JPS6326348A - Production of surface coated high-speed steel member for cutting toll or wear resistant tool - Google Patents

Production of surface coated high-speed steel member for cutting toll or wear resistant tool

Info

Publication number
JPS6326348A
JPS6326348A JP16946286A JP16946286A JPS6326348A JP S6326348 A JPS6326348 A JP S6326348A JP 16946286 A JP16946286 A JP 16946286A JP 16946286 A JP16946286 A JP 16946286A JP S6326348 A JPS6326348 A JP S6326348A
Authority
JP
Japan
Prior art keywords
speed steel
substrate
coating layer
wear
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16946286A
Other languages
Japanese (ja)
Other versions
JPH0680184B2 (en
Inventor
Munenori Kato
加藤 宗則
Masato Matsui
松井 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP16946286A priority Critical patent/JPH0680184B2/en
Publication of JPS6326348A publication Critical patent/JPS6326348A/en
Publication of JPH0680184B2 publication Critical patent/JPH0680184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled high-speed steel member coated with a hard Ti compound having especially superior adhesion by vapor-depositing a hard coating layer on a high-speed steel substrate and slowly cooling the substrate heated to the tempering temp. of the steel or below to room temp. at a prescribed cooling rate. CONSTITUTION:A hard coating layer of one or more kinds of coating components selected among TiC, TiN and TiCN is vapor-deposited on a high- speed steel substrate for a cutting tool or a wear resistant tool by physical vapor deposition. After the end of the vapor deposition, the high-speed steel substrate heated to the tempering temp. of the steel or below by PVD is slowly cooled to room temp. at 50-100 deg.C/hr cooling rate. Thus, the adhesion of the coating layer is remarkably improved and a surface coated high-speed steel member for a cutting tool or a wear resistant tool having remarkably improved wear resistance is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、表面に硬質の被覆層が形成されている切削
工具用まだは耐摩耗工具用表面被覆高速度鋼部材の製造
方法に関し、特に、密着性にすぐれた硬質のチタン化合
物の被覆層が表面に形成されている切削工具用または耐
摩耗工具用表面被覆高速度鋼部材を、物理蒸着法を利用
して製造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a surface-coated high-speed steel member for use in cutting tools and wear-resistant tools, which has a hard coating layer formed on its surface, and particularly relates to , relates to a method for producing surface-coated high-speed steel members for cutting tools or wear-resistant tools, which have a coating layer of a hard titanium compound with excellent adhesion formed on the surface, using a physical vapor deposition method. .

〔従来の技術〕[Conventional technology]

従来、高速度鋼(以下、ハイスという)は、高い硬さと
すぐれた靭性を有するので、スローアウェイチップ、バ
イト、ギアーホブ、タップ、ドリル、エンドミルのよう
な切削工具、あるいはノξンチ、ジョンピン、ダイスの
ような耐摩耗工具の素材として広く使用されているが、
このハイス表面に炭化チタンや窒化チタンのようなチタ
ン化合物からなる硬質被覆層を設けると、それによって
耐溶着外、耐焼付性および耐摩耗性が向上し、工具寿命
が飛躍的に延びるところから、最近ではこのような被覆
層をハイス表面に1〜8μmの厚さに設けることも盛ん
に行われている。
Conventionally, high-speed steel (hereinafter referred to as high-speed steel) has high hardness and excellent toughness, so it has been used in cutting tools such as indexable inserts, bits, gear hobs, taps, drills, and end mills, as well as punches, bolts, and dies. It is widely used as a material for wear-resistant tools such as
Providing a hard coating layer made of a titanium compound such as titanium carbide or titanium nitride on the surface of this high speed steel improves welding resistance, seizure resistance, and wear resistance, and dramatically extends tool life. Recently, it has become popular to provide such a coating layer on the surface of high speed steel with a thickness of 1 to 8 μm.

このような炭化チタン−まだは窒化チタンの表面被覆層
を有する切削]−具用または耐摩耗工具用ハイス部材を
反応性の物理蒸着法によって製造するには、例えば、ま
ずハイス基体を反応炉内で圧カニ 10−5〜1O−5
Torrの真空雰囲気中、ハイスの焼戻1y ff+?
>度以下の温度に加熱してから、圧カニ10’〜10 
 Torrにおいてアルゴンによるイオンエツチングを
随意にこの基体に施した後、引続きこの温度と圧力を維
持しながら、炭化チタンまたは窒化チタンによる被覆反
応を起すこと、すなわち反応炉内で電子ビームなどによ
って蒸発させた金属チタンと、この反応炉中に供給され
たアセチレンまたは窒素ガスをそれぞれ正にイオン化し
、これらの正イオンを負に帯電させた基体上に電気的に
引寄せて、それぞれ炭化チタンまたは窒化チタンからな
る被膜を基体表面に析出形成させ、ついで放冷または反
応炉内にアルゴンガスを吹込んで前記基体を室温まで冷
却している。
In order to produce such titanium carbide-cutting HSS components for tools or wear-resistant tools by reactive physical vapor deposition, for example, first the HSS substrate is placed in a reactor. pressure crab 10-5~1O-5
Tempering of high speed steel in a vacuum atmosphere of Torr 1y ff+?
After heating to a temperature below >℃, pressure crab 10'~10
Optionally, the substrate is subjected to ion etching with argon at Torr, followed by a coating reaction with titanium carbide or titanium nitride while maintaining this temperature and pressure, i.e. evaporated by e.g. with an electron beam in a reactor. Metallic titanium and acetylene or nitrogen gas supplied into this reactor are each positively ionized, and these positive ions are electrically attracted onto a negatively charged substrate to form titanium carbide or titanium nitride, respectively. A coating film is deposited and formed on the surface of the substrate, and then the substrate is cooled to room temperature by being left to cool or by blowing argon gas into a reactor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の方法によって製造された表面被覆
ハイス部材における炭化チタン、窒化チタンおよび炭窒
化チタン(以下、これらをそれぞれTiC1TiNおよ
び甲iCNで表わし、また便宜上これらを総称してチタ
ンの炭・窒化物という)の被膜は、密着性に乏しいため
に、このような被膜で被覆された切削工具用または耐摩
耗工具用ハイス部材は工具寿命が短いという問題があっ
た。
However, titanium carbide, titanium nitride, and titanium carbonitride (hereinafter referred to as TiC1TiN and AiCN, respectively, and for convenience, collectively referred to as titanium carbon/nitride) in the surface-coated high-speed steel members manufactured by the above method. ) coatings have poor adhesion, so high speed steel members for cutting tools or wear-resistant tools coated with such coatings have a problem of short tool life.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者は、このような問題を解決するだめに
種々研究を重ねた結果、 物理蒸着法を利用して、チタンの炭・窒化物の被覆成分
からなる被覆層を切削工具用または耐摩耗工具用ハイス
基体にコーティングする場合に、前記基体に対する前記
被覆層の蒸着が終了した後、前記反応性の物理蒸着法の
適用によってハイスの焼戻し温度以下の温度に加熱され
ていた前記基体を室温まで冷却する際の冷却速度を毎時
50〜100℃とすると、密着性にすぐれた切削工具用
または耐摩耗工具用表面被覆ハイス部材が得られること
、を見出した。
In order to solve these problems, the inventors of the present invention have conducted various researches, and as a result, have developed a coating layer made of titanium carbon/nitride coating components for use in cutting tools or durable materials using physical vapor deposition. When coating a high speed steel base for a wear tool, after the coating layer has been deposited on the base, the base, which had been heated to a temperature below the tempering temperature of the high speed steel by applying the reactive physical vapor deposition method, is brought to room temperature. It has been found that a surface-coated high speed steel member for cutting tools or wear-resistant tools with excellent adhesion can be obtained by cooling at a cooling rate of 50 to 100°C per hour.

