JPH02299108A - Superconducting cable - Google Patents

Superconducting cable

Info

Publication number
JPH02299108A
JPH02299108A JP1119652A JP11965289A JPH02299108A JP H02299108 A JPH02299108 A JP H02299108A JP 1119652 A JP1119652 A JP 1119652A JP 11965289 A JP11965289 A JP 11965289A JP H02299108 A JPH02299108 A JP H02299108A
Authority
JP
Japan
Prior art keywords
superconducting
cable
superconducting cable
forming
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119652A
Other languages
Japanese (ja)
Other versions
JP2895507B2 (en
Inventor
Satoru Tanaka
悟 田中
Koichiro Adachi
浩一郎 足立
Naotaka Ichiyanagi
一柳 直隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1119652A priority Critical patent/JP2895507B2/en
Publication of JPH02299108A publication Critical patent/JPH02299108A/en
Application granted granted Critical
Publication of JP2895507B2 publication Critical patent/JP2895507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make the outer diameter of a cable thin and reduce the pressure loss by using a superconductor for cable cores, and arranging uncorrugated metal pipes forming coolant passages in a heat insulating conduit. CONSTITUTION:A protective metal pipe 4 is arranged around a metal 1 forming a coolant passage 2 via a heat insulator layer 3, and an anticorrosive layer 5 on the outermost layer to obtain the pipe 1 forming the passage 2 of a heat insulating conduit 6. Cylindrical superconductors 10 are provided around metal pipes 8 forming coolant passages 9 in cores, electric insulating layers 11 are provided around these conductors 10, and the desired number of superconducting cable cores 7 provided with shielding superconductors 12 are arranged around the layers 11. The desired number of uncorrugated metal pipes 14 forming coolant passages 13 are arranged in the pipe 1 forming the passage 2 of the conduit 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は外径が細(、圧力損失が少ない超電導ケーブル
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a superconducting cable with a small outer diameter (and low pressure loss).

(従来の技術) 超電導ケーブルは従来からあり、その構造は第2図に示
されるように、冷却剤流路2を形成する金属管1の外周
に熱絶縁体層3を介して保護用金属管4が配設され、最
外層に防蝕材層5が設けられてなる断熱管路6の、前記
金属管l内に超電導ケーブルコア7が所望本数配置され
てなる。
(Prior Art) Superconducting cables have been around for a long time, and their structure is as shown in FIG. A desired number of superconducting cable cores 7 are disposed within the metal pipe 1 of the heat insulating conduit 6, in which a corrosion-resistant material layer 5 is provided on the outermost layer.

この超電導ケーブルコア7はコア用冷却剤流路9を形成
する金属管8の外周に管状の通電用超電4導体10が設
けられ、同超電導導体10の外周に電気絶縁層11が設
けられ、同絶縁層11の外周に遮蔽用超電導導体12が
設けられている。
This superconducting cable core 7 is provided with a tubular superconducting four conductor 10 on the outer periphery of a metal tube 8 forming a core coolant flow path 9, and an electrical insulating layer 11 is provided on the outer periphery of the superconducting conductor 10. A shielding superconducting conductor 12 is provided around the outer periphery of the insulating layer 11.

上記通電用超電導導体10と遮蔽用超電導導体12は、
例えばビスマス、ストロンチュム、カルシウム、fIA
の酸化物、或はイツトリウム、バリウム、銅の酸化物な
どの酸化物超電導体と、例えば銅またはアルミニウムか
らなる安定化層とが接合された複合テープから構成され
ている。
The energizing superconducting conductor 10 and the shielding superconducting conductor 12 are as follows:
For example, bismuth, strontium, calcium, fIA
It is composed of a composite tape in which an oxide superconductor such as an oxide of yttrium, barium, or copper is bonded to a stabilizing layer made of, for example, copper or aluminum.

ところで従来の前記超電導ケーブルでは1通電用超電導
導体IOと遮蔽用超電導導体12の両方(以下単に超電
導導体と記す)を、必要とされる超電導電流を通電可能
な温度領域に保持するために、導体や絶縁体から発生す
る熱や外部から断熱管路6中に侵入する熱を除去する必
要がある。このため従来の超電導ケーブルでは断熱管路
6内の冷却剤流路2、及びケーブルコア内のコア用冷却
剤流路9に冷却剤として液体窒素を流している。
By the way, in the conventional superconducting cable, in order to maintain both the current-carrying superconducting conductor IO and the shielding superconducting conductor 12 (hereinafter simply referred to as superconducting conductors) in a temperature range where the required superconducting current can be passed, the conductors are It is necessary to remove the heat generated from the heat insulator and the insulator, and the heat that enters the heat insulating pipe line 6 from the outside. For this reason, in the conventional superconducting cable, liquid nitrogen is flowed as a coolant into the coolant flow path 2 in the heat insulating pipe line 6 and the core coolant flow path 9 in the cable core.

