JP2895507B2 - Superconducting cable - Google Patents

Superconducting cable

Info

Publication number
JP2895507B2
JP2895507B2 JP1119652A JP11965289A JP2895507B2 JP 2895507 B2 JP2895507 B2 JP 2895507B2 JP 1119652 A JP1119652 A JP 1119652A JP 11965289 A JP11965289 A JP 11965289A JP 2895507 B2 JP2895507 B2 JP 2895507B2
Authority
JP
Japan
Prior art keywords
coolant
superconducting cable
coolant passage
superconducting
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1119652A
Other languages
Japanese (ja)
Other versions
JPH02299108A (en
Inventor
悟 田中
浩一郎 足立
直隆 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1119652A priority Critical patent/JP2895507B2/en
Publication of JPH02299108A publication Critical patent/JPH02299108A/en
Application granted granted Critical
Publication of JP2895507B2 publication Critical patent/JP2895507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は外径が細くとも圧力損失が少ない超電導ケー
ブル、特に、断熱管路6内の冷却通路2内に3本の超電
導ケーブルコア7が配置されたトリプレックスタイプと
超電導ケーブルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a superconducting cable having a small outer diameter and a small pressure loss, in particular, three superconducting cable cores 7 in a cooling passage 2 in a heat insulating conduit 6. It relates to the arranged triplex type and superconducting cable.

(従来の技術) 超電導ケーブルは従来からあり、その一例として第2
図に示されるように、冷却剤通路2を形成する管1の外
周に熱絶縁体層3を介して保護用金属管4が配設され、
最下層に防蝕材層5が設けられてなる断熱管路6の、前
記管1内の超電導ケーブルコア7が3本配置されたトリ
プレックスタイプのものがある。
(Conventional technology) Superconducting cables have been used in the past,
As shown in the figure, a metal tube 4 for protection is disposed on the outer periphery of a tube 1 forming a coolant passage 2 via a heat insulator layer 3.
There is a triplex type in which three superconducting cable cores 7 in the pipe 1 are arranged in the heat insulating pipe 6 in which the anticorrosion material layer 5 is provided in the lowermost layer.

この超電導ケーブルコア7はコア用冷却剤流路9を形
成する管8の外周に管状の通電用超電導導体10が設けら
れ、同通電用超電導導体10の外周に電気絶縁体層11が設
けられ、同電気絶縁層11の外周に遮蔽用超電導導体12が
設けられている。
The superconducting cable core 7 is provided with a tubular energizing superconducting conductor 10 on the outer periphery of a tube 8 forming a core coolant flow path 9, and an electric insulator layer 11 on the outer periphery of the energizing superconducting conductor 10. The shielding superconducting conductor 12 is provided on the outer periphery of the electric insulating layer 11.

上記通電用超電導導体10と遮蔽用超電導導体12は、例
えばビスマス、ストロンチュム、カルシウム、銅の酸化
物、或はイットリウム、バリウム、銅の酸化物などの酸
化物超電導体と、例えば銅またはアルミニウムからなる
安定化層とが接合された複合テーブルから構成されてい
る。
The conducting superconducting conductor 10 and the shielding superconducting conductor 12 are, for example, bismuth, strontium, calcium, oxides of copper, or yttrium, barium, oxide superconductors such as copper oxides, and, for example, copper or aluminum. It is composed of a composite table joined with a stabilizing layer.

ところで従来の前記超電導ケーブルでは、通電用超電
導導体10と遮蔽用超電導導体12の両方(以下単に超電導
導体と記す)を、必要とされる超電導電流を通電可能な
温度領域に保持するために、導体や絶縁体から発生する
熱や外部から断熱管路6中に侵入する熱を除去する必要
がある。このため従来の超電導ケーブルでは断熱管路6
内の冷却剤通路2及びケーブルコア内のコア用冷却剤流
路9に冷却剤として液体窒素を流している。このうち冷
却剤通路2を流れる液体窒素は超電導ケーブルコア7に
含浸されて電気絶縁の役割も果すようにしてある。
By the way, in the conventional superconducting cable, both the conducting superconductor 10 and the shielding superconducting conductor 12 (hereinafter simply referred to as superconducting conductor) are required to be kept in a temperature range in which a required superconducting current can be conducted. It is necessary to remove the heat generated from the heat and the insulator and the heat that enters the heat insulating conduit 6 from the outside. For this reason, in the conventional superconducting cable, the heat insulation pipe 6
Liquid nitrogen flows as a coolant in the coolant passage 2 in the inside and the coolant passage 9 for the core in the cable core. Of these, the liquid nitrogen flowing through the coolant passage 2 is impregnated in the superconducting cable core 7 so as to also play a role of electrical insulation.

