JPS63265801A - Method for utilizing hydrogen occluding alloy - Google Patents

Method for utilizing hydrogen occluding alloy

Info

Publication number
JPS63265801A
JPS63265801A JP62096278A JP9627887A JPS63265801A JP S63265801 A JPS63265801 A JP S63265801A JP 62096278 A JP62096278 A JP 62096278A JP 9627887 A JP9627887 A JP 9627887A JP S63265801 A JPS63265801 A JP S63265801A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
vessel
container
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62096278A
Other languages
Japanese (ja)
Inventor
Sadaji Nishida
西田 定二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62096278A priority Critical patent/JPS63265801A/en
Publication of JPS63265801A publication Critical patent/JPS63265801A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To make the system for utilizing a hydrogen occluding alloy continu ous, to improve the operational stability, and to reduce the cost by using a liq. inert to hydrogen and the hydrogen occluding alloy or gaseous hydrogen to fluidize and transfer the hydrogen occluding alloy. CONSTITUTION:A liq. (e.g., undecane and polystyrene) inert to hydrogen and a hydrogen occluding alloy (e.g., a titanium-iron alloy) or gaseous hydrogen is used as a medium to fluidize and transfer the hydrogen occluding alloy. In a thermally operated heat pump system, for example, hydrogen is circulated successively through a vessel 2, a vessel 3, a vessel 6, a vessel 5, and the vessel 2, an alloy 1 is circulated between the vessels 2 and 3, only a hydrogen occlud ing reaction is carried out in the vessel 2, and only a hydrogen releasing reac tion is carried out in the vessel 3. An alloy 4 is circulated between the vessels 5 and 6 in the same way, only a hydrogen occluding reaction is carried out in the vessel 5, only a hydrogen releasing reaction is carried out in the vessel 6, and the system is operated so that those reactions are continuously generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵合金利用方法に関し、例えば水素吸
蔵合金を媒体とするエネルギ変換システム等の水素吸蔵
合金利用系において該水素吸蔵合金を効果的に利用し、
該水素吸蔵合金利用系を連続化するととのできる水素吸
蔵合金利用方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a method for utilizing a hydrogen storage alloy, and for example, a method for using the hydrogen storage alloy in a hydrogen storage alloy utilization system such as an energy conversion system using the hydrogen storage alloy as a medium. use it for
The present invention relates to a method of utilizing a hydrogen storage alloy, which enables continuous use of the hydrogen storage alloy utilization system.

〔従来の技術〕[Conventional technology]

水素吸蔵合金は水素を可逆的に吸蔵・放出する。この反
応は発熱拳吸熱反応である。こうした特性から、水素吸
蔵合金は、と−トポンプの作動媒体として利用されたυ
、あるいは化学蓄熱の媒体、熱エネルギを圧カー機械工
ネ〃ギへ変換する際の媒体等として利用される。
Hydrogen storage alloys store and release hydrogen reversibly. This reaction is an exothermic fist endothermic reaction. Due to these characteristics, hydrogen storage alloys are used as the working medium of toto pumps.
Alternatively, it is used as a medium for chemical heat storage, a medium for converting thermal energy into pressure car machinist energy, etc.

第2図は、水素吸蔵合金を利用した従来の熱作動型e−
)ポンプシステムを示す図である。
Figure 2 shows a conventional thermally actuated e-
) is a diagram showing a pump system.

このシステムは高温型水素吸蔵合金1を収納した熱交換
容器2.3と、低温型水素吸蔵合金4を収納した熱交換
容器5,6とで構成され、容器2.5及び容器3.6は
対として使用される。容器は2対以上必要で、連続性確
保のため、通常は3〜4対使用される。
This system consists of a heat exchange container 2.3 containing a high-temperature hydrogen storage alloy 1, and heat exchange containers 5 and 6 containing a low-temperature hydrogen storage alloy 4. The containers 2.5 and 3.6 are used as a pair. Two or more pairs of containers are required, and usually three to four pairs are used to ensure continuity.

先ず、中温熱源媒体7は、容器3.5に導入され、高・
低温型水素吸蔵合金1,4を加温し、吸蔵されている水
素を矢印8.9の方向に放出させる。この水素は各々容
器2,6で合金に吸蔵され、との吸蔵時に発熱する。容
器2では中温熱源媒体7よシも高温の発熱反応となシ、
容器6では中温熱源媒体7よシも低温の発熱反応となる
ように高・低温型水素吸蔵合金1,4を選定する。従っ
て、容器2での発熱を利用して高温媒体10を得る一方
、容器6での発熱は低温媒体11にて系外に除去する。
First, the medium temperature heat source medium 7 is introduced into the container 3.5 and heated to a high temperature.
The low-temperature hydrogen storage alloys 1 and 4 are heated to release the stored hydrogen in the direction of arrow 8.9. This hydrogen is stored in the alloy in the containers 2 and 6, and heat is generated when the hydrogen is stored in the alloy. In the container 2, the medium-temperature heat source medium 7 also undergoes a high-temperature exothermic reaction.
In the container 6, the high and low temperature type hydrogen storage alloys 1 and 4 are selected so that the medium temperature heat source medium 7 as well as the medium temperature heat source medium 7 cause an exothermic reaction at a low temperature. Therefore, the heat generated in the container 2 is used to obtain the high temperature medium 10, while the heat generated in the container 6 is removed to the outside of the system using the low temperature medium 11.

ついで、容器3及び5内の合金1及び4に吸蔵された水
素がなくなれば、容器2.5と容器3、乙の対の役割を
切換えて、容器2゜6に中温熱源媒体、容器5に低温熱
媒体を流し、容器3よシ高温媒体を得る。
Next, when the hydrogen stored in alloys 1 and 4 in containers 3 and 5 is exhausted, the roles of the pair of containers 2.5, 3, and B are switched, and the medium temperature heat source medium is placed in container 2.6, and the container 5 is A low-temperature heat medium is poured into the container 3 to obtain a high-temperature medium.

また第4図は、水素吸蔵合金を利用した従来の熱・圧力
−機械エネルギ変換型システムを示す図である。
Further, FIG. 4 is a diagram showing a conventional heat/pressure-mechanical energy conversion type system using a hydrogen storage alloy.

このシステムは熱を水素吸蔵合金に与え、水素ガスの圧
力として取出し、エキスパンダを回して、最終的には電
気に変換するものである。
This system applies heat to a hydrogen storage alloy, extracts it as hydrogen gas pressure, rotates an expander, and ultimately converts it into electricity.

このシステムは水素吸蔵合金21を収納した熱交換容器
22及び23と、その間の水素配管中に発電機24と連
結した水素エキスパンダ25とからなる。
This system consists of heat exchange vessels 22 and 23 containing a hydrogen storage alloy 21, and a hydrogen expander 25 connected to a generator 24 in a hydrogen pipe between them.

先ず容器22に熱源26を導入し、容器22内の合金2
1から水素ガスを発生させる。一方、容器25には冷熱
源27を導入し、容器23内の合金21を冷却する。容
器22からの水素は、エキスパンダ25を経て容器25
に入り、合金21に吸蔵される。即ち容器22から容器
23に水素ガスが圧力差をもって流れる間にエキスパン
ダ25を回し、発電するシステふである。
First, a heat source 26 is introduced into the container 22, and the alloy 2 in the container 22 is heated.
Generate hydrogen gas from 1. On the other hand, a cold source 27 is introduced into the container 25 to cool the alloy 21 inside the container 23. Hydrogen from the container 22 passes through the expander 25 to the container 25.
and is occluded in alloy 21. That is, the system generates electricity by rotating the expander 25 while hydrogen gas flows from the container 22 to the container 23 with a pressure difference.

この場合も、上記のヒートポンプシステムと同様、容器
22内の水素が容器25に移動し終えた時点で熱媒体及
び水素の流路を切換える必要がある。また、第4図では
2つの容器で示しているが、連続性を持たせるためには
、通常3〜4つの容器が必要である。
In this case as well, as with the heat pump system described above, it is necessary to switch the heat medium and hydrogen flow paths when the hydrogen in the container 22 has finished moving to the container 25. Further, although two containers are shown in FIG. 4, three to four containers are usually required to provide continuity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

水素吸蔵合金は固体(粉体)であることから、その取扱
いが難かしく、上記したように従来は固定容器に合金を
収納し、水素の吸蔵・放出と同時に、その時の反応熱の
授受を行っている。
Since hydrogen storage alloys are solids (powder), they are difficult to handle.As mentioned above, conventionally, the alloys were stored in a fixed container, and hydrogen was absorbed and released at the same time as the heat of reaction was exchanged. ing.

こうした状況では合金と水素の可逆反応は、外部からの
反応熱の授受に支配され、いわゆる伝熱律速であシ、大
きな伝熱面積が必要となる。
Under these circumstances, the reversible reaction between the alloy and hydrogen is dominated by the exchange of reaction heat from the outside, so-called heat transfer rate limiting, and a large heat transfer area is required.

また、上記の合金と水素の可逆反応にエネルギ変換機能
を発揮させるには、通常、一方の容器で水素を吸蔵し、
他方の容器で水素を放出するように、少なくとも1対の
容器が必要である。
In addition, in order to exhibit energy conversion function in the reversible reaction between the alloy and hydrogen mentioned above, hydrogen is usually occluded in one container.
At least one pair of containers is required so that the hydrogen is released in the other container.

さらに、産業用等に利用するには連続化が必要であり、
連続化のためには2対販上の容器をパッチ切換方式にて
使用することになる。この切換時には合金及び容器のも
つ熱容量は熱損失となシ、エネルギ変換効率を著しく損
なう。
Furthermore, continuous use is required for industrial use, etc.
For continuity, two containers on sale will be used in a patch switching system. During this switching, the heat capacity of the alloy and the container is lost, which significantly impairs energy conversion efficiency.

なお、水素吸蔵合金は水素の吸蔵・放出の繰返しにより
微粉化し、水素ガス流に同伴、飛散するので、十分な対
策が必要である。
Note that hydrogen storage alloys become pulverized by repeated storage and release of hydrogen, and are entrained in the hydrogen gas flow and scattered, so sufficient measures must be taken.

以上のように、水素吸蔵合金を固定層で利用するには種
々の欠点がちシ、コスト高、効率悪化を招いている。
As described above, the use of hydrogen storage alloys in the fixed layer is prone to various drawbacks, resulting in high costs and poor efficiency.

本発明は、これらの欠点を解消し、低コスト、良効率の
水素と水素吸蔵合金の可逆反応の利用方法を提案するも
のである。
The present invention eliminates these drawbacks and proposes a low-cost, high-efficiency method of utilizing the reversible reaction between hydrogen and a hydrogen storage alloy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を水素吸蔵合金を流動化すること
によシ解決するものである。
The present invention solves the above problems by fluidizing a hydrogen storage alloy.

すなわち本発明は、水素及び水素吸蔵合金に不活性な液
体または気体水素を用いて、水素吸蔵合金を流動化させ
て移送可能とし、水素吸蔵合金の利用系を連続化するこ
とを特徴とする水素吸蔵合金利用方法に関する。
That is, the present invention uses inert liquid or gaseous hydrogen for hydrogen and a hydrogen storage alloy to fluidize the hydrogen storage alloy so that it can be transferred, thereby making the hydrogen storage alloy a continuous utilization system. Concerning usage of storage alloys.

本発明で使用する水素吸蔵合金としては、チタン・鉄合
金、マグネシウム・ニッケル合金。
The hydrogen storage alloys used in the present invention include titanium/iron alloys and magnesium/nickel alloys.

チタン1マンガン合金、s7ンタン・ニッケル合金など
がある。
There are titanium-manganese alloys, S7 titanium-nickel alloys, etc.

また本発明において、これらの水素吸蔵合金を流動化す
る媒体は、液体としては飽和炭化水素、芳香族炭化水素
等の水素及び合金に不活性なもので例えばウンデカン、
ポリスチレンなどが使用でき、気体としては水素自身が
流動化媒体として使用できる。
In the present invention, the medium for fluidizing these hydrogen storage alloys is a liquid inert to hydrogen and alloys such as saturated hydrocarbons and aromatic hydrocarbons, such as undecane,
Polystyrene or the like can be used, and as a gas, hydrogen itself can be used as a fluidizing medium.

なお流動化媒体の移送方法としては、液体の場合は移送
用ポンプ、水素の場合は移送用プロア、高濃度スラリー
の場合にはコンベアなどが適宜使用される。
As a method for transferring the fluidizing medium, a transfer pump is used in the case of liquid, a transfer prower is used in the case of hydrogen, and a conveyor is used as appropriate in the case of high concentration slurry.

〔作用〕[Effect]

本発明では、水素吸蔵合金の流動化によシ、該合金の輸
送が可能となC1’ステムが連続化されこれによシ伝熱
効率の向上、ひいては容器のコンパクト化が図れる。
In the present invention, by fluidizing the hydrogen storage alloy, the C1' stem that can transport the alloy is made continuous, thereby improving the heat transfer efficiency and making the container more compact.

さらに、従来は2対以上を必要とした合金収納容器は、
本発明によれば吸蔵及び放出専用の1対の容器でVステ
ふとしての機能が発揮される。従って、容器の顕熱損失
もなくなるので効率も向上する。
Furthermore, alloy storage containers that conventionally required two or more pairs,
According to the present invention, a pair of containers dedicated to storage and release can function as a V-steel. Therefore, sensible heat loss in the container is eliminated, and efficiency is also improved.

また、水素吸蔵合金の流動化のために該合金粉末に液体
を添加するので、該合金微粉の飛散等の問題も解消され
る。
Further, since a liquid is added to the alloy powder to fluidize the hydrogen storage alloy, problems such as scattering of the alloy fine powder are also solved.

〔実施例〕〔Example〕

実施例1゜ 本発明による熱作動型と一トポンプシステムを第1図に
基づき説明する。
Embodiment 1 A thermally actuated pump system according to the present invention will be explained with reference to FIG.

図中の1〜11までの記号は、従来技術を表わす第2図
と同じでちる。すなわち、1は高温型合金、4は低温型
合金、2,3.5及び6は熱交換容器、7は中温熱源媒
体、8及び9は水素放出方向、10は高温媒体、11は
低温媒体である。
The symbols 1 to 11 in the figure are the same as in FIG. 2 representing the prior art. That is, 1 is a high-temperature type alloy, 4 is a low-temperature type alloy, 2, 3.5, and 6 are heat exchange vessels, 7 is a medium-temperature heat source medium, 8 and 9 are hydrogen release directions, 10 is a high-temperature medium, and 11 is a low-temperature medium. It is.

そして本実施例では、第2図の1,4が合金の固定層で
あ名のく対し、流動化した合金を使用し、合金1は径路
12.13を通って容器2゜3の間を循環し、一方合金
4は径路14.15を通って容器5,6を循環している
。すなわち、合金1は容器2で水素吸蔵反応のみ、容器
3では水素放出反応のみを行い、また合金4は容器5で
水素放出反応のみ容器6で水素吸蔵反応のみを行い、こ
れらの反応が連続的に生起するようシステムの操作がな
される。なお、水素は容器2→容器5→容器6→容器5
→容器2と循環する。
In this embodiment, unlike the fixed alloy layers 1 and 4 in FIG. 2, a fluidized alloy is used, and alloy 1 passes through a path 12 and 13 between containers 2 and 3. while alloy 4 is circulating through vessels 5, 6 through path 14.15. In other words, Alloy 1 performs only the hydrogen storage reaction in container 2 and only the hydrogen release reaction in container 3, and Alloy 4 performs only the hydrogen release reaction in container 5 and only the hydrogen storage reaction in container 6, and these reactions are continuous. The system is manipulated to cause this to occur. In addition, hydrogen is transferred from container 2 → container 5 → container 6 → container 5.
→ Circulate with container 2.

本実施例の場合、合金は2穐類、容器は2対を使用して
いるが、高、中、低の各熱媒体の切換操作がなく、運転
の連続安定性、効率向上などがはかれる。
In the case of the present embodiment, two types of alloys and two pairs of containers are used, but there is no switching operation between high, medium, and low heat media, and continuous stability and efficiency of operation can be improved.

また本実施例の効果は、第2図の従来技術に比し、合金
所要量の半減、容器のコンパクト化、切換パルプの不要
などコスト的にも大きなものがあシ、容器の顕熱損失防
止によシ効率も数刻(1〜5割)向上する。
Furthermore, compared to the conventional technology shown in Fig. 2, the effects of this embodiment are significant in terms of cost, such as halving the required amount of alloy, making the container more compact, and eliminating the need for switching pulp, and preventing sensible heat loss in the container. The cleaning efficiency also improves by several seconds (10% to 50%).

実施例2 本発明による熱・圧カー機械エネルギ変換システムを第
3図に基づき説明する。
Embodiment 2 A heat/pressure car mechanical energy conversion system according to the present invention will be explained based on FIG. 3.

図中の21〜271での記号は、従来技術を表わす第4
図と同じである。すなわち、21は水素吸蔵合金、22
.23は熱交換容器、24は発電機、25は水素エキス
パンダ、26は熱源、27は冷熱源である。
Symbols 21 to 271 in the figure represent the fourth
Same as the figure. That is, 21 is a hydrogen storage alloy, 22
.. 23 is a heat exchange container, 24 is a generator, 25 is a hydrogen expander, 26 is a heat source, and 27 is a cold source.

そして本実施例では、水素吸蔵合金21は流動化され、
容器22内では水素の放出を行カい、水素を放出し終え
た合金はツイン29から容器23に移送する。容器23
では水素を吸蔵し、吸蔵し終えた合金はライン28にて
容器22に至る。合金はこの系を循環しながら水素の吸
蔵と放出を繰返すが、容器22は放出専用、容器23は
吸蔵専用となシ、熱媒体及び水素・流路を切換える必要
がない。
In this embodiment, the hydrogen storage alloy 21 is fluidized,
Hydrogen is released in the container 22, and the alloy from which hydrogen has been released is transferred from the twin 29 to the container 23. Container 23
Then, the alloy that has occluded hydrogen reaches the container 22 via a line 28. The alloy repeatedly absorbs and releases hydrogen while circulating in this system, but since the container 22 is used only for release and the container 23 is used only for storage, there is no need to switch the heat medium, hydrogen, or flow path.

従って第4図の従来方式に比べ、容器等の顕熱損失がな
く、水素エキスパンダの連続性運転安定性が得られ、効
率も向上する。
Therefore, compared to the conventional method shown in FIG. 4, there is no sensible heat loss in the container, etc., and continuous operation stability of the hydrogen expander is obtained, and efficiency is also improved.

なお本実施例2は、流動化された合金と水素ガヌを分離
するために、流動化媒体が液体の場合は重力法、流動化
媒体が水素の場合はフイ〃りなどを使用する。
In this second embodiment, in order to separate the fluidized alloy and hydrogen gas, a gravity method is used when the fluidization medium is a liquid, and a filtration method is used when the fluidization medium is hydrogen.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、水素吸蔵合金を媒体とするヒー)ポン
プシステム、エネルギ変換システム等の水素吸蔵合金の
利用系において、該利用系の熱損失を低減するとともに
、連続化、運転安定性を向上させ、コスト低減と同時に
効率の向上を達成することができる。
According to the present invention, in systems using hydrogen storage alloys such as heat pump systems and energy conversion systems that use hydrogen storage alloys as a medium, heat loss in the usage systems is reduced, and continuity and operational stability are improved. It is possible to reduce costs and improve efficiency at the same time.

また本発明において、合金粉末に液体を加えて流動化す
ることによシ、該合金の微粉化飛散も防ぐことができる
Further, in the present invention, by adding a liquid to the alloy powder and fluidizing it, it is possible to prevent the alloy from becoming pulverized and scattering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による熱作動型ヒートポンプシ
ステムを示す図、第2図は従来の熱作動型ヒートポンプ
Vスデムを示す図、第3図は本発明の実施例による熱・
圧カー機械エネルギ変換型シヌテムを示す図、第4図社
従来の熱・圧カー機械エネ〃ギ変換型りステムを示す図
である。
FIG. 1 is a diagram showing a thermally activated heat pump system according to an embodiment of the present invention, FIG. 2 is a diagram showing a conventional thermally activated heat pump V Sdem, and FIG. 3 is a diagram showing a thermally activated heat pump system according to an embodiment of the present invention.
FIG. 4 is a diagram showing a pressure car mechanical energy conversion type system, and FIG. 4 is a diagram showing a conventional heat/pressure car mechanical energy conversion type system.

Claims (1)

【特許請求の範囲】[Claims] 水素及び水素吸蔵合金に不活性な液体または気体水素を
用いて、水素吸蔵合金を流動化させて移送可能とし、水
素吸蔵合金の利用系を連続化することを特徴とする水素
吸蔵合金利用方法。
A method for utilizing a hydrogen storage alloy, which comprises using inert liquid or gaseous hydrogen for hydrogen and the hydrogen storage alloy to fluidize the hydrogen storage alloy so that it can be transported, thereby making the hydrogen storage alloy a continuous utilization system.
JP62096278A 1987-04-21 1987-04-21 Method for utilizing hydrogen occluding alloy Pending JPS63265801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096278A JPS63265801A (en) 1987-04-21 1987-04-21 Method for utilizing hydrogen occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096278A JPS63265801A (en) 1987-04-21 1987-04-21 Method for utilizing hydrogen occluding alloy

Publications (1)

Publication Number Publication Date
JPS63265801A true JPS63265801A (en) 1988-11-02

Family

ID=14160660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096278A Pending JPS63265801A (en) 1987-04-21 1987-04-21 Method for utilizing hydrogen occluding alloy

Country Status (1)

Country Link
JP (1) JPS63265801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148081A (en) * 1990-10-11 1992-05-21 Sanyo Electric Co Ltd Heat utilizing system
JPH06234501A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Hydrogen feeding method
JP2016142495A (en) * 2015-02-04 2016-08-08 株式会社デンソー heat pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148081A (en) * 1990-10-11 1992-05-21 Sanyo Electric Co Ltd Heat utilizing system
JPH06234501A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Hydrogen feeding method
JP2016142495A (en) * 2015-02-04 2016-08-08 株式会社デンソー heat pump

Similar Documents

Publication Publication Date Title
Pardo et al. Ca (OH) 2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage
Niedermeier et al. Assessment of thermal energy storage options in a sodium-based CSP plant
Linder Using thermochemical reactions in thermal energy storage systems
JPS63265801A (en) Method for utilizing hydrogen occluding alloy
JPH0121432B2 (en)
US3125159A (en) Apparatus for transferring heat
JPH1054623A (en) Method of managing adsorption and thermochemistry reaction of solid/liquid
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPS58156192A (en) Heat transfer device by use of solid/gas reversible reactant
JPS63306367A (en) Method of absorbing and discharging hydrogen gas in hydrogen occluding alloy
JPH0634230A (en) Cold generator
JP3104779B2 (en) Hydrogen storage device using hydrogen storage alloy
JP2004053047A (en) Exhaust heat recovery/transportation system
JPS6229446Y2 (en)
JPS62276374A (en) Heat recovery method using hydrogen occluded alloy
JPS6096801A (en) Steam generator
JPS6071869A (en) Intermittent type double effect heat pump device
JPH0792293B2 (en) Heat pump method using fluidized hydrogen storage alloy
Linder Thermochemical Energy Storage Devices
JPH0788990B2 (en) Heat pump system
JPS6269094A (en) Heat transport system utilizing metal hydride
JPH0663674B2 (en) Energy conversion method and device using hydrogen storage metal
JPS63113265A (en) Heat pump device utilizing metallic hydride
JPS63129264A (en) Fluidized bed type heat exchanger for solid-gas reaction powder
JP2703360B2 (en) Heat-driven chiller using metal hydride