これらの冷却剤流路2.9を流れる液体窒素は、Mi電
導ケーブルコア7に含浸されて電気絶縁の役割も果すよ
うにしである。
The liquid nitrogen flowing through these coolant channels 2.9 is impregnated into the Mi conductive cable core 7 so as to also serve as electrical insulation.

この上2二つの冷却剤流路2,9に流す液体窒素は上記
の熱の合計量を完全に除去できるだけの1が必要であり
、且つ十分な電気絶縁特性を発揮できるだけの圧力を持
つものでなければならない、ちなみに、液体窒素の流量
が不足すると超電導ケーブルコア7の温度が上昇し過ぎ
て超電導状態が破れ、送電不可能となる。また、前記圧
力が不足すると液体窒素中に泡が生じて電気絶縁特性が
低下し、ケーブルが絶縁破壊してしまう。
Furthermore, the liquid nitrogen flowed into the two coolant channels 2 and 9 must be strong enough to completely remove the total amount of heat mentioned above, and must have enough pressure to exhibit sufficient electrical insulation properties. Incidentally, if the flow rate of liquid nitrogen is insufficient, the temperature of the superconducting cable core 7 will rise too much, breaking the superconducting state and making power transmission impossible. Furthermore, if the pressure is insufficient, bubbles will be generated in the liquid nitrogen, reducing the electrical insulation properties and causing dielectric breakdown of the cable.

また、冷却剤流路2.9内を流れる液体窒素には圧力損
失が生じるが、それは流での2東に比例し、波付けされ
ていない流路管の直径の5乗に反比例して増大する。こ
の圧力損失は断熱管路を曲げ得るようにするために断熱
管路6を構成する金属管l、及び保護用金属管4に波付
けした場合も、流れる液体窒素に加わる抵抗が増大して
大きくなる。 この圧力損失が大きくなると圧力不足の
ためにケーブルが絶縁破壊する危険が起きたり、液体窒
素が冷却区間全体に流れなくなってケーブルが十分に冷
却されなくなったりする。このため−冷却区間で許容さ
れる圧力損失はある最大許容値以下にしなければならな
い。
In addition, liquid nitrogen flowing in the coolant channel 2.9 experiences a pressure loss, which increases in proportion to the flow rate and inversely as the fifth power of the diameter of the uncorrugated channel tube. do. This pressure loss also increases when the metal pipe 1 constituting the heat insulating pipe 6 and the protective metal pipe 4 are corrugated in order to bend the heat insulating pipe, as the resistance to the flowing liquid nitrogen increases. Become. If this pressure loss becomes large, there is a risk that the cable will suffer dielectric breakdown due to insufficient pressure, or the liquid nitrogen will no longer flow throughout the cooling section and the cable will not be sufficiently cooled. For this reason - the permissible pressure loss in the cooling section must be below a certain maximum permissible value.

そのためには液体窒素流路断面積を一定面積以上確保し
なければならない。
For this purpose, it is necessary to ensure that the cross-sectional area of the liquid nitrogen flow path is larger than a certain area.

また圧力+i失がたとえ最大許容値を越えない場合でも
、圧力損失が大きくなるほどケーブルに大きな電気的、
機械的負荷がかかるので、設計上、強度を高める必要が
生じ、また、ケーブル運転時の安定性や信頼性も損なわ
れる。
Also, even if the pressure + i loss does not exceed the maximum allowable value, the greater the pressure loss, the greater the electrical
Since mechanical loads are applied, it is necessary to increase the strength of the design, and stability and reliability during cable operation are also impaired.

(発明が解決しようとする課題) しかし、圧力損失を低減し、信頼性を向上させるために
液体窒素流路断面積を太き(するとケーブルの最外径が
大きくなる。
(Problems to be Solved by the Invention) However, in order to reduce pressure loss and improve reliability, the cross-sectional area of the liquid nitrogen flow path is increased (this increases the outermost diameter of the cable).