このような結果は、一般にハイスの熱膨張係数がチタン
の炭・窒化物のそれよりもかなり大きいため、従来のよ
うに、被膜形成後の基体を無造作に、すなわち比較的速
やかに室温まで冷却すると、ハイス基体の急激な収縮に
対して被覆層が十分に追随できないで、基体と被覆層と
の間に剥離やずれを起したり、被覆層中に歪が残るのに
対し、上記のように基体を比較的ゆっくり冷却すると、
ノ・イス基体は徐々に収縮し、その収縮に伴って被覆層
との界面で生ずる圧縮力が被覆層に対して穏やかに作用
し、それによって前記の剥離やずれ、あるいは歪が生じ
難く力ることに基づくものと考えられる。
This result is because the thermal expansion coefficient of HSS is generally much larger than that of titanium carbon/nitride, so if the substrate after coating is cooled casually, that is, relatively quickly to room temperature, as in the past, However, as mentioned above, the coating layer cannot sufficiently follow the sudden contraction of the HSS base, resulting in peeling or misalignment between the base and the coating layer, or distortion remaining in the coating layer. When the substrate is cooled relatively slowly,
The nois base gradually contracts, and the compressive force generated at the interface with the coating layer due to the contraction acts gently on the coating layer, thereby making it difficult for the above-mentioned peeling, displacement, or distortion to occur. This is thought to be based on this.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明は、上記知見に基づいて発明されたもので、 物理蒸着法を利用して、TiC,Tj−Nおよび’]’
iCNのうちのいずれか1種または2種以上の被覆成分
を切削工具用または耐摩耗工具用ノ・イス基体にコーテ
ィングすることによって、前記被覆成分からなる被覆層
が表面に付着している切削工具用または耐摩耗工具用表
面被覆ノ・イス部材を製造する方法において、前記基体
に対する前記被覆層の蒸着が終了した後、前記物理蒸着
法の適用によってノ・イス焼戻し温度以下の温度に加熱
されていた前記基体を、毎時50〜100℃の冷却速度
で室温まで冷却することを特徴とする、前記切削工具用
または耐摩耗工具用表面被覆・・イス部材の製造方法、
に係わるものである。
This invention was invented based on the above knowledge, and uses physical vapor deposition to produce TiC, Tj-N and ']'
A cutting tool in which a coating layer made of the coating component is attached to the surface by coating a cutting tool or wear-resistant tool base with one or more coating components of iCN. In the method for manufacturing a surface-coated tool member for use in or wear-resistant tools, after the coating layer has been deposited on the substrate, the substrate is heated to a temperature equal to or lower than the tool tempering temperature by applying the physical vapor deposition method. A method for producing a surface-coated chair member for cutting tools or wear-resistant tools, characterized in that the substrate is cooled to room temperature at a cooling rate of 50 to 100° C. per hour;
This is related to.

〔発明の詳細な説明〕[Detailed description of the invention]

(1)÷÷←→物理蒸着法 この発明において利用する物理蒸着法を、例えばTiN
被膜の析出形成を例にとって説明すると、第1図に概略
説明図で示されているように、例えば、まずノ・イス基
体を反応炉1内で圧力、10〜10”−5Torr の
真空雰囲気中、・・イスの焼戻し温度以下の温度に加熱
してから、圧カニ]O−’〜10−2Torrにおいて
アルゴンによるイオンエツチングをこの基体に随意に施
した後、前記アルゴンの代りに窒素ガス2を反応炉l内
に導入して反応炉]、内の雰囲気圧力および温度を前記
圧力および温度に維持するとともに、反応炉1内に対向
配置した基体3と水冷銅ルツボ4との間に設けられた放
電用電極5に数十ボルトの直流電圧を印加して、前記ル
ツボ4内に保持された金属チタン6と放電用電極5との
間に放電を起して、窒素ガス2のプラズマを前記放電用
電極5とルツボ4との間に形成させる一方、前記金属チ
タン6に電子ビーム7を照射してこれを溶解蒸発させ、
この蒸発したチタンを前記プラズマ中に通過させてプラ
スイオンにイオン化した後、O〜1500ボルトのマイ
ナス電位に保った前記基体3に付着させるとともに、前
記放電によってプラスにイオン化した窒素も前記基体3
に付着させて、これらのチタンイオンと窒素イオンとの
反応によって生成したTiN被膜を基体30表面に析出
形成させ、ついで、ハイス焼戻し温度以下の温度に加熱
されている基体3を放冷または外部加熱手段8により、
所定の冷却速度で室温1で冷却する。
(1) ÷÷←→Physical vapor deposition method The physical vapor deposition method used in this invention is applied to, for example, TiN.
To explain the deposition formation of a film as an example, as shown in the schematic diagram in FIG. ,... After heating the substrate to a temperature below the tempering temperature of the chair, the substrate is optionally subjected to ion etching with argon at a pressure of 0-' to 10-2 Torr, and then nitrogen gas 2 is added instead of the argon. Introduced into the reactor 1 to maintain the atmospheric pressure and temperature within the reactor 1 at the above-mentioned pressure and temperature, and provided between the base 3 and the water-cooled copper crucible 4, which are disposed facing each other in the reactor 1. A DC voltage of several tens of volts is applied to the discharge electrode 5 to generate a discharge between the metal titanium 6 held in the crucible 4 and the discharge electrode 5, and the plasma of the nitrogen gas 2 is discharged. while forming the metal titanium 6 between the electrode 5 and the crucible 4, irradiating the metal titanium 6 with an electron beam 7 to melt and evaporate it,
The evaporated titanium is passed through the plasma and ionized into positive ions, and then deposited on the base 3 which is maintained at a negative potential of 0 to 1,500 volts, and the nitrogen ionized positively by the discharge is also deposited on the base 3.
A TiN film generated by the reaction between these titanium ions and nitrogen ions is deposited on the surface of the base 30, and then the base 3, which has been heated to a temperature below the high speed steel tempering temperature, is allowed to cool or is heated externally. By means 8,
Cool to room temperature 1 at a predetermined cooling rate.

(2)基体の冷却速度 チタンの炭・窒化物の被覆層形成後、ハイス焼戻し温度
以下の温度に保持されていた基体を、100℃、/hr
を越える速さで冷却すると、所望のすぐれた密着性を有
する被覆層によってコーティングされた表面被覆ハイス
部材が得られず、一方その冷却速度が50℃/hr未満
になると、基体の冷却に時間がかかりすぎ、かつ上記効
果に格別の向上がみられないところから、この発明では
基体の冷却速度を50〜b この発明において特定した50〜b いう冷却速度で前記効果が顕著に現われるのは、前記被
覆層の厚みが2〜8μmの場合であり、また、ハイス基
体上に形成されたTiCおよびTiN被膜をX線回折の
解析によって調査すると、基体の冷却速度が速すぎた場
合、すなわちその冷却速度が100℃/hrを越えた場
合は、それらのチタン化合物から々る結晶の(220)
面におけるd値がA、 S T Mカードの値に対して
±004であったのに対し、冷却速度:50−100℃
/hrによる基体の冷却においては、前記d値が±0.
03以下であり、このような結果は、この発明によって
得られた被覆層では、従来のものよりも歪の発生が軽微
であることを示している。
(2) Cooling rate of the substrate After forming the titanium carbon/nitride coating layer, the substrate, which was kept at a temperature below the high speed steel tempering temperature, was cooled to 100°C/hr.
If the cooling rate exceeds 50°C/hr, it will not be possible to obtain a surface coated HSS member coated with a coating layer with the desired excellent adhesion, while if the cooling rate is less than 50°C/hr, it will take time to cool the substrate. In this invention, the cooling rate of the substrate is set to 50-b. When the thickness of the coating layer is 2 to 8 μm, and the TiC and TiN coatings formed on the HSS substrate are investigated by X-ray diffraction analysis, it is found that if the cooling rate of the substrate is too fast, that is, the cooling rate If the temperature exceeds 100℃/hr, the (220)
The d value on the surface was ±004 with respect to the value of A, STM card, while the cooling rate: 50-100℃
/hr for cooling the substrate, the d value is ±0.
03 or less, and these results indicate that the coating layer obtained by the present invention causes less distortion than the conventional coating layer.

〔実施例〕〔Example〕

ついで、この発明を、チタンの炭・窒化物被覆層で被覆
された切削工具の製造を例にあげて、比較例と対比しな
がら説明する。
Next, the present invention will be explained in comparison with a comparative example, taking as an example the production of a cutting tool coated with a titanium carbon/nitride coating layer.

実施例1 第1図に示されるような、反応炉l、水冷銅ルツボ4、
放電用電極5、および電熱器8を備えた蒸着装置を利用
し、かつチタン6、反応ガス2、および基体3として、
m3、PA20°右1条、進み角2°23′、Djf3
.5、外径:80mmX長さ:150u×内径:31.
’75Mの形状、寸法を有する5KH55製ホブを使用
し、さらに反応条件として、炉内温度:500℃、炉内
圧カニ’7X10  Torrとなる窒素またはアセチ
レンを使用し、反応ガス流量: 2507/miaおよ
び基体電位ニー100ボルトを採用して、前記ホブ表面
に第1表に示される厚みのTiN被覆およびTiC被膜
をそれぞれ蒸着させた後、500℃に保持されている基
体が急冷されるのを防ぐため、反応炉]の外部から電熱
器8で熱を供給しながら、第1表に示される冷却速度で
基体を室温(25℃)まで徐々に冷却することによって
本発明表面被覆ホブ1〜6をそれぞれ製造するとともに
、比較のため、前記500℃に保持されている基体を放
冷して、それの降温速度を第1表に示されるように増大
させた点だけを変えることによって、比較表面被覆ホブ
1〜6をそれぞれ製造した。
Example 1 As shown in FIG. 1, a reactor 1, a water-cooled copper crucible 4,
Using a vapor deposition apparatus equipped with a discharge electrode 5 and an electric heater 8, and using titanium 6, a reaction gas 2, and a substrate 3,
m3, PA 20° right 1 line, lead angle 2° 23', Djf3
.. 5. Outer diameter: 80mm x length: 150u x inner diameter: 31.
A 5KH55 hob with the shape and dimensions of '75M was used, and the reaction conditions were: furnace temperature: 500°C, furnace pressure: nitrogen or acetylene, reaction gas flow rate: 2507/mia, and In order to prevent the substrate held at 500° C. from being rapidly cooled after the TiN coating and TiC coating with the thickness shown in Table 1 are respectively deposited on the hob surface by adopting a substrate potential knee of 100 volts. The surface-coated hobs 1 to 6 of the present invention were prepared by gradually cooling the substrate to room temperature (25° C.) at the cooling rate shown in Table 1 while supplying heat from the outside of the reactor with an electric heater 8. A comparative surface-coated hob was manufactured by allowing the substrate held at 500° C. to cool and increasing its cooling rate as shown in Table 1. 1 to 6 were produced respectively.

ついで、これらの表面被覆ホブの耐摩耗性を調べるため
に、 被削材:JTS  80M3の丸棒、 (硬さ: HRC9〜13) 作製歯車:歯数21、寸法:外径70mmX厚さ20B
×内径30朋 第1表 切削速度: 160 r、 p、m、 (40n/m1
u)、送り:2顧、/’w−rev、、 切削方向:クライムカット、 の条件での断続切削試験を実施し、12.6 m切削し
た時点におけるホブ表面の三番最大摩耗幅を測定して、
その結果を第1表に示した。
Next, in order to examine the wear resistance of these surface-coated hobs, the following materials were used: Work material: JTS 80M3 round bar (Hardness: HRC9-13) Fabricated gear: Number of teeth: 21, Dimensions: Outer diameter 70mm x thickness 20B
× Inner diameter 30 mm Table 1 Cutting speed: 160 r, p, m, (40 n/m1
u) Conducted an intermittent cutting test under the following conditions: feed: 2x, /'w-rev, cutting direction: climb cut, and measured the third maximum wear width on the hob surface after cutting 12.6 m. do,
The results are shown in Table 1.

実施例2 鋼種:5KH2のハイスを焼戻し温度:560〜580
℃において焼戻すことによって得られた、硬さ: I−
TRC64を有するハイスから形状: ’T’PP32
2のスローアウェイチップを多数製作し、これらのチッ
プを基体として、実施例1と同様なコーティング条件を
採用し、第2表に示される厚みのTiN 、 TiCお
よび’J:’iC’N (ただし、C/N比=4/6、
この場合反応ガスとして、アセチレンと窒素との混合ガ
スを使用)からなる被覆層を前記チップ表面に析出形成
させた後、500℃に保持されているチップを第2表に
示される冷却速度で冷却することによって、本発明表面
被覆チップ1〜9および比較表面被覆チップ1〜9をそ
れぞれ製菓2表 造した。
Example 2 Steel type: 5KH2 high speed steel tempering temperature: 560-580
Obtained by tempering at °C, hardness: I-
Shape from HSS with TRC64: 'T'PP32
A large number of indexable chips No. 2 were manufactured, and using these chips as bases, the same coating conditions as in Example 1 were adopted, and TiN, TiC and 'J:'iC'N (however, , C/N ratio=4/6,
In this case, a mixed gas of acetylene and nitrogen is used as the reaction gas) After depositing and forming a coating layer on the chip surface, the chip kept at 500°C is cooled at the cooling rate shown in Table 2. By doing so, surface-coated chips 1 to 9 of the present invention and comparison surface-coated chips 1 to 9 were each made into confectionery products.

ついでこれらの表面被覆チップの耐摩耗性を調べるため
に下記の条件による切削試験を実施し、vB摩耗が0.
3 mynに達するまでの切削時間を工具寿命として、
その時間を測定し、その結果を第2表に示した。
Next, in order to investigate the wear resistance of these surface-coated tips, a cutting test was conducted under the following conditions, and the vB wear was 0.
The cutting time until reaching 3 myn is the tool life.
The time was measured and the results are shown in Table 2.

切削条件 被削材: SN0M8、HB : 250 。Cutting conditions Work material: SN0M8, HB: 250.

ホルダ: P 22R−44、 切削速度: V=60 m/mia、d=1.5M、f
= 0.1 mm/ rev、。
Holder: P 22R-44, Cutting speed: V=60 m/mia, d=1.5M, f
= 0.1 mm/rev.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、材質と厚みが互に同じであ
る本発明表面被覆ホブと比較表面被覆ホブとを比較する
と、12.6 m切削した時点におけるホブ表面の三番
最大摩耗幅は、本発明表面被覆ホブの方が著しく小さく
、かつ比較表面被覆ホブ3および6ではそれぞれ切削の
途中および切削開始直後で被覆層が剥離したことがわか
り、また第2表に示される結果から、同様に本発明表面
被覆チップと比較表面被覆チップとを比較すると、本発
明表面被覆チップは比較表面被覆チップよりもT具寿命
が著しく長く、かつ比較表面被覆チップ6および9では
切削開始直後に被覆層が剥離したことがわかり、実施例
1および2の結果によれば、ホブおよびスローアウェイ
チップのいずれにおいても、この発明によって製造され
たホブおよびチップは著しくすぐれた耐摩耗性をそなえ
ていることがわかる。
From the results shown in Table 1, when comparing the surface-coated hob of the present invention and the comparative surface-coated hob, which are made of the same material and thickness, the third maximum wear width on the hob surface after cutting 12.6 m is It was found that the surface-coated hob of the present invention was significantly smaller, and the coating layer peeled off in the comparison surface-coated hobs 3 and 6 during cutting and immediately after the start of cutting, respectively, and from the results shown in Table 2, it was found that the Comparing the surface-coated chips of the present invention and the comparative surface-coated chips, the surface-coated chips of the present invention had a significantly longer T tool life than the comparative surface-coated chips, and the comparative surface-coated chips 6 and 9 had a coating layer that formed immediately after the start of cutting. According to the results of Examples 1 and 2, the hobs and indexable tips manufactured according to the present invention have extremely excellent wear resistance. Recognize.

以上述べた説明から明らかなように、この発明によると
、密着性が著しく改善され、したがって耐摩耗性が著し
く向上した切削工具用または耐摩耗工具用表面被覆ハイ
ス部材が得られ、その結果工具寿命の著しく長いこれら
の表面被覆ハイス部材が提供されるという産業上有用々
効果が得られる。
As is clear from the above description, according to the present invention, it is possible to obtain a surface-coated HSS member for cutting tools or wear-resistant tools with significantly improved adhesion and therefore significantly improved wear resistance, resulting in a tool life span. The industrially useful effect of providing these surface-coated high speed steel members having a significantly long length is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を遂行する場合に使用される装置の
概要を示す説明図である。図においてl・・・反応炉、
     2・・・反応ガス、3・・・基体、    
  4・・・ルツボ、5・・・放電用電極、   6・
・・金属チタン、7・・・電子ビーム、   8・・・
電熱器。
FIG. 1 is an explanatory diagram showing an outline of the apparatus used in carrying out the method of the present invention. In the figure, l...reactor,
2... Reactive gas, 3... Substrate,
4... Crucible, 5... Electrode for discharge, 6.
...metallic titanium, 7...electron beam, 8...
Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 物理蒸着法を利用して、炭化チタン、窒化チタンおよび
炭窒化チタンのうちのいずれか1種または2種以上の被
覆成分を切削工具用または耐摩耗工具用高速度鋼基体に
コーティングすることによつて、前記被覆成分からなる
被覆層が表面に付着している切削工具用または耐摩耗工
具用表面被覆高速度鋼部材を製造する方法において、前
記基体に対する前記被覆層の蒸着が終了した後、前記物
理蒸着法の適用によつて前記高速度鋼焼戻し温度以下の
温度に加熱されていた前記基体を、毎時50〜100℃
の冷却速度で室温まで冷却することを特徴とする、前記
切削工具用または耐摩耗工具用表面被覆高速度鋼部材の
製造方法。
By coating a high-speed steel substrate for cutting tools or wear-resistant tools with one or more coating components of titanium carbide, titanium nitride, and titanium carbonitride using a physical vapor deposition method. In the method for manufacturing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool, in which a coating layer made of the coating component is attached to the surface, after the vapor deposition of the coating layer on the substrate is completed, The substrate, which had been heated to a temperature below the high-speed steel tempering temperature by applying a physical vapor deposition method, was heated at 50 to 100°C per hour.
A method for manufacturing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool, characterized in that the surface-coated high-speed steel member for a cutting tool or a wear-resistant tool is cooled to room temperature at a cooling rate of .
JP16946286A 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool Expired - Lifetime JPH0680184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16946286A JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16946286A JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Publications (2)

Publication Number Publication Date
JPS6326348A true JPS6326348A (en) 1988-02-03
JPH0680184B2 JPH0680184B2 (en) 1994-10-12

Family

ID=15887020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946286A Expired - Lifetime JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Country Status (1)

Country Link
JP (1) JPH0680184B2 (en)

Also Published As

Publication number Publication date
JPH0680184B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
US4402994A (en) Highly hard material coated articles
KR100236995B1 (en) Hard layer, work piece coated with such a layer and process for coating the layer
KR101227337B1 (en) Multi-Layered Hard Material Coating for Tools
US4269899A (en) Surface hafnium-titanium carbide coated hard alloy and method
JP6311700B2 (en) Hard coating, hard coating covering member, and manufacturing method thereof
US4883574A (en) Method for applying coatings to objects by means of magnetic field supported reactive cathode sputtering
JPH0453642B2 (en)
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
JPH07237010A (en) Surface coated cutting tool with excellent wear resistance
WO1991005075A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JP2008290163A (en) Coating film, cutting tool and coating film making method
JP2989746B2 (en) Steel-based composite surface-treated product and its manufacturing method
JP3277558B2 (en) Manufacturing method of coated cutting tip
JP3333081B2 (en) Crystal orientation high strength coated member
JPS6326348A (en) Production of surface coated high-speed steel member for cutting toll or wear resistant tool
JPH10317123A (en) Crystalline oriented hard coated member
JPH06220608A (en) Surface-coated hard member and its production
JP3358696B2 (en) High strength coating
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP2005088130A (en) Hard film coated tool and target for hard film formation
JP2009262288A (en) Hard coating, method of forming the same, and hard coating-coated member
JP3333080B2 (en) High-strength coated members with consistent interfaces
JPH05263251A (en) Coated and sintered body
JP2590349B2 (en) Wear-resistant coating method
EP1642998A1 (en) Production device for multiple-system film and coating tool for multiple-system film