この上記二つの冷却剤通路2、コア用冷却剤流路9に
流す液体窒素は上記の熱の合計量を完全に除去できるだ
けの量が必要であり、且つ十分な電気絶縁特性を発揮で
きるだけの圧力を持つものでなければならない。ちなみ
に、液体窒素の流量が不足すると超電導ケーブルコア7
の温度が上昇し過ぎて超電導状態が破れ、送電不可能と
なる。また、前記圧力が不足すると液体窒素中に泡が生
じて電気絶縁特性が低下し、ケーブルが絶縁破壊してし
まう。
The liquid nitrogen flowing through the two coolant passages 2 and the core coolant passage 9 needs to have an amount capable of completely removing the total amount of heat and a pressure sufficient to exhibit sufficient electrical insulation characteristics. Must have Incidentally, if the flow rate of liquid nitrogen is insufficient, the superconducting cable core 7
Temperature rises too much, the superconducting state is broken, and power transmission becomes impossible. In addition, if the pressure is insufficient, bubbles are generated in the liquid nitrogen, the electrical insulation characteristics are reduced, and the cable is broken down.

また、冷却剤通路2、コア用冷却剤流路9内を流れる
液体窒素には圧力損失が生じるが、それは流量の2乗に
比例して増大する。また、波付けされていない流路管の
場合は、直径の5乗に反比例して増大する。この圧力損
失は断熱管路6を曲げ得るようにするために断熱管路6
を構成する管1を保護用金属管4に波付けした場合は、
流れる液体窒素に加わる抵抗が増大して大きくなる。こ
の圧力損失が大きくなると圧力不足のためにケーブルが
絶縁破壊する危険が起きたり、液体窒素が冷却区間全体
に流れなくなってケーブルが十分に冷却されなくなった
りする。このため、一冷却区間で許容される圧力損失は
ある最大許容値以下にしなければならない。そのために
は液体窒素流路断面積を一定面積以上確保しなければな
らない。また圧力損失がたとえ最大許容値を越えない場
合でも、圧力損失が大きくなるほどケーブルに大きな電
気的、機械的負荷がかかるので、設計上、強度を高める
必要が生じ、また、ケーブル運転時の安定性や信頼性も
損なわれる。
Further, a pressure loss occurs in the liquid nitrogen flowing in the coolant passage 2 and the core coolant passage 9, and the pressure loss increases in proportion to the square of the flow rate. In the case of a non-corrugated flow pipe, the diameter increases in inverse proportion to the fifth power of the diameter. This pressure loss causes the insulation line 6 to bend so that the insulation line 6 can be bent.
When the pipe 1 constituting the above is corrugated to the protective metal pipe 4,
The resistance applied to the flowing liquid nitrogen increases and increases. If the pressure loss is large, there is a danger that the cable will be broken down due to insufficient pressure, or liquid nitrogen will not flow through the entire cooling section and the cable will not be cooled sufficiently. For this reason, the pressure loss allowed in one cooling section must be less than a certain maximum allowable value. For that purpose, it is necessary to secure a cross-sectional area of the liquid nitrogen flow path of a certain area or more. Even if the pressure loss does not exceed the maximum allowable value, the greater the pressure loss, the greater the electrical and mechanical load on the cable.Therefore, it is necessary to increase the strength in the design, and the stability during cable operation And reliability is also impaired.

(発明が解決しようとする課題) しかし、圧力損失を低減し、信頼性を向上させるため
に液体窒素流路断面積を大きくするとケーブルの最外径
が大きくなる。
(Problems to be Solved by the Invention) However, if the cross-sectional area of the liquid nitrogen flow path is increased in order to reduce the pressure loss and improve the reliability, the outermost diameter of the cable increases.

例えば、送電電圧66kv、送電容量1000MVA、超電導層
の臨界電流密度1×106A/cm2、外径40mmのケーブルコア
が3本内蔵され、厚み40mmの断熱層を持つ管路を持つ従
来の超電導ケーブルの場合、3本のケーブルコアを内蔵
できる最小の断熱管路内径は90mmであり、ケーブル外径
は最小で170mmとなる。
For example, a conventional transmission line with a transmission voltage of 66 kv, a transmission capacity of 1000 MVA, a critical current density of the superconducting layer of 1 × 10 6 A / cm 2 , three cable cores having an outer diameter of 40 mm, and a heat insulating layer of 40 mm thickness. In the case of a superconducting cable, the minimum adiabatic conduit inner diameter capable of incorporating three cable cores is 90 mm, and the minimum cable outer diameter is 170 mm.

しかし、このケーブルでは液体窒素を2.5kmの一冷却
区間長で往復循環させると、圧力損失が10気圧程度にも
なるため、液体窒素冷却機からケーブルに入るところで
15気圧に保持してもケーブル出口では5気圧程度に低下
してしまう。このため電気絶縁層11に部分放電が起きな
いようにするのに必要な圧力が得にくく、運転の安定性
や信頼性がきわめて低くなる。
However, in this cable, if liquid nitrogen is circulated back and forth over one cooling section length of 2.5 km, the pressure loss will be about 10 atm.
Even if the pressure is kept at 15 atm, it drops to about 5 at the cable outlet. For this reason, it is difficult to obtain the pressure required to prevent the partial discharge from occurring in the electrical insulating layer 11, and the stability and reliability of operation are extremely low.

ちなみに、ここで生じる圧力損失は超電導ケーブルコ
ア7の内部のコア用冷却剤流路9内で生じたものではな
く、断熱管路6の冷却剤通路2内で生じたものであり、
その主要な原因は、断熱管路6内の冷却剤通路2の形状
が円形でなく、しかもコア内のコア用冷却剤流路9より
も細いために、冷却剤の流れが乱れ易く、摩擦抵抗が増
大することによる。
Incidentally, the pressure loss generated here is not generated in the core coolant flow path 9 inside the superconducting cable core 7, but is generated in the coolant passage 2 of the heat insulating pipe 6.
The main cause is that the shape of the coolant passage 2 in the heat-insulating pipe 6 is not circular and is narrower than the core coolant passage 9 in the core, so that the flow of the coolant is easily disturbed, and the frictional resistance is reduced. Is increased.

そこで、従来の上記超電導ケーブルにおいて、圧力が
5気圧程度に下がらないようにするためには、ケーブル
外径を170mmより大きくして圧力損失を減らしたり、入
口圧力を20気圧に高めて出口圧力が10気圧程度になるよ
うにケーブルの設計強度及び冷却機出力を高めることが
必要になる。しかし、ケーブル外径を大きくするとその
分だけ製造、輸送、布設の経費が高くなり、また、ケー
ブルの設計強度及び冷却機出力を高めると経費が高くな
り、いずれにしてもコスト高となる。
In order to prevent the pressure from dropping to about 5 atm in the conventional superconducting cable, the cable outer diameter is made larger than 170 mm to reduce the pressure loss, or the inlet pressure is increased to 20 atm and the outlet pressure is reduced. It is necessary to increase the design strength of the cable and the output of the cooler so that the pressure becomes about 10 atm. However, if the outer diameter of the cable is increased, the cost of manufacturing, transportation, and laying is increased, and if the design strength of the cable and the output of the cooler are increased, the cost is increased, and in any case, the cost is increased.

以上のように従来の超電導ケーブルでは、圧力損失や
ケーブル外径が大きくなり、信頼性や経済性が損なわれ
るという問題点があった。加えて、この種の、冷却剤通
路2を流れる液体窒素が超電導ケーブルコア7に含浸さ
れて電気絶縁の役割も果す超電導ケーブルでは、冷却剤
通路2を流れる液体窒素に氷などの異物が混入して超電
導ケーブルコア7を傷付ける危険性があった。
As described above, the conventional superconducting cable has a problem that the pressure loss and the cable outer diameter are increased, and the reliability and economy are impaired. In addition, in this type of superconducting cable in which liquid nitrogen flowing through the coolant passage 2 is impregnated into the superconducting cable core 7 and also serves as an electrical insulator, foreign matter such as ice is mixed into the liquid nitrogen flowing through the coolant passage 2. Therefore, there is a risk of damaging the superconducting cable core 7.

(発明の目的) 本発明の超電導ケーブルは前記の諸問題を解決すべく
開発されたものであり、その目的は、ケーブルの外径が
細く、しかも圧力損失の少ない超電導ケーブルであっ
て、運用中に超電導ケーブルコア7が損傷する危険性も
少ない超電導ケーブルを提供することにある。
(Object of the Invention) The superconducting cable of the present invention has been developed to solve the above-mentioned problems, and its object is to provide a superconducting cable having a small outer diameter of the cable and a small pressure loss. Another object of the present invention is to provide a superconducting cable having a low risk of damaging the superconducting cable core 7.

(課題を解決するための手段) 本発明の超電導ケーブルは第1図のように、管1の外
周に熱絶縁体層3が設けられ、内部に冷却剤通路2が設
けられてなる断熱管路6の前記冷却剤通路2内に、超電
導ケーブルコア7が3本配置され、それら超電導ケーブ
ルコア7は通電用超電導導体10が設けられ、同超電導導
体10の外周に電気絶縁層11が設けられてなり、前記冷却
剤通路2内に超電導ケーブルコア7の前記電気絶縁層11
に浸透して電気絶縁特性を補う冷却剤が流される構造の
超電導ケーブルにおいて、前記3本の超電導ケーブルコ
ア7はそれらの中心が各々三角形の各頂点に位置する様
に配置され、断熱管路6の内径と超電導ケーブルコア7
の外径との比が2.5以下であり、前記冷却剤通路2内に
冷却剤流路13を形成する波付けされていない無波付管14
が3本配置され、その3本の無波付管14の各々は前記冷
却剤通路2内の隣接する2本の超電導ケーブルコア7の
間に形成される溝に添って配置され、前記冷却剤流路13
内にその外側の冷却剤通路2とは別に冷却剤を流すこと
ができるようにしたことを特徴とするものである。
(Means for Solving the Problems) As shown in FIG. 1, a superconducting cable according to the present invention comprises a heat insulating layer 3 provided on the outer periphery of a tube 1 and a coolant passage 2 provided therein. 6, three superconducting cable cores 7 are arranged, the superconducting cable cores 7 are provided with a conducting superconducting conductor 10, and an electric insulating layer 11 is provided on the outer periphery of the superconducting conductor 10. The electric insulating layer 11 of the superconducting cable core 7 is provided in the coolant passage 2.
In the superconducting cable having a structure in which a coolant that penetrates into the space and a coolant that supplements the electrical insulation property flows, the three superconducting cable cores 7 are arranged such that their centers are located at respective vertices of a triangle, and the heat insulating conduit 6 Inner diameter and superconducting cable core 7
And an uncorrugated pipe 14 that forms a coolant passage 13 in the coolant passage 2.
Are disposed, and each of the three waveless tubes 14 is disposed along a groove formed between two adjacent superconducting cable cores 7 in the coolant passage 2, and the coolant is provided. Channel 13
It is characterized in that a coolant can flow inside the coolant passage 2 separately from the coolant passage 2 on the outside.

本発明における冷却剤流路13を形成する無波付管14と
しては、その内部を流れる冷却剤が外部から熱を効率よ
く取り込めるように、例えば銅のように熱伝導度の高い
金属で作られている。
The waveless tube 14 forming the coolant channel 13 in the present invention is made of a metal having high thermal conductivity such as copper, for example, so that the coolant flowing inside can efficiently take in heat from the outside. ing.

本発明の超電導ケーブルを使用するに当っては、従来
の超電導ケーブルの断熱管路6内の冷却剤通路2を形成
する管1内に流されていた冷却剤の全部または殆ど全部
を、本発明の超電導ケーブルの断熱管路6内に配置した
無波付管14内に流すのが望ましく、その場合は超電導ケ
ーブルコア7に含浸させるための電気絶縁用液体窒素を
無波付管14内に流す熱除去用液体窒素と分離して用い
る。このようにすれば、電気絶縁用液体窒素は熱除去用
液体窒素と異なり、冷却区間内を循環させる必要が無い
ので圧力損失が生ぜず、全区間の圧力が一定となるので
より一層信頼性の高い電気絶縁を行なうことができる。
In using the superconducting cable of the present invention, all or almost all of the coolant flowing in the pipe 1 forming the coolant passage 2 in the heat insulating conduit 6 of the conventional superconducting cable is used according to the present invention. It is desirable to flow into the waveless pipe 14 arranged in the heat insulating conduit 6 of the superconducting cable, in which case liquid nitrogen for electric insulation for impregnating the superconducting cable core 7 is flowed into the waveless pipe 14. Used separately from liquid nitrogen for heat removal. In this way, unlike the liquid nitrogen for heat removal, the liquid nitrogen for electrical insulation does not need to be circulated in the cooling section, so that no pressure loss occurs and the pressure in all sections is constant, so that the reliability is further improved. High electrical insulation can be achieved.

本発明の超電導ケーブルにおいて、外径を細くし、圧
力損失を少なくするためには、断熱管路6の内径と超電
導ケーブルコア7の外径との比を2.5以下とするのがよ
い。ちなみに、トリプレックスタイプの超電導ケーブル
では、断熱管路6の内径と超電導ケーブルコア7の外径
との比が2.5以下になると、超電導ケーブルコア7が断
熱管路6の内面に接近して、断熱管路6内の冷却通路2
が実質的に、3つに分かれてしまい、分れた冷却通路を
流れる液体窒素の圧力損失が大幅に増大する。
In the superconducting cable of the present invention, in order to reduce the outer diameter and reduce the pressure loss, the ratio between the inner diameter of the heat insulating conduit 6 and the outer diameter of the superconducting cable core 7 is preferably 2.5 or less. Incidentally, in the triplex type superconducting cable, when the ratio of the inner diameter of the heat-insulating conduit 6 to the outer diameter of the superconducting cable core 7 becomes 2.5 or less, the superconducting cable core 7 approaches the inner surface of the heat-insulating conduit 6 and becomes insulated. Cooling passage 2 in conduit 6
Is substantially divided into three, and the pressure loss of the liquid nitrogen flowing through the separated cooling passage is greatly increased.

(作用) 本発明の超電導ケーブルは、断熱管路6の管1内の冷
却剤通路2内に、波付けされていない無波付管14を配置
して冷却剤流路13を形成してあるので、冷却剤流路13に
流れる冷却剤の圧力損失が少なくなる。また、冷却剤通
路2内に冷却剤流路13を別に設けたので、この冷却剤流
路13にはその外側とは別に冷却剤を流すことができる。
しかも、従来の超電導ケーブルの断熱管路6内の冷却剤
通路2に通流していた冷却剤の全部或は殆ど全部を熱除
去用として無波付管14の冷却剤流路13内に流し、冷却剤
通路2内には電気絶縁を主とする(電気絶縁用)冷却剤
を収容することができる。この場合、冷却剤通路2内の
冷却剤(液体窒素)は電気絶縁が主であるため冷却剤通
路2内を流して循環させる必要がなく、滞留させておく
こともできるため、冷却剤通路2内で生ずる冷却剤の圧
力損失が大幅に減少する。また、冷却剤通路2内の電気
絶縁用の冷却剤を冷却剤通路2内に滞留させておくこと
もできるため、電気絶縁用冷却剤に氷のような不純物が
混入していても、その不純物が超電導ケーブルコア7や
断熱管路6に衝突することがなく、それらに傷付く危険
性が低減する。
(Operation) In the superconducting cable of the present invention, a non-corrugated pipe 14 which is not corrugated is arranged in the coolant passage 2 in the pipe 1 of the heat insulating conduit 6 to form a coolant flow path 13. Therefore, the pressure loss of the coolant flowing through the coolant channel 13 is reduced. In addition, since the coolant passage 13 is provided separately in the coolant passage 2, the coolant can flow through the coolant passage 13 separately from the outside thereof.
In addition, all or almost all of the coolant flowing through the coolant passage 2 in the heat insulating conduit 6 of the conventional superconducting cable flows into the coolant passage 13 of the waveless pipe 14 for heat removal, A coolant mainly for electrical insulation (for electrical insulation) can be accommodated in the coolant passage 2. In this case, the coolant (liquid nitrogen) in the coolant passage 2 does not need to flow and circulate in the coolant passage 2 because it is mainly electrically insulated. The pressure loss of the coolant occurring therein is greatly reduced. Further, since the coolant for electric insulation in the coolant passage 2 can be retained in the coolant passage 2, even if impurities such as ice are mixed in the coolant for electric insulation, the impurities are removed. Does not collide with the superconducting cable core 7 or the heat insulating conduit 6, and the risk of damaging them is reduced.

(実施例) 以下に本発明の超電導ケーブルを実施例により詳細に
説明する。
(Example) Hereinafter, the superconducting cable of the present invention will be described in detail with reference to examples.

第1図に示した本発明の超電導ケーブルの送電規格を
66kv、1000MVA、ケーブル外径を170mmとして、圧力損失
Pを求めた。圧力損失Pは次のようにして求められる。
The transmission standard of the superconducting cable of the present invention shown in FIG.
The pressure loss P was determined with 66 kv, 1000 MVA, and a cable outer diameter of 170 mm. The pressure loss P is obtained as follows.

P=R・M2・L/D5 ……(1) 但し、 R:流動抵抗、M:冷却剤質量流量、 L:冷却区間長、 D:冷却剤流路直径(または冷却剤流路等価直径)。P = R · M 2 · L / D 5 (1) where R: flow resistance, M: coolant mass flow rate, L: cooling section length, D: coolant channel diameter (or coolant channel equivalent) diameter).

冷却剤質量流量Mは次式で求められる。 The coolant mass flow rate M is obtained by the following equation.

M=W・L/(C・T) ……(2) 但し、 W:除去すべき熱量、C:冷却剤熱容量、 T:冷却剤温度上昇。 M = W / L / (C / T) (2) where, W: amount of heat to be removed, C: heat capacity of the coolant, T: temperature rise of the coolant.

除去すべき熱量Wは導体の交流損失、電気絶縁体の誘
電損失及び熱侵入からなる。
The amount of heat W to be removed comprises AC loss of the conductor, dielectric loss of the electrical insulator, and heat penetration.

上記(1)(2)式においてL=2.5km、C=2035J/k
g・k、T=15kとし、Wは主たるものが導体交流損失
で、これが超電導導体の臨界電流密度に反比例すること
も考慮して、この電流密度を1×106A/cm2とした。
In the above equations (1) and (2), L = 2.5 km, C = 2035 J / k
g · k, T = 15k, and W is mainly a conductor AC loss, and considering that this is inversely proportional to the critical current density of the superconducting conductor, this current density was set to 1 × 10 6 A / cm 2 .

この実施例では、従来の超電導ケーブルの断熱管路6
の冷却剤通路2を形成する管1内を流れていた冷却剤の
うち、95%を波付されていない無波付管14の冷却剤流路
13内に流し、残り5%を断熱管路6を構成する管1の冷
却剤通路2に流すものとした。
In this embodiment, the heat insulating conduit 6 of the conventional superconducting cable is used.
95% of the coolant flowing through the pipe 1 forming the coolant passage 2 of FIG.
13 and the remaining 5% is passed through the coolant passage 2 of the pipe 1 constituting the heat insulating pipe 6.

また、本発明の超電導ケーブルについて、断熱管路6
を構成する冷却剤通路2を形成する管1と保護用金属管
4が波付けされている場合と、波付けされていない場合
の両方について圧力損失を算出した。また、比較のため
それと同一規格、同サイズの従来の超電導ケーブルにつ
いても同様の計算を行なった。その結果を、第1表に両
者の設計数値を並べて示した。
Further, the superconducting cable of the present invention has a heat insulating conduit 6.
The pressure loss was calculated for both the case where the pipe 1 forming the coolant passage 2 and the metal pipe 4 for protection forming the coolant passage 2 were corrugated and the case where the pipe was not corrugated. For comparison, a similar calculation was performed for a conventional superconducting cable of the same standard and size. The results are shown in Table 1 with the design values of both.

波付型:断熱管路6を構成する管1、保護用金属管4
が波付けされている場合。
Corrugated type: tube 1 constituting heat insulating conduit 6, metal tube 4 for protection
If is chopped.

無波付型:断熱管路6を構成する管1、保護用金属管
4が波付けされていない場合。
Non-corrugated type: when the pipes 1 and the protective metal pipes 4 constituting the heat-insulating pipeline 6 are not corrugated.

第1表より明らかなように本発明の超電導ケーブルで
は定格容量1000MVAの大容量送電が、ケーブル外径が170
mmという細いケーブルで可能となる。
As is evident from Table 1, the superconducting cable of the present invention can transmit large-capacity power with a rated capacity of 1000 MVA, and has a cable outer diameter of 170 MVA.
This is possible with cables as thin as mm.

また、超電導ケーブルでは、圧力損失が波付型の場合
も、無波付型の場合も共に最大許容量の10気圧を大きく
下回る3.6気圧、3.5気圧である。これより経済性と運転
時の安定性、信頼性に優れていることがわかる。
In the case of the superconducting cable, the pressure loss is 3.6 atm and 3.5 atm, which is much lower than the maximum allowable amount of 10 atm for both the corrugated type and the non-corrugated type. From this, it can be seen that the economy, the stability during operation, and the reliability are excellent.

これに対して従来の超電導ケーブルでは、本発明の超
電導ケーブルと同容量、同サイズの場合、圧力損失が波
付型の場合10.9気圧、無波付型の場合8.7気圧であっ
た。
On the other hand, in the case of the conventional superconducting cable having the same capacity and the same size as the superconducting cable of the present invention, the pressure loss was 10.9 atm for the corrugated type and 8.7 atm for the non-corrugated type.

従って、比較例では本発明の超電導ケーブルに比して
運転条件、設計条件が厳しくなり、ケーブル本体や冷却
装置等がコスト高となる。
Therefore, in the comparative example, operating conditions and design conditions are stricter than those of the superconducting cable of the present invention, and the cost of the cable body, the cooling device, and the like are increased.

また、比較例において本発明のケーブルと同程度の圧
力損失にするためには、ケーブル外径を大きくする必要
があり、これまたコスト高となってしまう。
Further, in order to reduce the pressure loss to about the same level as the cable of the present invention in the comparative example, it is necessary to increase the outer diameter of the cable, which also increases the cost.

(発明の効果) 本発明の超電導ケーブルは次のような効果がある。(Effect of the Invention) The superconducting cable of the present invention has the following effects.

.冷却剤通路2内に、波付けされていない無波付管14
を配置して冷却剤流路13を形成してあるので、冷却剤流
路13に流れる冷却剤の圧力損失が波付き管の場合よりも
少なくなる。また、冷却剤流路13に流れる冷却剤の圧力
を冷却区間の全長に渡り一定に保持でき、より一層冷却
効率が高まる。
. An uncorrugated pipe 14 in the coolant passage 2
Are arranged to form the coolant channel 13, so that the pressure loss of the coolant flowing through the coolant channel 13 is smaller than in the case of the corrugated tube. Further, the pressure of the coolant flowing through the coolant channel 13 can be kept constant over the entire length of the cooling section, and the cooling efficiency is further improved.

.冷却剤通路2内に冷却剤流路13が形成されているた
め、冷却剤流路13にその外側とは別に冷却剤を流すこと
ができ、従来の超電導ケーブルの断熱管路6内の冷却剤
通路2に通流していた冷却剤の全部或は殆ど全部を熱除
去用として無波付管14の冷却剤流路13内に流して効率よ
く超電導ケーブルコア7を冷却することができる。ま
た、冷却剤通路2内には電気絶縁を主たる作用とする
(電気絶縁用)冷却剤(液体窒素)を収容することがで
き、その冷却剤は電気絶縁の作用が主であるため冷却剤
通路2内を流して循環させる必要がなく、滞留させてお
くこともできるため、冷却剤通路2内で生ずる冷却剤の
圧力乙損失が大幅に減少する。このため、ケーブル外径
が細くても冷却剤通路2を流れる冷却剤の圧力損失が少
ない超電導ケーブルとなる。
. Since the coolant passage 13 is formed in the coolant passage 2, the coolant can flow through the coolant passage 13 separately from the outside thereof, and the coolant in the heat insulating conduit 6 of the conventional superconducting cable can be used. All or almost all of the coolant flowing through the passage 2 is allowed to flow into the coolant channel 13 of the waveless tube 14 for heat removal, so that the superconducting cable core 7 can be efficiently cooled. The coolant passage 2 can contain a coolant (liquid nitrogen) whose main function is electrical insulation (for electric insulation), and the coolant mainly has the function of electrical insulation. Since it is not necessary to circulate through the inside of the coolant passage 2 and it is possible to keep the coolant in the coolant passage 2, the pressure loss of the coolant generated in the coolant passage 2 is greatly reduced. Therefore, a superconducting cable having a small pressure loss of the coolant flowing through the coolant passage 2 even if the cable outer diameter is small.

.冷却剤通路2内の電気絶縁用の冷却剤は冷却剤通路
2内に滞留させておくこともできるため、電気絶縁用冷
却剤に氷のような不純物が混入していても、その不純物
が超電導ケーブルコア7や断熱管路6に衝突することが
なく、それらに傷付く危険性が低減する。
. Since the coolant for electrical insulation in the coolant passage 2 can be kept in the coolant passage 2, even if impurities such as ice are mixed in the coolant for electrical insulation, the impurities are superconductive. It does not collide with the cable core 7 or the heat-insulating conduit 6, and the risk of damaging them is reduced.

.冷却剤通路2内に収容した電気絶縁を主とする冷却
剤が超電導ケーブルコア7の電気絶縁層11に含浸するの
で、冷却区間全域に亙って一層信頼性の高い電気絶縁が
可能となる。
. Since the coolant mainly containing the electrical insulation housed in the coolant passage 2 is impregnated into the electrical insulating layer 11 of the superconducting cable core 7, more reliable electrical insulation is possible over the entire cooling section.

.冷却剤通路2内に配置する3本の無波付管14を、隣
接する2本の超電導ケーブルコア7の間に形成される溝
に添って配置したので、夫々の無波付管14も冷却剤通路
2内を流れる冷却剤により均等に冷却され、冷却効率が
向上するうえ、断熱管路6の内径と超電導ケーブルコア
7の外径との比を2.5以下としても、圧力損失が少な
く、超電導ケーブルを細くすることができる。
. Since the three waveless tubes 14 arranged in the coolant passage 2 are arranged along the grooves formed between the two adjacent superconducting cable cores 7, the respective waveless tubes 14 are also cooled. The cooling agent is uniformly cooled by the coolant flowing in the agent passage 2 to improve the cooling efficiency, and even if the ratio of the inner diameter of the heat insulating conduit 6 to the outer diameter of the superconducting cable core 7 is 2.5 or less, the pressure loss is small, The cable can be made thinner.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の酸化物超電導ケーブルの一例の説明
図、第2図は従来の酸化物超電導ケーブルの説明図であ
る。 1は管 2は冷却剤通路 3は熱絶縁体層 4は保護用金属管 5は防蝕材層 6は断熱管路 7は超電導ケーブルコア 8は管 9はコア用冷却剤流路 10は通電用超電導導体 11は電気絶縁層 12は遮蔽用超電導導体 13は冷却剤流路 14は無波付管
FIG. 1 is an explanatory view of an example of the oxide superconducting cable of the present invention, and FIG. 2 is an explanatory view of a conventional oxide superconducting cable. 1 is a tube 2 is a coolant passage 3 is a thermal insulator layer 4 is a protective metal tube 5 is a corrosion-resistant material layer 6 is a heat-insulating conduit 7 is a superconducting cable core 8 is a tube 9 is a core coolant flow passage 10 is a current-carrying passage The superconducting conductor 11 is an electric insulating layer 12 is a shielding superconducting conductor 13 is a coolant passage 14 is a waveless tube

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−67113(JP,A) 特開 昭63−264815(JP,A) 実開 昭50−74483(JP,U) 実開 昭49−79768(JP,U) (58)調査した分野(Int.Cl.6,DB名) H01B 12/16 F25D 3/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-67113 (JP, A) JP-A-63-264815 (JP, A) Fully open Showa 50-74483 (JP, U) Really open Showa 49- 79768 (JP, U) (58) Field surveyed (Int. Cl. 6 , DB name) H01B 12/16 F25D 3/10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】管(1)の外周に熱絶縁体層(3)が設け
られ、内部に冷却剤通路(2)が設けられてなる断熱管
路(6)の前記冷却剤通路(2)内に、超電導ケーブル
コア(7)が3本配置され、それら超電導ケーブルコア
(7)は通電用超電導導体(10)が設けられ、同超電導
導体(10)の外周に電気絶縁層(11)が設けられてな
り、前記冷却剤通路(2)内に超電導ケーブルコア
(7)の前記電気絶縁層(11)に浸透して電気絶縁特性
を補う冷却剤が流される構造の超電導ケーブルにおい
て、前記3本の超電導ケーブルコア(7)はそれらの中
心が各々三角形の各頂点に位置する様に配置され、断熱
管路(6)の内径と超電導ケーブルコア(7)の外径と
の比が2.5以下であり、前記冷却剤通路(2)内に冷却
剤流路(13)を形成する波付けされていない無波付管
(14)が3本配置され、その3本の無波付管(14)の各
々は前記冷却剤通路(2)内の隣接する2本の超電導ケ
ーブルコア(7)の間に形成される溝に添って配置さ
れ、前記冷却剤流路(13)内にその外側の冷却剤通路
(2)とは別に冷却剤を流すことができるようにしたこ
とを特徴とする超電導ケーブル。
1. A coolant passage (2) of an adiabatic conduit (6) having a heat insulator layer (3) provided on the outer periphery of a pipe (1) and a coolant passage (2) provided inside. Inside, three superconducting cable cores (7) are arranged, the superconducting cable cores (7) are provided with a conducting superconducting conductor (10), and an electric insulating layer (11) is provided around the outer periphery of the superconducting conductor (10). A superconducting cable having a structure in which a coolant that penetrates into the electric insulating layer (11) of the superconducting cable core (7) and supplements the electric insulation characteristics flows into the coolant passage (2). The superconducting cable cores (7) are arranged such that their centers are located at the respective vertices of a triangle, and the ratio of the inner diameter of the heat-insulating pipeline (6) to the outer diameter of the superconducting cable core (7) is 2.5 or less. And a corrugation forming a coolant passage (13) in the coolant passage (2). Three unwashed pipes (14) are arranged, and each of the three unwashed pipes (14) is connected to two adjacent superconducting cable cores (7) in the coolant passage (2). The coolant is arranged along a groove formed between the coolant passages, so that a coolant can flow in the coolant channel (13) separately from the coolant passage (2) outside the coolant channel (13). Superconducting cable.
JP1119652A 1989-05-12 1989-05-12 Superconducting cable Expired - Fee Related JP2895507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119652A JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119652A JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Publications (2)

Publication Number Publication Date
JPH02299108A JPH02299108A (en) 1990-12-11
JP2895507B2 true JP2895507B2 (en) 1999-05-24

Family

ID=14766739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119652A Expired - Fee Related JP2895507B2 (en) 1989-05-12 1989-05-12 Superconducting cable

Country Status (1)

Country Link
JP (1) JP2895507B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423692B2 (en) * 2004-05-21 2014-02-19 住友電気工業株式会社 Superconducting cable
JP4716248B2 (en) * 2004-05-21 2011-07-06 住友電気工業株式会社 Superconducting cable
JP4517879B2 (en) * 2004-10-15 2010-08-04 住友電気工業株式会社 Superconducting cable
US7943852B2 (en) 2005-03-14 2011-05-17 Sumitomo Electric Industries, Ltd. Superconducting cable
EP1860667A4 (en) * 2005-03-14 2011-12-21 Sumitomo Electric Industries Superconductive cable and dc power transmission using the superconductive cable
CN101228595B (en) 2006-04-10 2014-04-16 住友电气工业株式会社 Superconducting cable
JP2008215804A (en) * 2007-02-07 2008-09-18 Taiyo Nippon Sanso Corp Method for cooling liquid nitrogen
JP2009048794A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable line
JP5582077B2 (en) * 2011-03-23 2014-09-03 日立金属株式会社 Flat cable
JP2013140764A (en) * 2011-12-06 2013-07-18 Sumitomo Electric Ind Ltd Superconducting cable, superconducting cable line, method for laying superconducting cable, and method for operating superconducting cable line

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517387Y2 (en) * 1973-11-12 1980-04-22
JPS5667113A (en) * 1979-11-05 1981-06-06 Mitsubishi Electric Corp Superconductor
DE3623542C1 (en) * 1986-07-12 1987-12-17 Trw Ehrenreich Gmbh Ball joint
JP2558690B2 (en) * 1987-04-21 1996-11-27 株式会社フジクラ Superconducting cable

Also Published As

Publication number Publication date
JPH02299108A (en) 1990-12-11

Similar Documents

Publication Publication Date Title
JP4826996B2 (en) Superconducting cable line
KR101004203B1 (en) Super-conductive cable
JP4835821B2 (en) Superconducting cable
US6262375B1 (en) Room temperature dielectric HTSC cable
EP0562331B1 (en) Composite electrical cable with one or more conductors and integrated cooling
US3643002A (en) Superconductive cable system
US7953466B2 (en) Superconducting cable
EP1772875A1 (en) Superconductive cable line
CN100524546C (en) Superconducting cable line
JP2895507B2 (en) Superconducting cable
JP4843937B2 (en) Superconducting cable
EP1441367A2 (en) Superconducting cable
JP4487361B2 (en) Superconducting cable
US4695675A (en) Electric lead device for superconducting electric apparatus
JP4746175B2 (en) Superconducting cable line
Minnich et al. Cryogenic power transmission
Miura et al. 66 kV-2 kA peak load test of high-Tc superconducting model cable
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
KR102351544B1 (en) Superconducting cable and superconducting power system having the same
JPH02109211A (en) Superconductive cable
JP4956859B2 (en) Control method of vaporization rate of refrigerant in superconducting cable
JP2002140943A (en) Superconductive cable
JP2001325839A (en) Superconducting cable
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
JPH0644421B2 (en) Superconducting conductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees