬化促進剤を添加したもの、水硝子に珪弗化ソーダや縮
合リン酸アルミニウム等の硬化剤を併用したもの、或い
はリン酸アルミニウムや各種のリン酸アルカリ塩を併用
し、硬化剤としてMgOやCa (OH) zを利用し
たものが一般的に使用されてきている。通常のキャスタ
ブル耐火物系のものは、主に冷間施工で構造体用に用い
られているが、付着性に難がある為、熱間吹付施工には
殆ど用いられていない。水硝子系のものは耐熱性に問題
が有り、耐酸材料としての使用例が多い。リン酸塩系の
ものが、これらのうちでは、熱間での付着性に勝り、主
に補修材として用いられている。
Conventional spray refractories are alumina cement bonded castable refractories, or those to which hardening accelerators such as Li salt and sodium aluminate are added, and water glass with hardening agents such as sodium silicate and condensed aluminum phosphate. Generally, those using MgO or Ca (OH) z as a hardening agent have been used in combination with aluminum phosphate or various alkali phosphates. Ordinary castable refractories are mainly used in cold construction for structures, but because of poor adhesion, they are rarely used in hot spray construction. Water glass-based materials have problems with heat resistance and are often used as acid-resistant materials. Among these, phosphate-based materials have superior hot adhesion properties and are mainly used as repair materials.

しかし、耐熱性、耐蝕性、強度、付着性等に於て、充分
満足のいくものでは無い。又、燐成分の混入を嫌う鋼種
が多くなる傾向にあり、燐酸系バインダーの使用には制
限がある。
However, it is not completely satisfactory in terms of heat resistance, corrosion resistance, strength, adhesion, etc. In addition, there is a tendency for more and more steel types to be uncontaminated by phosphorus components, and there are restrictions on the use of phosphoric acid binders.

近年、耐火物業界に於て、超微粉末と分散剤を有効に利
用して耐火物を低水分、高密度、高強度化する技術が一
般化している。この技術をキャスタブル耐火物に応用し
たものが、当業者間でセメントレス型、或いはセメント
フリー型と通称されるキャスタブル耐火物で低気孔率、
高密度、高強度の成形体が得られる。このセメントレス
型キャスタブル耐火物は、分散剤を用いて、超微粉末を
解膠させる為、流動性に富み、これを吹付施工すると付
着物は吹付面から流下してしまい付着層の形成が出来な
い、即ち吹付材としての利用は困難ということである。
In recent years, in the refractory industry, techniques for making refractories with low moisture, high density, and high strength by effectively utilizing ultrafine powders and dispersants have become commonplace. This technology is applied to castable refractories, which are commonly referred to as cementless or cement-free refractories by those skilled in the art.
A molded article with high density and high strength can be obtained. This cementless type castable refractory uses a dispersant to peptize the ultrafine powder, so it has high fluidity, and when it is sprayed, the deposits flow down from the sprayed surface, making it impossible to form an adhesive layer. In other words, it is difficult to use it as a spray material.

その対策として、分散剤を多量に用いて、系を分散域か
ら凝膠域に移動させて吹付材として利用する技術(特開
昭60−11275号公報)、或いは硬化促進剤を併用
して、付着後直ちに硬化させて見掛上の流下を防止する
技術(特開昭60−235770号公報)が開示されて
いる。又、吹付材を硬化剤を含む骨材粒部と、超微粉末
と分散剤を含む微粉部に分割し、微粉部を予め混練し、
スラリーとして吹付ノズルにて骨材粒部と混合すること
により、結合部の効果を充分に発揮させ、高密度、高強
度の吹付施工体を得る技術(特開昭60−86079号
公報、特開昭61−101470号公@)も提案されて
いる。ところが、このセメントレス型の吹付材は、高強
度、高密度化されている為、気孔率が低く、施工体から
混練水(添加水)が抜は難く、施工体を急加熱すると水
蒸気爆裂を生じ易い欠点を待っている。これは、冷間吹
付の場合は施工後、急速加熱乾燥を行うと水蒸気爆裂を
生じ、又、熱間の吹付施工では、吹付材の爆裂温度以上
の雰囲気温度での吹付施工は、原則的に不可能であるこ
とを意味している。更に言えば、高温の壁面に吹付施工
を行うと、混練水は直ちに壁面の熱で蒸発し、この圧力
によって付着した吹付材が剥離してしまう。吹付施工を
続行していると、混練水により壁面が冷却され、蒸気化
が抑えられる為、徐々に付着が開始される。しかし、炉
の熱容量が大きいと炉温そのものの低下は殆ど無いから
、吹付された施工体は急速加熱昇温される状態となり、
内部水分の蒸発により大きな剥落を発生する。つまり、
このセメントレス型吹付材は高温に於ける熱間での吹付
施工には付着性の面から適していないという問題を本質
的に有しているわけである。セメイトレス型キャスタブ
ル耐火物の爆裂温度が著しく低いことは当業者には良く
知られており、その対策としては、AI鉛粉末添加して
H22ガス生と発熱により脱水を容易にする技術、或い
は繊維物質特に有機質の短繊維の添加技術が知られてい
る。
As a countermeasure to this, a technique is used in which a large amount of dispersant is used to move the system from the dispersion zone to the coagulation zone and used as a spraying material (Japanese Patent Application Laid-open No. 11275/1983), or by using a curing accelerator in combination. A technique (Japanese Unexamined Patent Publication No. 60-235770) has been disclosed in which the adhesive is cured immediately after adhesion to prevent apparent running down. In addition, the spraying material is divided into an aggregate part containing a hardening agent and a fine powder part containing an ultrafine powder and a dispersant, and the fine powder part is kneaded in advance.
A technique for obtaining a high-density, high-strength sprayed construction body by mixing the slurry with aggregate particles in a spray nozzle to fully demonstrate the effect of the joint (Japanese Patent Application Laid-Open No. 60-86079, Publication No. 101470/1984 @) has also been proposed. However, because this cementless spray material has high strength and high density, it has a low porosity, making it difficult to remove the mixing water (added water) from the construction material, and causing steam explosion when the construction material is rapidly heated. Waiting for possible shortcomings. This is because in the case of cold spraying, rapid heating and drying after construction will cause a steam explosion, and in hot spraying, spraying at an ambient temperature higher than the explosion temperature of the spraying material is in principle prohibited. means it's impossible. Furthermore, when spraying is performed on a high-temperature wall surface, the kneading water immediately evaporates due to the heat of the wall surface, and the adhering spray material peels off due to this pressure. As spraying continues, the wall surface is cooled by the mixing water and vaporization is suppressed, so adhesion begins gradually. However, if the heat capacity of the furnace is large, there is almost no drop in the furnace temperature itself, so the sprayed workpiece will be rapidly heated and the temperature will rise.
Large flaking occurs due to evaporation of internal moisture. In other words,
This cementless spray material inherently has the problem that it is not suitable for hot spray construction at high temperatures due to its adhesive properties. It is well known to those skilled in the art that the explosion temperature of cementless castable refractories is extremely low, and countermeasures to this problem include techniques to facilitate dehydration by adding AI lead powder to generate H22 gas and generate heat, or to use fibrous materials. In particular, techniques for adding organic short fibers are known.

これらの技術を吹付材に応用すると、Al扮添加の場合
はH2ガスを発生する為、爆発の危険を伴い、有a質の
短繊維は耐火骨材との比重差が著しく大きく、吹付施工
時に分離が生じ、吹付施工体が不均一となりやすい。前
記特開昭60−235770号公報にはA1粉添加の技
術が利用されており、有機質短繊維を吹付材に利用した
最近の例では、特開昭60−71577号公報がある゛
。尚、前記特開昭60−86079号公報の技術にもア
ルミナセメントが有する急乾燥時の爆裂の欠点を除去し
た旨の記述があるが、その実例は示されておらず理由も
不明瞭なことから、その効果の程度は確認し難い。又、
特開昭60−15056号公報「タンディツシュの熱間
吹付施工方法」には表面温度が300℃以上では水分の
急蒸発により剥離の問題があり、この対策として金網を
配置することを提案しているが、これも便法に過ぎない
。この様に熱間吹付における付着性の問題は、当業界で
は未だ充分解決されていない状況にある。
When these techniques are applied to sprayed materials, if Al is added, H2 gas is generated, which poses the risk of explosion, and the difference in specific gravity between aluminous short fibers and refractory aggregate is extremely large, and the Separation occurs and the sprayed work tends to become uneven. The technique of adding A1 powder is utilized in the above-mentioned Japanese Patent Application Laid-Open No. 60-235770, and a recent example of using organic short fibers in a spray material is JP-A No. 60-71577. Incidentally, the technique in the above-mentioned Japanese Patent Application Laid-Open No. 60-86079 also states that the drawback of alumina cement, which is explosion during rapid drying, is eliminated, but no actual example is shown and the reason is unclear. Therefore, it is difficult to confirm the extent of the effect. or,
JP-A-60-15056 ``Hot spraying construction method for tanditshu'' has a problem of peeling due to rapid evaporation of water when the surface temperature is 300°C or higher, and proposes placing a wire mesh as a countermeasure. However, this is just a convenience. As described above, the problem of adhesion in hot spraying has not yet been satisfactorily resolved in the industry.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

吹付用耐火物は、特に熱間吹付施工に於て、混練水が吹
付個所、或いは雰囲気の炉熱で水蒸気化し、その蒸気圧
により吹付用耐火物の付着が妨げられるという本質的問
題点を有している。これは施工個所の温度が高くなれば
なる程、致命的な問題となる。上述の如く現状では、こ
の水蒸気による問題は充分に解決されていない。本発明
は、この水蒸気に原因する問題点の改良に係わるもので
、吹付用耐火物の熱間施工に於ける付着性の向上を図る
ものである。
Sprayed refractories have an essential problem, especially in hot spraying construction, where the kneading water is vaporized at the spraying location or by the furnace heat in the atmosphere, and the vapor pressure prevents the adhesion of the sprayed refractories. are doing. This becomes a more serious problem as the temperature at the construction site becomes higher. As mentioned above, at present, this problem caused by water vapor has not been satisfactorily solved. The present invention relates to improving the problems caused by this water vapor, and aims to improve the adhesion of spray-on refractories during hot construction.

〔問題点を解決する手段〕[Means to solve problems]

本発明は塩基性乳酸アルミニウムを使用して、吹付用耐
火組成物を作成することにより、上記問題点を解決する
ものである。これは、従来公知の吹付用耐火物に塩基性
乳酸アルミニウムを添加することにより、上記問題点を
改善することをも意味している。
The present invention solves the above problems by using basic aluminum lactate to create a sprayable fireproof composition. This also means that the above-mentioned problems can be improved by adding basic aluminum lactate to conventionally known spray refractories.

〔発明の構成〕[Structure of the invention]

本発明は通常のキャスタブル耐火物系、水硝子系、或い
はリン酸塩系の吹付材に対しても有効であるが、高密度
、高強度であるセメントレス型、セメントフリー型の吹
付材に対して特に効果的であるので、以下それらを主体
に述べることとする。
The present invention is effective for ordinary castable refractory-based, water-glass-based, or phosphate-based spray materials, but it is also effective for cementless and cement-free spray materials that have high density and high strength. Since these methods are particularly effective, we will mainly discuss them below.

本発明の吹付用耐火組成物は、粒度調整した耐火骨材と
、塩基性乳酸アルミニウムより基本的に成るが、吹付材
である以上、結合剤や硬化剤(硬化促進剤)の併用が一
般的である。又、前記の如く超微粉末や分散剤を利用す
る事がより好ましい。
The fireproof composition for spraying of the present invention basically consists of a fireproof aggregate whose particle size has been adjusted and basic aluminum lactate, but since it is a sprayable material, it is common to use a binder and a hardening agent (hardening accelerator) in combination. It is. Further, as mentioned above, it is more preferable to use ultrafine powder or a dispersant.

耐火骨材としては、酸性、中性、塩基性、或いは天然、
人工の公知の材料を単独、又は二種以上組合せて使用す
る。吹付材の場合、粒度構成は通常流し込み施工の場合
より細かい構成とするのが一般的である。超微粉末とは
10μm以下、好ましくは1μm以下のものを言い、こ
れは耐火骨材を粉砕して自製することも出来るが、粘土
、シリカ、アルミナ、ジルコニア、チタニア、クロミア
、SiC等の材質のものが市販されている。これらを目
的に応じて単独、或いは併用して用いると良い。分散剤
は珪酸塩、リン酸塩、カルボン酸塩、スルホン酸塩、ア
クリル酸塩等が良く知られているが、各々アルカリ塩が
一般的で、やはり単独、或いは併用にて利用する。塩基
性乳酸アルミニウム(以下乳酸アルミと略称する。)は
、多木化学株式会社の開発になるもので、本発明を特徴
付けるものである。水溶性アルミニウム塩と炭酸、又は
炭酸塩とを反応させて得たアルミナ水和物を乳酸と反応
させて得られるへ1□03/乳酸(モル比)0.3〜2
゜0のものであり(特開昭57−8034号公報)、一
般式AI (OH) 3−x(Lac、Ac1d) x
−nH2Oで示される多核錯体からなる高分子電解質で
、現在タキセラムの商品名で開発者より市販されている
。乳酸アルミの使用量は、耐火組成物に対して外掛で0
.2〜10−1%、好ましくは0.3〜6wt%が良い
。0.2wt%以下では効果を認め難<10wt%以上
では強度低下が著しくなる為である。尚、乳酸アルミは
分散剤、或いは結合剤としての作用も示す。結合剤、硬
化剤、硬化促進剤としては、ポルトランドセメント、ア
ルミナセメント、バリウムセメント等のセメント類、M
g’0、ドロマイト等アルカリ土類金属の酸化物や水酸
化物、ρ−アルミナ、アルミナ水和物、クロム酸、リン
酸、リン酸アルミニウム、リン酸アルカリ、硫酸アルミ
ニウム、珪酸ソーダ、アルミン酸ソーダ、Li塩頚、コ
ロイダルシリカ等が使用出来、用いる骨材、結合剤、或
いは目的に応じて、やはり単独、或いは併用にて適宜用
いる。尚、セメントレス型キャスタブル耐火物の爆裂防
止技術として公知であるAl粉添加や有機質短繊維の併
用は可能であるし、鋼繊維や他の金属粉末の添加も必要
に応じて利用出来る。これらのうち有機繊維、特に天然
繊維、或いは合成繊維のうちでは軟化、分解温度の低い
もの(例えば特開昭59−169985号公報、同61
−44772号公報、同61−77673号公報、同6
2−21767号公報等)や水との濡れ、分散性の良い
物(例えば易溶解性のビニロン繊維)との併用が良い。
Refractory aggregates include acidic, neutral, basic, natural,
Known artificial materials may be used alone or in combination. In the case of sprayed materials, the particle size structure is generally finer than in the case of pouring construction. Ultrafine powder refers to powder of 10 μm or less, preferably 1 μm or less. Although it can be made by crushing refractory aggregate, it can also be made from materials such as clay, silica, alumina, zirconia, titania, chromia, and SiC. things are on the market. These may be used alone or in combination depending on the purpose. Silicates, phosphates, carboxylates, sulfonates, acrylates, and the like are well known as dispersants, but alkali salts of each are common and are used alone or in combination. Basic aluminum lactate (hereinafter abbreviated as aluminum lactate) was developed by Taki Chemical Co., Ltd. and is a feature of the present invention. Alumina hydrate obtained by reacting a water-soluble aluminum salt with carbonic acid or a carbonate with lactic acid 1□03/lactic acid (molar ratio) 0.3-2
°0 (Japanese Unexamined Patent Publication No. 57-8034), and has the general formula AI (OH) 3-x (Lac, Ac1d) x
It is a polymer electrolyte consisting of a polynuclear complex represented by -nH2O, and is currently commercially available from the developer under the trade name Taxeram. The amount of aluminum lactate used is 0 for the fireproof composition.
.. 2 to 10-1%, preferably 0.3 to 6 wt%. This is because if it is less than 0.2 wt%, no effect is observed, and if it is more than 10 wt%, the strength will be significantly lowered. Note that aluminum lactate also acts as a dispersant or a binder. As the binder, hardening agent, and hardening accelerator, cements such as Portland cement, alumina cement, and barium cement, M
g'0, alkaline earth metal oxides and hydroxides such as dolomite, ρ-alumina, alumina hydrate, chromic acid, phosphoric acid, aluminum phosphate, alkali phosphate, aluminum sulfate, sodium silicate, sodium aluminate , Li salt neck, colloidal silica, etc. can be used, and they may be used alone or in combination as appropriate depending on the aggregate, binder, or purpose. Incidentally, it is possible to add Al powder or organic short fibers, which are known techniques for preventing explosion of cementless castable refractories, in combination, and addition of steel fibers or other metal powders can also be used as necessary. Among these, organic fibers, especially natural fibers, and synthetic fibers that have low softening and decomposition temperatures (for example, JP-A-59-169985, JP-A-61
-44772 publication, 61-77673 publication, 61-77673 publication
2-21767, etc.) or materials with good wettability and dispersibility with water (for example, easily soluble vinylon fiber).

吹付施工は、公知の湿式法、乾式法を利用して行う。湿
式法、或いは乾式法でプレミックスを行う場合は、硬化
剤、硬化促進剤はノズル添加すると良い。勿論、特開昭
60−86079号、同61−101470号公報等の
方法も利用出来る。
Spraying is carried out using known wet or dry methods. When premixing is performed by a wet method or a dry method, the curing agent and curing accelerator are preferably added through a nozzle. Of course, methods such as those disclosed in Japanese Patent Application Laid-open Nos. 60-86079 and 61-101470 can also be used.

〔作用〕[Effect]

超微粉末や分散剤を利用する緻密質、高強度のセメント
レス型やセメントフリー型キャスタブル耐火物は、施工
後加熱乾燥時に気孔率が低い為、水分の放出が容易でな
く、急加熱により激しい水蒸気爆裂を起こすことは前述
の通りであるが、この爆裂に対して、乳酸アルミが著し
い改良効果を示すことを見出して、本出願人は先に特許
出願を行った(特願昭60−239047号)。効果の
理由は、乳酸アルミ添加の成形体(施工体)には、肉眼
では確認し難い微細な亀裂が発生し、この亀裂を通して
加熱により生じた水蒸気が放出される為であろうと考え
られた。下記実験例に見られる如く、吹付用のセメント
レス型キャスタブルに対しても乳酸アルミの効果は大き
く、爆裂温度の向上は勿論、更に熱間付着率の著しい増
大が認められることを見出して本発明に至った。
Dense, high-strength cementless and cement-free castable refractories that use ultrafine powders and dispersants have low porosity when heated and dried after construction, so they do not release moisture easily and can be violently heated due to rapid heating. As mentioned above, aluminum lactate can cause steam explosions, but after discovering that aluminum lactate has a significant improvement effect on this explosion, the applicant previously filed a patent application (Japanese Patent Application No. 60-239047 issue). The reason for this effect was thought to be that minute cracks that are difficult to see with the naked eye occur in the molded body (constructed body) to which aluminum lactate is added, and water vapor generated by heating is released through these cracks. As seen in the experimental examples below, it was discovered that aluminum lactate has a great effect on cementless castables for spraying, and not only improves the explosion temperature but also significantly increases the hot adhesion rate, and has developed the present invention. reached.

実験I AIZ0395%の電融ボーキサイト77−t%、仮焼
アルミナ10wt%、シリカフラワー4wt%、ハイア
ルミナセメント8%、リン酸ソーダ系分散剤1wt%よ
り成る吹付用耐火組成物を特開昭60−11275号公
報に準じて作成した。この組成物に乳酸アルミ“タキセ
ラムト160P”を添加して、爆裂温度及び熱間吹テス
トを実施し、結果を第1表に示す。
Experiment I A spraying refractory composition consisting of 77-t% of fused bauxite of 95% AIZ, 10 wt% of calcined alumina, 4 wt% of silica flour, 8% of high alumina cement, and 1 wt% of a sodium phosphate dispersant was prepared in JP-A-60. It was created according to Publication No.-11275. Aluminum lactate "Taxeramt 160P" was added to this composition, and explosion temperature and hot blowing tests were carried out, and the results are shown in Table 1.

第1表 ※爆裂温度は5 x 5 x 5cm立法体試料による
。施工体が更に太き(なると水分の放出が困難になる為
、爆裂温度は低くなる傾向にある。
Table 1 * Explosion temperature is based on a 5 x 5 x 5 cm cubic sample. As the constructed body becomes thicker (as it becomes harder to release water), the explosion temperature tends to be lower.

吹付壁面の温度低下を全く無くすることは不可能である
。故に爆裂温度も付着率も相対的値である。
It is impossible to completely eliminate the temperature drop on the sprayed wall surface. Therefore, both the explosion temperature and the deposition rate are relative values.

実験例■ 骨材として、焼結アルミナ、電融アルミナ、マグネシア
クリンカ−、スピネルクリンカ−、ジルコン、珪石、シ
ャモット、コージライト、超微粉末としてアルミナフラ
ワー、シリカフラワー、ジルコンフラワー、分散剤とし
てポリリン酸ソーダ、カルボン酸系分散剤、乳酸アルミ
、結合剤としてハイアルミナセメント、リン酸アルミニ
ウム、乳酸アルミニウム、硬化促進剤として電融マグネ
シア粉、仮焼マグネシア粉、硫酸アルミニウム粉、アル
ミン酸ソーダ粉、更に射水溶解性ビニロン短繊維を用い
て4種の吹付組成物を作成し、熱間付着率を乳酸アルミ
(M−160P)の有無についてテストした結果を第■
表に示す。
Experimental example ■ Sintered alumina, fused alumina, magnesia clinker, spinel clinker, zircon, silica, chamotte, cordierite as aggregates, alumina flour, silica flour, zircon flour as ultrafine powder, polyphosphoric acid as dispersant Soda, carboxylic acid dispersant, aluminum lactate, high alumina cement, aluminum phosphate, aluminum lactate as a binder, fused magnesia powder, calcined magnesia powder, aluminum sulfate powder, sodium aluminate powder as a hardening accelerator, and water injection. Four types of spray compositions were prepared using soluble vinylon staple fibers, and the hot adhesion rates were tested with and without aluminum lactate (M-160P).
Shown in the table.

〔効果〕〔effect〕

実験例I及び■より、乳酸アルミド160Pの効果は明
瞭で、骨材、結合剤、硬化促進剤の種類に関わらず、熱
間に於ける吹付付着性の著しい向上が認められる。実験
例■では乳酸アルミの分散効果が出、少しダレ気味とな
る。硬化促進剤を併用してやると、付着性は更に向上す
る。ここでは、具体的使用例を示さないが、高炉、樋、
転炉、混銑車、電気炉、脱ガス装置、鍋、タンディツシ
ュ、ランスバイブ等製銑、製鋼装置、或いはコークス炉
、AI用炉、焼却炉等に於ける熱間吹付補修に各々適切
、有効な材料を組合せて使用出来る事は当業者には明白
であろう。
From Experimental Examples I and (2), the effect of aluminum lactate 160P is clear, and a remarkable improvement in spray adhesion in hot conditions is observed regardless of the type of aggregate, binder, or hardening accelerator. In Experimental Example ■, the dispersion effect of aluminum lactate appears, resulting in a slight sag. When a curing accelerator is used in combination, the adhesion is further improved. Although specific usage examples are not shown here, blast furnaces, gutters,
Appropriate and effective for hot spray repair of converters, pig iron mixers, electric furnaces, degassing equipment, pots, tundishes, lance vibrators, iron making equipment, steel making equipment, coke ovens, AI furnaces, incinerators, etc. It will be apparent to those skilled in the art that combinations of materials may be used.

特許出願人    日本特殊炉材株式会社代表者 溝 
口  稔
Patent applicant Mizo, representative of Nippon Tokushu Rozai Co., Ltd.
Minoru Kuchi

Claims (1)

【特許請求の範囲】[Claims]  塩基性乳酸アルミニウムを必須成分とすることを特徴
とする吹付用耐火組成物。
A spray-on fireproof composition characterized by containing basic aluminum lactate as an essential component.
JP62100500A 1987-04-22 1987-04-22 Fireproof composition for spraying Expired - Lifetime JPH07115954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100500A JPH07115954B2 (en) 1987-04-22 1987-04-22 Fireproof composition for spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100500A JPH07115954B2 (en) 1987-04-22 1987-04-22 Fireproof composition for spraying

Publications (2)

Publication Number Publication Date
JPS63265869A true JPS63265869A (en) 1988-11-02
JPH07115954B2 JPH07115954B2 (en) 1995-12-13

Family

ID=14275655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100500A Expired - Lifetime JPH07115954B2 (en) 1987-04-22 1987-04-22 Fireproof composition for spraying

Country Status (1)

Country Link
JP (1) JPH07115954B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131857A (en) * 1983-12-16 1985-07-13 多木化学株式会社 Manufacture of molded body
JPS6360168A (en) * 1986-08-29 1988-03-16 旭硝子株式会社 Monolithic refractories

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131857A (en) * 1983-12-16 1985-07-13 多木化学株式会社 Manufacture of molded body
JPS6360168A (en) * 1986-08-29 1988-03-16 旭硝子株式会社 Monolithic refractories

Also Published As

Publication number Publication date
JPH07115954B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
EP0301092B1 (en) Method for spray-working refractory composition
KR20180088658A (en) Refractory Magnesia Cement
AU2015231937A1 (en) Blast furnace hearth repair material
JP4023916B2 (en) Alumina cement, alumina cement composition, amorphous refractory, and spraying method using the same
JP2018108902A (en) Light-weight heat insulating unshaped refractory
US5968602A (en) Cement-free refractory castable system for wet process pumping/spraying
Gheisari et al. Recent Advancement in monolithic refractories via application of Nanotechnology “A review Paper”
JPS63265869A (en) Refractory composition for spraying
GB1565118A (en) Gunning process for basic refractory linings
JP3118522B2 (en) Hot repair spraying material for less slag operation converter
JP2002234776A (en) Monolithic refractory composition for molten steel ladle
JP3790621B2 (en) Refractory spraying method
JPS5834423B2 (en) Basic refractory composition
JP4456193B2 (en) Refractory spraying method
JPH059082A (en) Refractory for spraying
JP2024137267A (en) Refractories for ironmaking
JPH0437029B2 (en)
JPH09165272A (en) Spraying material for maintenance of industrial kiln
JPS62119171A (en) Monolithic refractories
JPH01212259A (en) Castable refractories for spray coating
KR19980051172A (en) Basic dry-ning fireproof composition with excellent corrosion resistance and adhesion
JPS6395168A (en) Spray material for repairing industrial furnace
JP3981433B2 (en) Refractory spraying method
JP2869881B2 (en) Spray material for kiln repair
CN113024264A (en) Heat-insulating coating for permanent layer of torpedo ladle