例えば、送電電圧66kv、送電容量100100O,
超電導層の臨界電流密度lX10’A/cm”、外径4
0mmのケーブルコアが3本内蔵された、厚み40mm
の断熱層を持つ管路を持つ従来の超電導ケーブルの場合
、3本のケーブルコアを内蔵できる最小の断熱管路内径
は90mmであり、ケーブル外径は最小で170mmと
なる。
For example, transmission voltage 66kv, transmission capacity 100100O,
Critical current density of superconducting layer lX10'A/cm", outer diameter 4
40mm thick with 3 built-in 0mm cable cores
In the case of a conventional superconducting cable having a conduit with a heat insulation layer of

しかし、このケーブルでは液体窒素を2,5kmの一冷
却区間長で往復循環させると、圧力損失が10気圧程度
にもなるため、液体窒素冷却機からケーブルに入るとこ
ろで15気圧に保持してもケーブル出口では5気圧程度
に低下してしまう。
However, in this cable, when liquid nitrogen is circulated back and forth in one cooling section length of 2.5 km, the pressure loss becomes about 10 atm, so even if the pressure is maintained at 15 atm at the point where the cable enters from the liquid nitrogen cooler, the cable At the exit, the pressure drops to about 5 atmospheres.

このため電気絶縁層11に部分放電が起きないようにす
るのに必要な圧力が得に<<、運転の安定性や信頼性が
きわめて低くなる。
For this reason, the pressure necessary to prevent partial discharge from occurring in the electrical insulating layer 11 is extremely low, and the stability and reliability of operation are extremely low.

ちなみに、ここで生じる圧力損失は超電導ケーブルコア
7の内部のコア用冷却剤流路9内で生じたものではなく
、断熱管路6の冷却剤流路2内で生じたものであり、そ
の主要な原因は、断熱管路6内の冷却剤流路2の形状が
円形でなく、シかもコア内の冷却剤流路9よりも細いた
めに、冷却剤の流れが乱れ易く、摩擦抵抗が増大するこ
とによる。
Incidentally, the pressure loss that occurs here does not occur in the core coolant flow path 9 inside the superconducting cable core 7, but rather in the coolant flow path 2 of the adiabatic pipe line 6, and the main The reason for this is that the shape of the coolant flow path 2 in the heat insulating pipe 6 is not circular and is also thinner than the coolant flow path 9 in the core, so the flow of the coolant is easily disturbed and frictional resistance increases. By doing.

そこで、従来の上記超電導ケーブルにおいて。Therefore, in the conventional superconducting cable mentioned above.

圧力が5気圧程度に下がらないようにするためには、ケ
ーブル外径を170mmより大きくして圧力損失を減し
たり、入口圧力を20気圧に高めて出口圧力がIO気圧
程度になるようにケーブルの設計強度及び冷却機出力を
高めることが必要になる。しかし、ケーブル外径を大き
くするとその分だけ製造、輸送、布設の経費が高くなり
、また。
In order to prevent the pressure from dropping to around 5 atm, the outer diameter of the cable should be made larger than 170 mm to reduce pressure loss, or the inlet pressure should be increased to 20 atm and the cable outlet pressure should be around IO atm. It will be necessary to increase the design strength and chiller output. However, increasing the outer diameter of the cable increases manufacturing, transportation, and installation costs.

ケーブルの設計強度及び冷却機出力を高めると経費が高
くなり、いずれにしてもコスト高となる。
Increasing the design strength of the cable and the cooler output will result in higher costs, which in any case will result in higher costs.

以上のように従来の超電導ケーブルでは、圧力損失やケ
ーブル外径が大きくなり、信頼性や経済性が損なわれる
という問題点があった。
As described above, conventional superconducting cables have problems such as increased pressure loss and increased cable outer diameter, which impairs reliability and economic efficiency.

(発明の目的) 本発明の超電導ケーブルは前記の諸問題を解決すべく開
発されたものであり、その目的は、ケーブルの外径が細
く、しかも圧力損失の少ない超電導ケーブルを提供する
ことにある。
(Object of the Invention) The superconducting cable of the present invention was developed to solve the above-mentioned problems, and its purpose is to provide a superconducting cable with a small outer diameter and low pressure loss. .

(課題を解決するための手段) 本発明の超電導ケーブルは第1図のように、冷却剤流路
2を形成する金属管lの外周に熱絶縁体層3を介して保
護用金属管4が配設され、最外層に防蝕材層5が設けら
れてなる断熱管路6の前記冷却剤流路2を形成する金属
管l中に、コア内の冷却剤流路9を形成する金属管8の
外周に管状の通電用超電導導体10が設けられ、同超電
導導体10の外周に電気絶縁層11が設けられ、同絶縁
層11の外周に遮蔽用超電導導体12が設けられてなる
超電導ケーブルコア7が所望本数配置された超電導ケー
ブルにおいて、前記断熱管路6の冷却剤流路2を形成す
る金属管l内に、冷却剤流路13を形成する波付けされ
ていない無波付金属管14を所望本数配置させたことを
特徴とするものである。
(Means for Solving the Problems) In the superconducting cable of the present invention, as shown in FIG. A metal pipe 8 forming the coolant flow path 9 in the core is provided in the metal pipe l forming the coolant flow path 2 of the heat insulating pipe line 6 which is provided with a corrosion-resistant material layer 5 on the outermost layer. A superconducting cable core 7 in which a tubular current-carrying superconducting conductor 10 is provided on the outer periphery of the superconducting cable core 7, an electrical insulating layer 11 is provided on the outer periphery of the superconducting conductor 10, and a shielding superconducting conductor 12 is provided on the outer periphery of the insulating layer 11. In a superconducting cable in which a desired number of wafers are arranged, an uncorrugated metal tube 14 that is not corrugated and that forms a coolant flow path 13 is placed inside the metal tube l that forms the coolant flow path 2 of the adiabatic pipe line 6. It is characterized in that a desired number of pieces are arranged.

本発明における冷却剤流路13を形成する無波付金属管
14としては、その内部を流れる冷却剤が外部から熱を
効率よく取り込めるように1例えば銅のように熱伝導度
の高い金属で作られている。
The corrugated metal tube 14 forming the coolant flow path 13 in the present invention is made of a metal with high thermal conductivity, such as copper, so that the coolant flowing inside the tube can efficiently take in heat from the outside. It is being

本発明の超電導ケーブルを使用するに当っては、従来の
超電導ケーブルの断熱管路6内の冷却剤流路2を形成す
る金属管l内に流されていた冷却剤の全部または殆ど全
部を、本発明の超電導ケーブルの断熱管路6内に配置し
た無波付金属管14内に流すのが望ましく、その場合は
、超電導ケーブルコア7に含浸させるための電気絶縁用
液体窒素を、無波付金属管14内に流す熱除去用液体窒
素と分離して用いる。このようにすれば、電気絶縁用液
体窒素は熱除去用液体窒素と異なり、冷却区間内を循環
させる必要が無いので圧力損失が生ぜず、全区間の圧カ
一定となるので、より一層信頼性の高い電気絶縁を行な
うことができる。
When using the superconducting cable of the present invention, all or almost all of the coolant that was flowing into the metal pipe l forming the coolant flow path 2 in the heat-insulating pipe line 6 of the conventional superconducting cable is removed. It is preferable to flow the electrically insulating liquid nitrogen for impregnating the superconducting cable core 7 into the non-corrugated metal pipe 14 disposed in the heat-insulating conduit 6 of the superconducting cable of the present invention. It is used separately from the liquid nitrogen for heat removal flowing into the metal tube 14. In this way, unlike liquid nitrogen for heat removal, liquid nitrogen for electrical insulation does not need to be circulated within the cooling section, so there is no pressure loss, and the pressure remains constant throughout the section, making it even more reliable. High electrical insulation can be achieved.

本発明の超電導ケーブルの外径を細くし、圧力損失を少
なくするには、断熱管路6の内径と超電導ケーブルコア
7の外径との比RJが、2.1≦RJ≦2.5となるよ
うにするのが望ましい。
In order to reduce the outer diameter and pressure loss of the superconducting cable of the present invention, the ratio RJ of the inner diameter of the insulated pipe line 6 and the outer diameter of the superconducting cable core 7 should be 2.1≦RJ≦2.5. It is desirable to do so.

(作用〕 本発明の超電導ケーブルは、断熱管路6の金属管1内に
、冷却剤流路13を形成する波付けされていない無波付
金属管14が設けられているので、従来の超電導ケーブ
ルで断熱管路6内を通流していた冷却剤の全部或は殆ど
全部を、冷却剤流路13を形成する無波付金属管14内
に流すことによって、断熱管路6を構成する金属管l内
と冷却剤流路13内で生じる圧力損失が大幅に減少する
(Function) The superconducting cable of the present invention has an uncorrugated metal pipe 14 that is not corrugated and forms a coolant flow path 13 in the metal pipe 1 of the heat insulating conduit 6, so that it is different from the conventional superconducting cable. By flowing all or almost all of the coolant that was flowing through the heat insulated pipe line 6 through the cable into the corrugated metal pipe 14 that forms the coolant flow path 13, the metal constituting the heat insulated pipe line 6 is removed. The pressure losses occurring in the tubes 1 and in the coolant channels 13 are significantly reduced.

(実施例) 以下に本発明の超電導ケーブルを実施例により詳細に説
明する。
(Example) Hereinafter, the superconducting cable of the present invention will be explained in detail with reference to Examples.

第1図に示した本発明の超電導ケーブルの送電規格を6
6kv、100100O,ケーブル外径を170mmと
して、圧力損失Pを求めた。圧力損失Pは次のようにし
て求められる。
The power transmission standard of the superconducting cable of the present invention shown in Fig. 1 is 6.
The pressure loss P was determined under the conditions of 6 kv, 100,100 O, and a cable outer diameter of 170 mm. Pressure loss P is determined as follows.

P=R−M2 ・ L/D ’  ・ ・ ・ ・ (
1)f旦し。
P=R-M2 ・L/D' ・ ・ ・ ・ (
1) It's f-day.

R:流動抵抗、 M:冷却剤質1流I、L:冷却区間長
、。
R: flow resistance, M: coolant material 1 flow I, L: cooling section length.

D・冷却剤流路直径(または冷却剤流路等価直径)。D. Coolant channel diameter (or coolant channel equivalent diameter).

冷却剤質量流量Mは次式で求められる。The coolant mass flow rate M is determined by the following equation.

M=W−L/ (C・T)・・・・ (2)(旦し。M=W-L/(C・T)...(2)(Danshi.

Wltj?’去すべき熱量、C0冷却剤熱容啜、T:冷
却剤温度上昇。
Wltj? 'Amount of heat to be removed, C0 coolant heat capacity, T: Coolant temperature rise.

除去すべき熱量Wは導体の交流損失、電気絶縁体の誘電
損失及び熱侵入からなる。
The amount of heat W to be removed consists of AC loss in the conductor, dielectric loss in the electrical insulator, and heat penetration.

上記(1)(2)式においてL=2.5km。In the above equations (1) and (2), L = 2.5 km.

C=2035J/kg−に、T=15にとし、Wは主た
るものが導体交流損失で、これが超電導導体の臨界電流
密度に反比例することも考慮して、この電流密度を1x
10’A/cm”とした。
C = 2035 J/kg-, T = 15, and considering that W is mainly conductor AC loss, which is inversely proportional to the critical current density of the superconducting conductor, this current density is set to 1x.
10'A/cm''.

この実施例では、従来の超電導ケーブルの断熱管路を構
成する冷却剤流路2を形成する金属管1内を流れていた
冷却剤のうち、95%を波付されていない無波付金属管
14内に流し、残り5%を断熱管路を構成する金属管l
に流すものとした。
In this embodiment, 95% of the coolant flowing in the metal tube 1 forming the coolant flow path 2 constituting the heat-insulated conduit of a conventional superconducting cable is transferred to an uncorrugated metal tube that is not corrugated. 14, and the remaining 5% is poured into the metal pipe l that constitutes the insulated pipe line.
It was decided that it would be flushed to

また1本発明の超′:M導ケーブルについて、断熱管路
6を構成する金属管lと保護用金属管4が波付けされて
いる場合と、波付けされていない場合の両方について圧
力損失を算出した。また、比較のためそれと同一規格、
同サイズの従来の超電導ケーブルについても同様の計算
を行なった。その結果を、第1表に両者の設計数値を並
べて示した。
In addition, regarding the ultra':M conductive cable of the present invention, the pressure loss can be measured both when the metal tube 1 constituting the insulated conduit 6 and the protective metal tube 4 are corrugated and when they are not corrugated. Calculated. We also have the same standard as that for comparison,
Similar calculations were performed for a conventional superconducting cable of the same size. The results are listed in Table 1 with the design values for both.

第1表 波付型 :断熱管路を構成する金属管1.保護用金属管
4が波付けされている場 無液付型:断熱管路を構成する金属管l、保護用金属管
4が波付けされていない場 合。
Table 1: Corrugated type: Metal pipe constituting an insulated pipe line 1. When the protective metal tube 4 is corrugated: Non-liquid type: When the metal tube l constituting the heat-insulating pipe line and the protective metal tube 4 are not corrugated.

第1表より明らかなように本発明の超電導ケーブルでは
定格容N10N10O0の大容量送電が、ケーブル外径
が170mmという細いケーブルで可能となる。
As is clear from Table 1, the superconducting cable of the present invention enables large-capacity power transmission with a rated capacity of N10N10O0 using a thin cable with an outer diameter of 170 mm.

また、超電導ケーブルでは、圧力損失が波付型の場合も
、無波付型の場合も共に最大許容量の10気圧を大きく
下回る3、6気圧、35気圧である。これより経済性と
運転時の安定性、信頼性に優れでいることがわかる。
Furthermore, in the case of superconducting cables, the pressure loss is 3, 6, and 35 atmospheres, which are far below the maximum allowable amount of 10 atmospheres, both in the case of the corrugated type and in the case of the non-corrugated type. It can be seen from this that it has excellent economic efficiency, stability during operation, and reliability.

これに対して従来の超電導ケーブルでは1本発明の超電
導ケーブルと同容量、同サイズの場合、圧力損失が波付
型の場合1O19気圧、無波付型の場合8.7気圧であ
った。
On the other hand, in the case of conventional superconducting cables having the same capacity and size as the superconducting cable of the present invention, the pressure loss was 1019 atm for the corrugated type and 8.7 atm for the non-corrugated type.

従って、比較例では本発明の超電導ケーブルに比して運
転条件、設計条件が廠しくなり、ケーブル本体や冷却装
置等がコスト高となる。
Therefore, in the comparative example, the operating conditions and design conditions are stricter than in the superconducting cable of the present invention, and the cost of the cable body, cooling device, etc. is high.

また、比較例において本発明のケーブルと同程度の圧力
損失にするためには、ケーブル外径を大きくする必要が
あり、これまたコスト高となってしまう。
Furthermore, in order to achieve the same level of pressure loss as the cable of the present invention in the comparative example, it is necessary to increase the outer diameter of the cable, which also increases the cost.

(発明の効果) 本発明の超電導ケーブルは、ケーブルコア7に超電導体
が用いられ、断熱管路6内に冷却剤流路2を形成する無
波付金属管14が配されているので次のような効果があ
る。
(Effects of the Invention) In the superconducting cable of the present invention, a superconductor is used for the cable core 7, and a corrugated metal pipe 14 forming a coolant flow path 2 is disposed within the heat insulating pipe line 6, so that the following can be achieved. There is a similar effect.

■、ケーブル外径が細く、圧力損失が少ない超電導ケー
ブルとなり、大容量電力を低コスト、高信頼で送電する
ことが可能となる。
■The superconducting cable has a thin outer diameter and low pressure loss, making it possible to transmit large amounts of power at low cost and with high reliability.

■99本発明超電導ケーブルでは、従来の超電導ケーブ
ルの断熱管路6内に流していた冷却剤の全てを該断熱管
路6内に別途配置した無波付金属管14に流し、超電導
ケーブルコア7に含浸させるための電気絶縁用液体窒素
を、無波付金属管14に流す熱除去用液体窒素と分離し
て用いるので圧力損失が生じない、また、冷却区間の全
長に渡り十分な圧力を一定に1采持できるので、より一
層信頼性の高い電気絶縁を行なうことができろ。
99 In the superconducting cable of the present invention, all of the coolant that was flowing into the heat insulating pipe line 6 of the conventional superconducting cable is flowed into the waveless metal pipe 14 separately arranged inside the heat insulating pipe line 6, and the superconducting cable core 7 Since liquid nitrogen for electric insulation is used separately from liquid nitrogen for heat removal flowing through the corrugated metal pipe 14, no pressure loss occurs, and sufficient pressure is maintained constant over the entire length of the cooling section. Since it is possible to carry out one type of electrical insulation, even more reliable electrical insulation can be achieved.

■、電気絶縁用液体窒素を断熱管路6の金属管l内に流
さないので、同液体窒素内に例えば水のような不純物が
混入し、これが通流中にケーブルコア及び断熱管路を傷
付ける危険性を殆ど無くなる。
■Since liquid nitrogen for electrical insulation is not flowed into the metal pipe l of the heat insulating pipe line 6, impurities such as water may get mixed into the liquid nitrogen, which may damage the cable core and the heat insulating pipe line during the flow. Almost eliminates the risk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の酸化物超電導ケーブルの一例の説明
図、第2図は従来の酸化物超電導ケーブルの説明図であ
る。 1は金属管 2は冷却剤流路 3は熱絶縁体層 4は保護用金属管 5は防蝕材層 6は断熱管路 7は超電導ケーブルコア 8は金属管 9は冷却剤流路 10は通電用超電導導体 11は電気絶縁層 12はJl!蔽用起用超電導 導体は冷却剤流路 14は無波付金属管
FIG. 1 is an explanatory diagram of an example of an oxide superconducting cable according to the present invention, and FIG. 2 is an explanatory diagram of a conventional oxide superconducting cable. 1 is a metal tube 2 is a coolant flow path 3 is a thermal insulator layer 4 is a protective metal tube 5 is a corrosion-resistant material layer 6 is a heat insulating conduit 7 is a superconducting cable core 8 is a metal tube 9 is a coolant flow path 10 is energized The electrical insulating layer 12 of the superconducting conductor 11 is Jl! In the superconducting conductor used for shielding, the coolant flow path 14 is a corrugated metal tube.

Claims (1)

【特許請求の範囲】[Claims] 冷却剤流路2を形成する金属管1の外周に熱絶縁体層3
を介して保護用金属管4が配設され、最外層に防蝕材層
5が設けられてなる断熱管路6の前記金属管1中に、コ
ア用冷却剤流路9を形成する金属管8の外周に管状の通
電用超電導導体10が設けられ、同超電導導体10の外
周に電気絶縁層11が設けられ、同絶縁層11の外周に
遮蔽用超電導導体12が設けられてなる超電導ケーブル
コア7が所望本数配置された超電導ケーブルにおいて、
前記断熱管路6の金属管1内に、冷却剤流路13を形成
する波付けされていない無波付金属管14が所望本数配
置されてなることを特徴とする超電導ケーブル。
A thermal insulator layer 3 is provided on the outer periphery of the metal tube 1 forming the coolant flow path 2.
A metal tube 8 forming a core coolant flow path 9 in the metal tube 1 of the heat insulating conduit 6 having a protective metal tube 4 disposed therethrough and a corrosion-resistant material layer 5 provided on the outermost layer. A superconducting cable core 7 in which a tubular current-carrying superconducting conductor 10 is provided on the outer periphery of the superconducting cable core 7, an electrical insulating layer 11 is provided on the outer periphery of the superconducting conductor 10, and a shielding superconducting conductor 12 is provided on the outer periphery of the insulating layer 11. In a superconducting cable with a desired number of
A superconducting cable characterized in that a desired number of uncorrugated metal pipes 14 that are not corrugated and form a coolant flow path 13 are arranged in the metal pipe 1 of the heat insulating conduit 6.
JP1119652A 1989-05-12 1989-05-12 Superconducting cable Expired - Fee Related JP2895507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119652A JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119652A JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Publications (2)

Publication Number Publication Date
JPH02299108A true JPH02299108A (en) 1990-12-11
JP2895507B2 JP2895507B2 (en) 1999-05-24

Family

ID=14766739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119652A Expired - Fee Related JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Country Status (1)

Country Link
JP (1) JP2895507B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012775A (en) * 2004-05-21 2006-01-12 Sumitomo Electric Ind Ltd Superconductive cable
JP2006140123A (en) * 2004-10-15 2006-06-01 Sumitomo Electric Ind Ltd Superconductive cable
WO2006098069A1 (en) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Superconductive cable and dc power transmission using the superconductive cable
JP2008215804A (en) * 2007-02-07 2008-09-18 Taiyo Nippon Sanso Corp Method for cooling liquid nitrogen
JP2009048794A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable line
US7943852B2 (en) 2005-03-14 2011-05-17 Sumitomo Electric Industries, Ltd. Superconducting cable
JP2011138781A (en) * 2004-05-21 2011-07-14 Sumitomo Electric Ind Ltd Superconducting cable
JP2012199206A (en) * 2011-03-23 2012-10-18 Hitachi Cable Ltd Flat cable
US8354591B2 (en) 2006-04-10 2013-01-15 Sumitomo Electric Industries, Ltd. Superconducting cable
WO2013084528A1 (en) * 2011-12-06 2013-06-13 住友電気工業株式会社 Superconducting cable, superconducting cable line, method for installing superconducting cable, method for operating superconducting cable line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074483U (en) * 1973-11-12 1975-06-30
JPS5667113A (en) * 1979-11-05 1981-06-06 Mitsubishi Electric Corp Superconductor
JPS6326415A (en) * 1986-07-12 1988-02-04 テ−エルヴエ− エ−レンライヒ ゲゼルシヤフト ミツト ベシユレンクテル ハフツンク ウント コンパニ− コマンデイツトゲゼルシヤフト Ball joint
JPS63264815A (en) * 1987-04-21 1988-11-01 Fujikura Ltd Superconductive cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074483U (en) * 1973-11-12 1975-06-30
JPS5667113A (en) * 1979-11-05 1981-06-06 Mitsubishi Electric Corp Superconductor
JPS6326415A (en) * 1986-07-12 1988-02-04 テ−エルヴエ− エ−レンライヒ ゲゼルシヤフト ミツト ベシユレンクテル ハフツンク ウント コンパニ− コマンデイツトゲゼルシヤフト Ball joint
JPS63264815A (en) * 1987-04-21 1988-11-01 Fujikura Ltd Superconductive cable

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012775A (en) * 2004-05-21 2006-01-12 Sumitomo Electric Ind Ltd Superconductive cable
JP2011138781A (en) * 2004-05-21 2011-07-14 Sumitomo Electric Ind Ltd Superconducting cable
JP4716248B2 (en) * 2004-05-21 2011-07-06 住友電気工業株式会社 Superconducting cable
JP4517879B2 (en) * 2004-10-15 2010-08-04 住友電気工業株式会社 Superconducting cable
JP2006140123A (en) * 2004-10-15 2006-06-01 Sumitomo Electric Ind Ltd Superconductive cable
US7723616B2 (en) 2005-03-14 2010-05-25 Sumitomo Electric Industries, Ltd. Superconducting cable and DC transmission system incorporating the superconducting cable
US7943852B2 (en) 2005-03-14 2011-05-17 Sumitomo Electric Industries, Ltd. Superconducting cable
WO2006098069A1 (en) * 2005-03-14 2006-09-21 Sumitomo Electric Industries, Ltd. Superconductive cable and dc power transmission using the superconductive cable
US8354591B2 (en) 2006-04-10 2013-01-15 Sumitomo Electric Industries, Ltd. Superconducting cable
JP2008215804A (en) * 2007-02-07 2008-09-18 Taiyo Nippon Sanso Corp Method for cooling liquid nitrogen
JP2009048794A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable line
JP2012199206A (en) * 2011-03-23 2012-10-18 Hitachi Cable Ltd Flat cable
WO2013084528A1 (en) * 2011-12-06 2013-06-13 住友電気工業株式会社 Superconducting cable, superconducting cable line, method for installing superconducting cable, method for operating superconducting cable line
CN103907162A (en) * 2011-12-06 2014-07-02 住友电气工业株式会社 Superconducting cable, superconducting cable line, method for installing superconducting cable, method for operating superconducting cable line

Also Published As

Publication number Publication date
JP2895507B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JP4835821B2 (en) Superconducting cable
JP4300517B2 (en) Superconducting cable
CN109637739B (en) Quasi-isotropic high current-carrying superconducting cable conductor
EP2332151B1 (en) Electricity transmission cooling system
US3595982A (en) Supercounducting alternating current cable
JP4826996B2 (en) Superconducting cable line
US10062478B2 (en) Superconducting cable having outgoing coolant inside a conductor and return coolant outside the conductor, and device and method for cooling superconducting cable
US7453041B2 (en) Method and apparatus for cooling a superconducting cable
JP4399770B2 (en) Superconducting cable operation method and superconducting cable system
US11430584B2 (en) Device for DC current transmission and cooling method
JPH02299108A (en) Superconducting cable
KR20030007530A (en) A stationary induction machine and a cable therefor
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP4746175B2 (en) Superconducting cable line
JP4487361B2 (en) Superconducting cable
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
US5324891A (en) Superconducting connecting leads having thermal plug
JP4956859B2 (en) Control method of vaporization rate of refrigerant in superconducting cable
EP3553839A1 (en) Superconducting fault current limiter
JPH02109211A (en) Superconductive cable
JP2002140943A (en) Superconductive cable
JPH09180553A (en) Former for high temperature superconductor
CN113436804A (en) Superconducting cable terminal
JPH06103838A (en) Two-phase coaxial-type superconductive cable
JPH0520937A (en) Superconductive conductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees