JPS63264815A - Superconductive cable - Google Patents

Superconductive cable

Info

Publication number
JPS63264815A
JPS63264815A JP62097888A JP9788887A JPS63264815A JP S63264815 A JPS63264815 A JP S63264815A JP 62097888 A JP62097888 A JP 62097888A JP 9788887 A JP9788887 A JP 9788887A JP S63264815 A JPS63264815 A JP S63264815A
Authority
JP
Japan
Prior art keywords
insulator
refrigerant
coolant
superconducting
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097888A
Other languages
Japanese (ja)
Other versions
JP2558690B2 (en
Inventor
Shotaro Yoshida
昭太郎 吉田
Michio Takaoka
道雄 高岡
Tsuneaki Motai
恒明 馬渡
Shoichi Hasegawa
正一 長谷川
Masayuki Tan
丹 正之
Hiroshi Yamanouchi
山之内 宏
Shigekazu Yokoyama
横山 繁嘉寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62097888A priority Critical patent/JP2558690B2/en
Publication of JPS63264815A publication Critical patent/JPS63264815A/en
Application granted granted Critical
Publication of JP2558690B2 publication Critical patent/JP2558690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve cooling efficiency of a superconductor and an insulator by forming gaps inside the superconductor and the insulator so that coolants are passable therethrough and setting a pressure of the coolant, which flows in an inside coolant channel, higher than that of the coolant which flows in an outside coolant channel. CONSTITUTION:Superconductors 11 and 13 on the inside and the outside respectively are formed by bundling a large number of filament-shaped thin superconductive wires and provided with small gaps inside them so that coolants are passable therethrough. The insulator 12 is formed by laminating insulated paper in a layer shape, and the coolant is passable through the inside of minute gaps in the insulated paper. A pressure of the coolant, which flows in an inside coolant channel 10, is set higher than that of the coolant which flows in an outside coolant channel 14. Accordingly a part of the coolant, which flows in the inside coolant channel 10, passes serially through the inside superconductor 11, the inside of the insulator 12, the inside of the outside superconductor 13, and finally flows to the outside coolant channel 14, as shown in an arrow B. Hence, the respective superconductors 11, 13 and the insulator 12 are directly cooled by the coolant, and so the respective superconductors 11, 13 are improved in their cooling efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば酸化物系超電導線を用いた超電導ケ
ーブルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting cable using, for example, an oxide superconducting wire.

[従来の技術〕 近来、常電導状態から超電導状態へ遷移する臨界温度(
T c)が、液体窒素温度以上の高い値を示す超電導材
料が種々発見されつつあり、さらに、この超電導材料に
よって超電導線の作成やさらにはそれ等を応用した超電
導ケーブルへの応用が試みられつつある。
[Prior art] Recently, the critical temperature (
Various superconducting materials are being discovered that exhibit Tc) values higher than the liquid nitrogen temperature, and attempts are being made to create superconducting wires using these superconducting materials and to apply them to superconducting cables. be.

第4図は超電導ケーブルの一従来例を示しており、この
超電導ケーブルは、内部に冷媒通路lを有する合金系や
金属間化合物系の超電導導体2の外部に絶縁体3が設け
られた複数本(この場合3本)の芯材4が、外側冷媒通
路5に入れられ、この外側冷媒通路5の外部に絶縁層6
、ケーシング管7、防食層8が順次設けられているもの
である。
Figure 4 shows a conventional example of a superconducting cable, which consists of a plurality of superconducting conductors 2 made of an alloy or intermetallic compound having a refrigerant passage l inside, and an insulator 3 provided on the outside of the superconducting conductor 2. (three in this case) core materials 4 are placed in the outer refrigerant passage 5, and an insulating layer 6 is placed outside the outer refrigerant passage 5.
, a casing pipe 7, and an anticorrosive layer 8 are provided in this order.

そして、内側冷却通路lと外側冷媒通路5に液体ヘリウ
ム等の冷媒を往復させて超電導導体2を内側と外側から
冷却し、超電導ケーブルとして使用されるようになって
いる。
A refrigerant such as liquid helium is circulated between the inner cooling passage 1 and the outer refrigerant passage 5 to cool the superconducting conductor 2 from the inside and outside, and the superconducting conductor 2 is used as a superconducting cable.

[発明が解決しようとする問題点] ところが、上記のような形式の超電導ケーブルの場合、
導体2のうず電流損と絶縁体3の誘電体損に伴う温度上
昇により、各冷媒通路1,5を流れる冷媒の温度が上昇
しやすく、このため冷却区間長を大きくとれないという
問題点を有しており、これを解決するためには、各冷媒
通路1,5の内径を大きくして冷媒の流れる量を増やす
ようにすることが考えられるが、こうすると超電導ケー
ブル全体が大口径になってしまうという欠点がある。
[Problems to be solved by the invention] However, in the case of the above type of superconducting cable,
Due to the temperature rise due to the eddy current loss in the conductor 2 and the dielectric loss in the insulator 3, the temperature of the refrigerant flowing through each refrigerant passage 1, 5 tends to rise, and therefore there is a problem that the length of the cooling section cannot be increased. In order to solve this problem, it is possible to increase the inner diameter of each refrigerant passage 1 and 5 to increase the amount of refrigerant flowing, but this would result in the entire superconducting cable having a large diameter. It has the disadvantage of being stored away.

[問題点を解決するための手段] 本発明は上記問題点を解決するためになされたものであ
って、超電導導体の内部に内側冷媒通路が、また外部に
絶縁体が設けられ、この絶縁体を外被で覆って絶縁体と
外被との間に外側冷媒通路が設けられた超電導ケーブル
において、前記超電導導体および前記絶縁体は、各々の
内部を冷媒が通過可能な空隙を有しており、前記内側冷
媒通路を流れる冷媒の圧力を前記外側冷媒通路より高く
設定したことを特徴としており、これに加えて、前記内
側冷媒通路と前記外側冷媒通路の間に、冷媒の流れる長
手方向に向かってその半径方向の流量抵抗がしだいに小
さくなるよう冷媒流抵抗層を設けた構成としてもよい。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and includes an inner refrigerant passage provided inside a superconducting conductor and an insulator provided outside. In the superconducting cable in which the superconducting conductor and the insulator are covered with an outer sheath and an outer refrigerant passage is provided between the insulator and the outer sheath, the superconducting conductor and the insulator each have a gap through which a refrigerant can pass. , the pressure of the refrigerant flowing through the inner refrigerant passage is set higher than that of the outer refrigerant passage, and in addition, between the inner refrigerant passage and the outer refrigerant passage, there is a A refrigerant flow resistance layer may be provided so that the flow resistance in the radial direction gradually decreases.

[作用] 超、電導導体および絶縁体は、内部を冷媒が通過可能な
空隙を有しており、これとともに、内側冷媒通路流れる
冷媒が外側冷媒通路を流れる冷媒より高圧に設定されて
いることにより、内側冷媒通路を流れる冷媒の一部は、
超電導導体と絶縁体の空隙を通って外側冷媒通路の方へ
流れる。すなわち超電導線の径方向に流れる。これによ
って、超電導導体と絶縁体は内部側からも冷却され冷却
効果は向上し、絶縁体の誘電体損に伴う温度上昇が抑え
られて絶縁体の温度上昇が防止される。
[Function] The superconductive conductor and the insulator have gaps through which the refrigerant can pass, and at the same time, the pressure of the refrigerant flowing in the inner refrigerant passage is set to be higher than that of the refrigerant flowing in the outer refrigerant passage. , a part of the refrigerant flowing through the inner refrigerant passage is
It flows through the gap between the superconducting conductor and the insulator toward the outer coolant passage. In other words, it flows in the radial direction of the superconducting wire. As a result, the superconducting conductor and the insulator are cooled from the inside, improving the cooling effect, suppressing the temperature rise due to dielectric loss of the insulator, and preventing the temperature rise of the insulator.

また、内側冷媒通路と外側冷媒通路の間に、冷媒の流れ
る長手方向に向かってその半径方向の流量抵抗がしだい
に小さくなるよう冷媒流抵抗層を設けることにより、径
方向に流れる冷媒の流量分布を制御でき、これによって
超電導導体および絶縁体は効率よく冷却される。
In addition, by providing a refrigerant flow resistance layer between the inner refrigerant passage and the outer refrigerant passage so that the flow resistance in the radial direction gradually decreases in the longitudinal direction of the refrigerant flow, the flow rate distribution of the refrigerant flowing in the radial direction is improved. This allows superconducting conductors and insulators to be efficiently cooled.

[実施例] 以下、第1図および第2図を参照して本発明にもとづく
超電導ケーブルの一実施例を説明する。
[Example] Hereinafter, an example of a superconducting cable based on the present invention will be described with reference to FIGS. 1 and 2.

この超電導ケーブルは、内部に内側冷媒通路■0が設け
られた内側超電導導体1!の外部に、絶縁体12、必要
により外側超電導導体13が順次膜けられ、さらにその
外部に外側冷媒通路!4をあけて防食層(外被)!5が
設けられているものである。なお、絶縁体12の内側お
よび外側には、必要により内部半導電層および外部半導
電層が組み合わされる場合がある。
This superconducting cable has an inner superconducting conductor 1 with an inner refrigerant passage ■0 inside! An insulator 12 and, if necessary, an outer superconducting conductor 13 are sequentially coated on the outside of the ! Open 4 and apply the anti-corrosion layer (outer covering)! 5 is provided. Note that an inner semiconducting layer and an outer semiconducting layer may be combined on the inside and outside of the insulator 12 if necessary.

内側および外側の超電導導体11,13は、たとえば、
A−B−Cu−0系(ただし、AはLa、Y。
The inner and outer superconducting conductors 11, 13 are, for example,
A-B-Cu-0 system (A is La, Y.

Yb、Sc等のma族元素、BはBa、Sr等のアルカ
リ土類金属元素を示す)酸化物系超電導材料を用いて細
線状に形成されたもので、さらにこの細いフィラメント
状の超電導線が多数本束ねられたもので、その内部には
わずかな空隙が存在しており、冷媒がその空隙を通って
これら超電導導体11、■3の内部を通過することが可
能とされている。
It is formed into a thin wire shape using an oxide-based superconducting material (Ma group elements such as Yb and Sc, and B represents an alkaline earth metal element such as Ba and Sr), and this thin filament-like superconducting wire is A large number of superconducting conductors 11 and 3 are bundled together, and a small gap exists inside the superconducting conductors 11 and 3, allowing the refrigerant to pass through the gap.

また、絶縁体12は絶縁紙(クラフト紙、プラスチック
ラミネート紙、合成紙等)が層状に重ねられたもので、
これも絶縁紙の微小な空隙を通って内部を冷媒が通過可
能な材質とされている。
In addition, the insulator 12 is made of layers of insulating paper (kraft paper, plastic laminated paper, synthetic paper, etc.)
This is also made of a material that allows the refrigerant to pass through the interior through minute gaps in the insulating paper.

また、前記外側超電導導体13の外周には、ステンレス
テープとテトロンテープが交互巻きされたテープ(冷媒
遮蔽材)16が、第2図に示すように、図中左側から右
側にいくにしたがいその冷媒流が大から小へ変化するよ
うに複数巻かれている。
Further, on the outer periphery of the outer superconducting conductor 13, a tape (refrigerant shielding material) 16, in which stainless steel tape and Tetron tape are alternately wound, is installed as shown in FIG. It is wound multiple times so that the flow changes from large to small.

そして、内側および外側の各冷媒通路IO1!4の内部
には、液体N1、液体ヘリウム等の冷媒が、第2図にお
いて矢印(イ)で示すように、左から右側へ向けて流さ
れている。ここで、内側冷媒通路IOを流れる冷媒の圧
力は、外側冷媒通路14を流れる冷媒の圧力よりも高く
なるよう加圧された状態で流されている。
Inside each of the inner and outer refrigerant passages IO1!4, refrigerants such as liquid N1 and liquid helium are flowing from left to right as shown by arrows (A) in FIG. . Here, the pressure of the refrigerant flowing through the inner refrigerant passage IO is pressurized to be higher than the pressure of the refrigerant flowing through the outer refrigerant passage 14.

このような超電導ケーブルにおいて、内側および外側の
各超電導導体l!、13、絶縁体12は、前述のごとく
冷媒がその内部を通過できるものであり、さらに、内側
冷媒通路10を流れる冷媒は、外側冷媒通路14を通る
冷媒より高圧であることから、内側冷媒通路10を流れ
る冷媒の一部は、第2図中矢印(ロ)で示すように、内
側超電導導体11、絶縁体12および外側超電導導体t
3の内部を順次通過して外側冷媒通路14に流れていく
In such a superconducting cable, each inner and outer superconducting conductor l! , 13. As described above, the insulator 12 allows the refrigerant to pass therethrough, and furthermore, since the refrigerant flowing through the inner refrigerant passage 10 has a higher pressure than the refrigerant passing through the outer refrigerant passage 14, the inner refrigerant passage A part of the refrigerant flowing through the inner superconducting conductor 11, the insulator 12, and the outer superconducting conductor t, as shown by the arrow (b) in FIG.
3 and flows into the outer refrigerant passage 14.

このように内側冷媒通路10から外側冷媒通路14に互
って超電導線の径方向に流れていく冷媒により、内側お
よび外側の各超電導導体11,13と、絶縁体12は直
接冷媒により冷却され、その冷却効果は大幅に向上する
。このため、絶縁体12の誘電体損による温度上昇は抑
えられ、これによって冷媒の温度上昇が防止され、各超
電導導体!!、13の冷却効率が向上する。
In this way, the inner and outer superconducting conductors 11 and 13 and the insulator 12 are directly cooled by the coolant flowing in the radial direction of the superconducting wire from the inner coolant passage 10 to the outer coolant passage 14. Its cooling effect is greatly improved. Therefore, the temperature rise due to dielectric loss of the insulator 12 is suppressed, thereby preventing the temperature rise of the refrigerant, and each superconducting conductor! ! , 13 cooling efficiency is improved.

また、外側超電導導体13の外周に巻かれたテープ16
により、冷媒はテープ16の巻かれていない外側超電導
導体13の外周部から流出するが、この流出部分、すな
わち、各テープ16の間は、冷媒の流れ方向に向かって
冷媒流抵抗が変化するようになっているから、流れる冷
媒の上流側と下流側とで冷媒流量の分布を制御でき、こ
のため効率よく冷却されることにより冷却区間長を長く
することができる。
In addition, a tape 16 wrapped around the outer periphery of the outer superconducting conductor 13
As a result, the refrigerant flows out from the outer periphery of the outer superconducting conductor 13 where the tape 16 is not wound. However, in this outflow portion, that is, between each tape 16, the refrigerant flow resistance changes in the flow direction of the refrigerant. Therefore, the distribution of the flow rate of the refrigerant can be controlled on the upstream side and the downstream side of the flowing refrigerant, and therefore, the length of the cooling section can be increased by efficiently cooling.

なお、上記実施例では、内側冷媒通路10を外側冷媒通
路14より高圧とし、冷媒を内側から外側に向けて流す
ようにしたが、これと逆?こ、外側冷媒通路14の方を
高圧にして冷媒を内側に向けて流すようにしてもよい。
In the above embodiment, the pressure in the inner refrigerant passage 10 is higher than that in the outer refrigerant passage 14, and the refrigerant is caused to flow from the inside to the outside, but is it the other way around? Alternatively, the outer refrigerant passage 14 may be made to have a high pressure so that the refrigerant flows inward.

また、上記実施例では超電導ケーブルは単芯の場合につ
いて述べであるが、第3図に示すように、芯材を複数本
(この場合3本)束ねて成形加工した超電導線、あるい
はテープ状超電導線についても同様に実施し得る。
In the above embodiment, the superconducting cable is a single-core superconducting cable, but as shown in FIG. The same can be done for lines.

さらに、本発明での超電導ケーブルの超電導導体として
は、従来から知られている合金系、Nb系等の金属間化
合物系や、A B O*で示されるB aP bB i
Oss S rT io 3、(S r、B a)T 
iO2、(Ca、 S r)T io s等の酸化物系
のものであってもよい。
Furthermore, the superconducting conductor of the superconducting cable in the present invention may be a conventionally known alloy type, intermetallic compound type such as Nb type, or B aP bB i represented by ABO*.
Oss S rT io 3, (S r, B a)T
It may also be an oxide-based material such as iO2, (Ca, Sr)Tios.

[発明の効果] 以上説明したように、本発明の超電導ケーブルによれば
、超電導導体の内部に内側冷媒通路が、また外部に絶縁
体が設けられ、この絶縁体を外被で覆って絶縁体と外被
との間に外側冷媒通路が設けられた超電導線において、
前記超電導導体および前記絶縁体は、各々の内部を冷媒
が通過可能な空隙を有しており、内側冷媒通路を流れる
冷媒の圧力を外側冷媒通路を流れる冷媒より高く設定し
たから、冷媒は超電導線の軸方向とともに径方向に流れ
、超電導導体と絶縁体を内部側からも冷却する。したが
って、超電導導体と絶縁体の冷却効果は大幅に向上し、
絶縁体の誘電体損による温度上昇は抑えられる。
[Effects of the Invention] As explained above, according to the superconducting cable of the present invention, an inner refrigerant passage is provided inside the superconducting conductor, and an insulator is provided outside, and the insulator is covered with an outer jacket to form the insulator. In a superconducting wire in which an outer refrigerant passage is provided between the
The superconducting conductor and the insulator each have a gap through which a refrigerant can pass, and the pressure of the refrigerant flowing through the inner refrigerant passage is set higher than that of the refrigerant flowing through the outer refrigerant passage. It flows both axially and radially, cooling the superconducting conductor and insulator from the inside. Therefore, the cooling effect of superconducting conductors and insulators is greatly improved,
Temperature rise due to dielectric loss of the insulator can be suppressed.

また、冷却効率が向上して超電導導体を短時間で冷却す
ることができるために、常温から冷却して超電導状態と
するまでのセットアツプ時間を短縮することができる。
Furthermore, since the cooling efficiency is improved and the superconducting conductor can be cooled in a short time, the setup time required to cool it from room temperature to a superconducting state can be shortened.

さらに、内側冷媒通路と外側冷媒通路の間に、冷媒の流
れる長手方向に向かってその半径方向の流量抵抗がしだ
いに小さくなるよう冷媒流抵抗層設けたことにより、径
方向に流れる冷媒の流11分布を制御できるため、超電
導導体および絶縁体を効率よく冷却することができ、も
って超電導線の冷却区間長を長くとることができる。
Furthermore, by providing a refrigerant flow resistance layer between the inner refrigerant passage and the outer refrigerant passage so that the flow resistance in the radial direction gradually decreases in the longitudinal direction of the refrigerant flow, the refrigerant flow 11 flowing in the radial direction is Since the distribution can be controlled, the superconducting conductor and the insulator can be efficiently cooled, thereby making it possible to increase the length of the cooling section of the superconducting wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す超電導ケーブルの縦断
面図、12図は同側断面図、第3図は他の実施例の縦断
面図、第4図は従来の超電導線の縦断面図である。 10120・・・・・・内側冷媒通路、11.13.2
1・・・・・・超電導導体、12.22・・・・・・絶
縁体、15・・・・・・外被(防食層)、I6・・・・
・・テープ(冷媒流抵抗層)、。
Fig. 1 is a longitudinal sectional view of a superconducting cable showing an embodiment of the present invention, Fig. 12 is a sectional view of the same side, Fig. 3 is a longitudinal sectional view of another embodiment, and Fig. 4 is a longitudinal sectional view of a conventional superconducting wire. It is a front view. 10120...Inner refrigerant passage, 11.13.2
1...Superconducting conductor, 12.22...Insulator, 15...Outer cover (corrosion protection layer), I6...
...Tape (refrigerant flow resistance layer).

Claims (2)

【特許請求の範囲】[Claims] (1)超電導導体の内部に内側冷媒通路が、また外部に
絶縁体が設けられ、この絶縁体を外被で覆つて絶縁体と
外被との間に外側冷媒通路が設けられた超電導線におい
て、前記超電導導体および前記絶縁体は、各々の内部を
冷媒が通過可能な空隙を有しており、前記内側冷媒通路
を流れる冷媒の圧力を前記外側冷媒通路より高く設定し
たことを特徴とする超電導ケーブル。
(1) In a superconducting wire in which an inner refrigerant passage is provided inside a superconducting conductor, an insulator is provided outside, the insulator is covered with an outer sheath, and an outer refrigerant passage is provided between the insulator and the outer sheath. , wherein the superconducting conductor and the insulator each have a gap through which a refrigerant can pass, and the pressure of the refrigerant flowing through the inner refrigerant passage is set higher than that of the outer refrigerant passage. cable.
(2)前記内側冷媒通路と前記外側冷媒通路の間に、冷
媒の流れる長手方向に向かってその半径方向の流量抵抗
がしだいに小さくなるよう冷媒流抵抗層を設けたことを
特徴とする特許請求の範囲第1項記載の超電導ケーブル
(2) A patent claim characterized in that a refrigerant flow resistance layer is provided between the inner refrigerant passage and the outer refrigerant passage so that the flow resistance in the radial direction gradually decreases in the longitudinal direction of the refrigerant flow. A superconducting cable according to item 1.
JP62097888A 1987-04-21 1987-04-21 Superconducting cable Expired - Fee Related JP2558690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097888A JP2558690B2 (en) 1987-04-21 1987-04-21 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097888A JP2558690B2 (en) 1987-04-21 1987-04-21 Superconducting cable

Publications (2)

Publication Number Publication Date
JPS63264815A true JPS63264815A (en) 1988-11-01
JP2558690B2 JP2558690B2 (en) 1996-11-27

Family

ID=14204288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097888A Expired - Fee Related JP2558690B2 (en) 1987-04-21 1987-04-21 Superconducting cable

Country Status (1)

Country Link
JP (1) JP2558690B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255111A (en) * 1988-04-01 1989-10-12 Junkosha Co Ltd Superconductive cable
JPH02299108A (en) * 1989-05-12 1990-12-11 Furukawa Electric Co Ltd:The Superconducting cable
US4992623A (en) * 1989-04-26 1991-02-12 At&T Bell Laboratories Superconducting bus bar
US8326386B2 (en) 2005-04-21 2012-12-04 Nkt Cables Ultera A/S Superconductive multi-phase cable system, a method of its manufacture and its use
JP2015141803A (en) * 2014-01-28 2015-08-03 古河電気工業株式会社 Superconductive conductor and superconductive cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255111A (en) * 1988-04-01 1989-10-12 Junkosha Co Ltd Superconductive cable
US4992623A (en) * 1989-04-26 1991-02-12 At&T Bell Laboratories Superconducting bus bar
JPH02299108A (en) * 1989-05-12 1990-12-11 Furukawa Electric Co Ltd:The Superconducting cable
US8326386B2 (en) 2005-04-21 2012-12-04 Nkt Cables Ultera A/S Superconductive multi-phase cable system, a method of its manufacture and its use
US8623787B2 (en) 2005-04-21 2014-01-07 Nkt Cables Ultera A/S Superconductive multi-phase cable system, a method of its manufacture and its use
JP2015141803A (en) * 2014-01-28 2015-08-03 古河電気工業株式会社 Superconductive conductor and superconductive cable

Also Published As

Publication number Publication date
JP2558690B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
CN109637739B (en) Quasi-isotropic high current-carrying superconducting cable conductor
US7743485B1 (en) Method of manufacturing a superconducting cable
US4336420A (en) Superconducting cable
KR100938357B1 (en) Superconducting cable and superconducting cable line
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
CN102549678B (en) Superconductor cable and AC power transmission cable
JPH06318409A (en) Superconductor
US4327244A (en) Superconductive cable
US4260924A (en) Conductor bar for dynamoelectric machines
GB1267110A (en)
US4337567A (en) Method of making a conductor bar for dynamoelectric machines
JP3363948B2 (en) Oxide superconducting power cable
US20050079980A1 (en) Superconducting cable
JPS63264815A (en) Superconductive cable
GB1160949A (en) Superconductor Coils
JP3283106B2 (en) Structure of current supply terminal for oxide superconducting conductor
JP2002530829A (en) How to assemble a superconducting polyphase cable
US3448222A (en) Aerial conductor
JP3501822B2 (en) Oxide superconducting power cable
EP0650206A1 (en) Superconducting conductor
CN112037971A (en) Flexible oil-resistant waterproof medium-voltage cable
JP3632743B2 (en) Superconducting cable
JP3549295B2 (en) Superconducting cable
JPH01134811A (en) Extremely low temperature cable
JP3098887B2 (en) Oxide superconducting wire and method of using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees