JPH0680184B2 - Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool - Google Patents

Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Info

Publication number
JPH0680184B2
JPH0680184B2 JP16946286A JP16946286A JPH0680184B2 JP H0680184 B2 JPH0680184 B2 JP H0680184B2 JP 16946286 A JP16946286 A JP 16946286A JP 16946286 A JP16946286 A JP 16946286A JP H0680184 B2 JPH0680184 B2 JP H0680184B2
Authority
JP
Japan
Prior art keywords
substrate
speed steel
coated
wear
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16946286A
Other languages
Japanese (ja)
Other versions
JPS6326348A (en
Inventor
宗則 加藤
正人 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16946286A priority Critical patent/JPH0680184B2/en
Publication of JPS6326348A publication Critical patent/JPS6326348A/en
Publication of JPH0680184B2 publication Critical patent/JPH0680184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、表面に硬質の被覆層が形成されている切削
工具用または耐摩耗工具用表面被覆高速度鋼部材の製造
方法に関し、特に、密着性にすぐれた硬質のチタン化合
物の被覆層が表面に形成されている切削工具用または耐
摩耗工具用表面被覆高速度鋼部材を、物理蒸着法を利用
して製造する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool in which a hard coating layer is formed on the surface, and in particular, The present invention relates to a method for producing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool, which has a coating layer of a hard titanium compound excellent in adhesion on the surface, by using a physical vapor deposition method.

〔従来の技術〕[Conventional technology]

従来、高速度鋼(以下、ハイスという)は、高い硬さと
すぐれた靱性を有するので、スローアウエイチツプ、バ
イト、ギアーホブ、タツプ、ドリル、エンドミルのよう
な切削工具、あるいはパンチ、ジヨンピン、ダイスのよ
うな耐摩耗工具の素材として広く使用されているが、こ
のハイス表面に炭化チタンや窒化チタンのようなチタン
化合物からなる硬質被覆層を設けると、それによつて耐
溶着性、耐焼付性および耐摩耗性が向上し、工具寿命が
飛躍的に延びるところから、最近ではこのような被覆層
をハイス表面に1〜8μmの厚さに設けることも盛んに
行われている。
Conventionally, high-speed steel (hereinafter referred to as "high speed steel") has high hardness and excellent toughness. It is widely used as a material for various wear resistant tools, but when a hard coating layer made of a titanium compound such as titanium carbide or titanium nitride is provided on the surface of this high speed steel, it is possible to improve the welding resistance, seizure resistance and wear resistance. In order to improve the workability and to dramatically increase the tool life, it has recently been actively practiced to provide such a coating layer on the surface of the high-speed steel to a thickness of 1 to 8 μm.

このような炭化チタンまたは窒化チタンの表面被覆層を
有する切削工具用または耐摩耗工具用ハイス部材を反応
性の物理蒸着法によつて製造するには、例えば、まずハ
イス基体を反応炉内で圧力:10-5〜10-3Torrの真空雰囲
気中、ハイスの焼戻し温度以下の温度に加熱してから、
圧力:10-4〜10-2Torrにおいてアルゴンによるイオンエ
ツチングを随意にこの基体に施した後、引続きこの温度
と圧力を維持しながら、炭化チタンまたは窒化チタンに
よる被覆反応を起すこと、すなわち反応炉内で電子ビー
ムなどによつて蒸発させた金属チタンと、この反応炉中
に供給されたアセチレンまたは窒素ガスをそれぞれ正に
イオン化し、これらの正イオンを負に帯電させた基体上
に電気的に引寄せて、それぞれ炭化チタンまたは窒化チ
タンからなる被膜を基体表面に析出形成させ、ついで放
冷または反応炉内にアルゴンガスを吹込んで前記基体を
室温まで冷却している。
In order to manufacture a high speed member for cutting tools or wear resistant tools having such a surface coating layer of titanium carbide or titanium nitride by a reactive physical vapor deposition method, for example, first, a high speed steel substrate is pressurized in a reaction furnace. : After heating to a temperature below the tempering temperature of HSS in a vacuum atmosphere of 10 -5 to 10 -3 Torr,
Optionally subjecting the substrate to ion etching with argon at a pressure of 10 -4 to 10 -2 Torr, followed by a coating reaction with titanium carbide or titanium nitride while maintaining this temperature and pressure, i.e. the reactor The titanium metal vaporized by an electron beam in the reactor and the acetylene or nitrogen gas supplied into the reactor are positively ionized, respectively, and these positive ions are electrically charged on the negatively charged substrate. The films are attracted to form titanium carbide or titanium nitride films on the surface of the substrate, and then the substrate is cooled to room temperature by allowing it to cool or blowing argon gas into the reaction furnace.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記の方法によつて製造された表面被覆
ハイス部材における炭化チタン、窒化チタンおよび炭窒
化チタン(以下、これらをそれぞれTiC、TiNおよびTiCN
で表わし、また便宜上これらを総称してチタンの炭・窒
化物という)の被膜は、密着性に乏しいために、このよ
うな被膜で被覆された切削工具用または耐摩耗工具用ハ
イス部材は工具寿命が短いという問題があつた。
However, titanium carbide, titanium nitride and titanium carbonitride (hereinafter referred to as TiC, TiN and TiCN, respectively) in the surface-coated HSS member manufactured by the above method are
In addition, for convenience, these are collectively referred to as titanium carbon / nitride) coatings have poor adhesion, so cutting tools or wear-resistant tool high speed steels coated with such coatings have tool life There was a problem that it was short.

〔研究に基づく知見事項〕[Findings based on research]

そこで、本発明者は、このような問題を解決するために
種々研究を重ねた結果、 物理蒸着法を利用して、チタンの炭・窒化物の被覆成分
からなる被覆層を切削工具用または耐摩耗工具用ハイス
基体にコーテイングする場合に、前記基体に対する前記
被覆層の蒸着が終了した後、前記反応性の物理蒸着法の
適用によつてハイスの焼戻し温度以下の温度に加熱され
ていた前記基体を室温まで冷却する際の冷却速度を毎時
50〜100℃とすると、密着性にすぐれた切削工具用また
は耐摩耗工具用表面被覆ハイス部材が得られること、を
見出した。
Therefore, as a result of various studies to solve such a problem, the present inventor has used a physical vapor deposition method to provide a coating layer made of a coating component of titanium carbon / nitride for a cutting tool or with an anti-corrosion property. In the case of coating on a high speed steel substrate for wear tools, after the vapor deposition of the coating layer on the substrate is finished, the substrate is heated to a temperature equal to or lower than the tempering temperature of the high speed steel by applying the reactive physical vapor deposition method. Cooling rate for cooling the machine to room temperature
It has been found that when the temperature is 50 to 100 ° C, a surface-coated high-speed steel member for cutting tools or wear-resistant tools having excellent adhesion can be obtained.

このような結果は、一般にハイスの熱膨脹係数がチタン
の炭・窒化物のそれよりもかなり大きいため、従来のよ
うに、被膜形成後の基体を無造作に、すなわち比較的速
やかに室温まで冷却すると、ハイス基体の急激な収縮に
対して被覆層が十分に追随できないで、基体と被覆層と
の間に剥離やずれを起したり、被覆層中に歪が残るのに
対し、上記のように基体を比較的ゆつくり冷却すると、
ハイス基体は徐々に収縮し、その収縮に伴つて被覆層と
の界面で生ずる圧縮力が被覆層に対して穏やかに作用
し、それによつて前記の剥離やずれ、あるいは歪が生じ
難くなることに基づくものと考えられる。
Such a result generally indicates that the thermal expansion coefficient of HSS is considerably larger than that of titanium carbon / nitride, so that when the substrate after film formation is cooled randomly, that is, relatively quickly to room temperature, as in the conventional case, Since the coating layer cannot sufficiently follow the rapid contraction of the HSS substrate, peeling or misalignment occurs between the substrate and the coating layer, or strain remains in the coating layer, whereas the substrate as described above If you cool it relatively slowly,
The HSS substrate gradually shrinks, and the compressive force generated at the interface with the coating layer gently acts on the coating layer due to the shrinkage, thereby making it difficult for the peeling, slipping, or strain to occur. Considered to be based.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基づいて発明されたもので、 物理蒸着法を利用して、TiC、TiNおよびTiCNのうちのい
ずれか1種または2種以上の被覆成分を切削工具用また
は耐摩耗工具用ハイス基体にコーテイングすることによ
つて、前記被覆成分からなる被覆層が表面に付着してい
る切削工具用または耐摩耗工具用表面被覆ハイス部材を
製造する方法において、前記基体に対する前記被覆層の
蒸着が終了した後、前記物理蒸着法の適用によつてハイ
ス焼戻し温度以下の温度に加熱されていた前記基体を、
毎時50〜100℃の冷却速度で室温まで冷却することを特
徴とする、前記切削工具用または耐摩耗工具用表面被覆
ハイス部材の製造方法、に係わるものである。
This invention was invented on the basis of the above findings, and utilizes physical vapor deposition to provide any one or more coating components of TiC, TiN and TiCN for cutting tools or wear resistant tools. In the method for producing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool in which a coating layer comprising the coating component is adhered to the surface by coating on a high-speed steel substrate for use in After the vapor deposition is completed, the substrate that has been heated to a temperature not higher than the high temperature tempering temperature by applying the physical vapor deposition method,
The present invention relates to a method for producing a surface-coated high-speed steel member for a cutting tool or an abrasion resistant tool, which comprises cooling to room temperature at a cooling rate of 50 to 100 ° C. per hour.

〔発明の具体的な説明〕[Specific Description of the Invention]

(1)物理蒸着法 この発明において利用する物理蒸着法を、例えばTiN被
膜の析出形成を例にとつて説明すると、第1図に概略説
明図で示されているように、例えば、まずハイス基体を
反応炉1内で圧力:10-5〜10-3Torrの真空雰囲気中、ハ
イスの焼戻し温度以下の温度に加熱してから、圧力:10
-4〜10-2Torrにおいてアルゴンによるイオンエツチング
をこの基体に随意に施した後、前記アルゴンの代りに窒
素ガス2を反応炉1内に導入して反応炉1内の雰囲気圧
力および温度を前記圧力および温度に維持するととも
に、反応炉1内に対向配置した基体3と冷却銅ルツボ4
との間に設けられた放電用電極5に数十ボルトの直流電
圧を印加して、前記ルツボ4内に保持された金属チタン
6と放電用電極5との間に放電を起して、窒素ガス2の
プラズマを前記放電用電極5とルツボ4との間に形成さ
せる一方、前記金属チタン6に電子ビーム7を照射して
これを溶解蒸発させ、この蒸発したチタンを前記プラズ
マ中に通過させてプラスイオンにイオン化した後、0〜
1500ボルトのマイナス電位に保つた前記基体3に付着さ
せるとともに、前記放電によつてプラスにイオン化した
窒素も前記基体3に付着させて、これらのチタンイオン
と窒素イオンとの反応によつて生成したTiN被膜を基体
3の表面に析出形成させ、ついで、ハイス焼戻し温度以
下の温度に加熱されている基体3を放冷または外部加熱
手段8により、所定の冷却速度で室温まで冷却する。
(1) Physical Vapor Deposition Method The physical vapor deposition method used in the present invention will be described by taking, for example, precipitation formation of a TiN film, as shown in the schematic explanatory view of FIG. In a reaction furnace 1 under a pressure of 10 -5 to 10 -3 Torr in a vacuum atmosphere, and after heating to a temperature not higher than the tempering temperature of HSS, the pressure: 10
After optionally ion-etching the substrate with argon at -4 to 10 -2 Torr, nitrogen gas 2 is introduced into the reaction furnace 1 in place of the argon to adjust the atmospheric pressure and temperature in the reaction furnace 1 to the above-mentioned values. The substrate 3 and the cooling copper crucible 4 which are arranged to face each other in the reaction furnace 1 while being maintained at the pressure and temperature.
A direct current voltage of several tens of volts is applied to the discharge electrode 5 provided between the discharge electrode 5 and the metal titanium 6 held in the crucible 4 to generate discharge between the discharge electrode 5 and the nitrogen gas. A plasma of gas 2 is formed between the discharge electrode 5 and the crucible 4, while the metal titanium 6 is irradiated with an electron beam 7 to dissolve and evaporate it, and the evaporated titanium is passed through the plasma. After ionizing into positive ions,
The nitrogen was positively ionized by the discharge and was also attached to the substrate 3 kept at a negative potential of 1500 V, and was also produced by the reaction of these titanium ions and nitrogen ions. A TiN coating is deposited on the surface of the substrate 3, and then the substrate 3 heated to a temperature not higher than the high temperature tempering temperature is allowed to cool or is cooled by an external heating means 8 to room temperature at a predetermined cooling rate.

(2)基体の冷却速度 チタンの炭・窒化物の被覆層形成後、ハイス焼戻し温度
以下の温度に保持されていた基体を、100℃/hrを越える
速さで冷却すると、所望のすぐれた密着性を有する被覆
層によつてコーテイングされた表面被覆ハイス部材が得
られず、一方その冷却速度が50℃/hr未満になると、基
体の冷却に時間がかかりすぎ、かつ上記効果に格別の向
上がみられないところから、この発明では基体の冷却速
度を50〜100℃/hrと定めた。
(2) Cooling rate of the substrate After forming the carbon-nitride coating layer of titanium, cooling the substrate kept at a temperature below the HSS tempering temperature at a rate of more than 100 ° C / hr gives the desired excellent adhesion. When the surface-coated high speed steel member coated with the coating layer having the property is not obtained, and the cooling rate thereof is less than 50 ° C./hr, it takes too long to cool the substrate, and the above-mentioned effect is remarkably improved. In the present invention, the cooling rate of the substrate was set to 50 to 100 ° C./hr because it was not observed.

この発明において特定した50〜100℃/hrという冷却速度
で前記効果が顕著に現われるのは、前記被覆層の厚みが
2〜8μmの場合であり、また、ハイス基体上に形成さ
れたTiCおよびTiN被膜をX線回折の解析によつて調査す
ると、基体の冷却速度が速すぎた場合、すなわちその冷
却速度が100℃/hrを越えた場合は、それらのチタン化合
物からなる結晶の(220)面におけるd値がASTMカード
の値に対して±0.04であつたのに対し、冷却速度:50〜1
00℃/hrによる基体の冷却においては、前記d値が±0.0
3以下であり、このような結果は、この発明によつて得
られた被覆層では、従来のものよりも歪の発生が軽微で
あることを示している。
In the cooling rate of 50 to 100 ° C./hr specified in the present invention, the above-mentioned effect is remarkable when the thickness of the coating layer is 2 to 8 μm, and the TiC and TiN formed on the HSS substrate. When the film was investigated by X-ray diffraction analysis, when the cooling rate of the substrate was too fast, that is, when the cooling rate exceeded 100 ° C / hr, the (220) plane of the crystal composed of those titanium compounds was observed. The cooling rate: 50 to 1 in contrast to the d value of ± 0.04 with respect to the value of the ASTM card.
When the substrate is cooled at 00 ° C / hr, the d value is ± 0.0
It was 3 or less, and such a result indicates that the coating layer obtained according to the present invention causes less strain than the conventional one.

〔実施例〕〔Example〕

ついで、この発明を、チタンの炭・窒化物被覆層で被覆
された切削工具の製造を例にあげて、比較例と対比しな
がら説明する。
Next, the present invention will be described with reference to the production of a cutting tool coated with a titanium carbon / nitride coating layer as an example, in comparison with a comparative example.

実施例1 第1図に示されるような、反応炉1、水冷銅ルツボ4、
放電用電極5、および電熱器8を備えた蒸着装置を利用
し、かつチタン6、反応ガス2、および基体3として、
m3、PA20°右1条、進み角2°23′、Dtf3.5、外径:80m
m×長さ:150mm×内径:31.75mmの形状、寸法を有するSKH
55製ホブを使用し、さらに反応条件として、炉内温度:5
00℃、炉内圧力:7×10-4Torrとなる窒素またはアセチレ
ンを使用し、反応ガス流量:250ml/minおよび基体電位:
−100ボルトを採用して、前記ホブ表面に第1表に示さ
れる厚みのTiN被覆およびTiC被膜をそれぞれ蒸着させた
後、500℃に保持されている基体が急冷されるのを防ぐ
ため、反応炉1の外部から電熱器8で熱を供給しなが
ら、第1表に示される冷却速度で基体を室温(25℃)ま
で徐々に冷却することによつて本発明表面被覆ホブ1〜
6をそれぞれ製造するとともに、比較のため、前記500
℃に保持されている基体を放冷して、それの降温速度を
第1表に示されるように増大させた点だけを変えること
によつて、比較表面被覆ホブ1〜6をそれぞれ製造し
た。
Example 1 As shown in FIG. 1, a reactor 1, a water-cooled copper crucible 4,
Utilizing a vapor deposition device provided with the discharge electrode 5 and the electric heater 8, and as the titanium 6, the reaction gas 2, and the substrate 3,
m3, PA 20 ° right 1 row, lead angle 2 ° 23 ', D tf 3.5, outer diameter: 80m
SKH with the shape and dimensions of m x length: 150 mm x inner diameter: 31.75 mm
A 55 hob was used, and the reaction conditions were: furnace temperature: 5
Nitrogen or acetylene with a temperature of 00 ° C and a furnace pressure of 7 × 10 -4 Torr is used. Reaction gas flow rate: 250 ml / min and substrate potential:
After depositing TiN coating and TiC coating of the thickness shown in Table 1 on the surface of the hob by using −100 V, the reaction is performed to prevent the substrate held at 500 ° C. from being rapidly cooled. While the heat is supplied from the outside of the furnace 1 by the electric heater 8, the substrate is gradually cooled to room temperature (25 ° C.) at the cooling rate shown in Table 1 to obtain the surface-coated hobs 1 to 1 of the present invention.
6 were manufactured respectively, and the above 500 for comparison.
Comparative surface coated hobs 1-6 were prepared respectively by allowing the substrate held at 0 ° C. to cool and changing only its rate of temperature increase as shown in Table 1.

ついで、これらの表面被覆ホブの耐摩耗性を調べるため
に、 被削材:JIS SCM3の丸棒、 (硬さ:HRC 9〜13) 作製歯車:歯数21、寸法:外径70mm×厚さ 20mm×内径30mm 切削速度:160r.p.m.(40m/min)、 送り:2mm/w・rev.、 切削方向:クライムカツト、 の条件での断続切削試験を実施し、12.6m切削した時点
におけるホブ表面の三番最大摩耗幅を測定して、その結
果を第1表に示した。
Then, in order to investigate the wear resistance of these surface-coated hobs, the work material: round bar of JIS SCM3, (hardness: H R C 9-13) Manufactured gear: number of teeth 21, dimension: outer diameter 70 mm × Thickness 20 mm x inner diameter 30 mm Cutting speed: 160r.pm (40m / min), feed: 2mm / w rev., Cutting direction: climbing cut, intermittent cutting test was carried out under the following conditions. The wear width was measured and the results are shown in Table 1.

実施例2 鋼種:SKH2のハイスを焼戻し温度:560〜580℃において焼
戻すことによつて得られた、硬さ:HRC64を有するハイ
スから形状:TPP322のスローアウエイチツプを多数製作
し、これらのチツプを基体として、実施例1と同様なコ
ーテイング条件を採用し、第2表に示される厚みのTi
N、TiCおよびTiCN(ただし、C/N比=4/6、この場合反応
ガスとして、アセチレンと窒素との混合ガスを使用)か
らなる被覆層を前記チツプ表面に析出形成させた後、50
0℃に保持されているチツプを第2表に示される冷却速
度で冷却することによつて、本発明表面被覆チツプ1〜
9および比較表面被覆チツプ1〜9をそれぞれ製 造した。
Example 2 grades: SKH2 HSS tempering temperature: 560 to 580 was collected using cowpea to tempering at ° C., hardness: H R C64 form a high-speed steel having: TPP322 produced a number of slow-Au H. class tap, these The same coating conditions as in Example 1 were used with the chips of No. 1 as the substrate, and the Ti having the thickness shown in Table 2 was used.
After depositing a coating layer consisting of N, TiC and TiCN (where C / N ratio = 4/6, in which case a mixed gas of acetylene and nitrogen is used as the reaction gas) on the chip surface, 50
By cooling the chip maintained at 0 ° C. at the cooling rates shown in Table 2, the surface-coated chips 1 to
9 and comparative surface coating chips 1-9 respectively I made it.

ついでこれらの表面被覆チツプの耐摩耗性を調べるため
に下記の条件による切削試験を実施し、VB摩耗が0.3mm
に達するまでの切削時間を工具寿命として、その時間を
測定し、その結果を第2表に示した。
Then, in order to investigate the wear resistance of these surface coated chips, a cutting test was conducted under the following conditions, and V B wear was 0.3 mm.
The tool life was the cutting time required to reach the above value, and the time was measured. The results are shown in Table 2.

切削条件 被削材:SNCM8、HB:250、 ホルダ:P22R-44、 切削速度:V=60m/min、d=1.5mm、 f=0.1mm/rev.。Cutting Conditions Workpiece: SNCM8, H B: 250, Holder: P22R-44, Cutting speed: V = 60m / min, d = 1.5mm, f = 0.1mm / rev ..

〔発明の効果〕〔The invention's effect〕

第1表に示される結果から、材質と厚みが互に同じであ
る本発明表面被覆ホブと比較表面被覆ホブとを比較する
と、12.6m切削した時点におけるホブ表面の三番最大摩
耗幅は、本発明表面被覆ホブの方が著しく小さく、かつ
比較表面被覆ホブ3および6ではそれぞれ切削の途中お
よび切削開始直後で被覆層が剥離したことがわかり、ま
た第2表に示される結果から、同様に本発明表面被覆チ
ツプと比較表面被覆チツプとを比較すると、本発明表面
被覆チツプは比較表面被覆チツプよりも工具寿命が著し
く長く、かつ比較表面被覆チツプ6および9では切削開
始直後に被覆層が剥離したことがわかり、実施例1およ
び2の結果によれば、ホブおよびスローアウエイチツプ
のいずれにおいても、この発明によつて製造されたホブ
およびチツプは著しくすぐれた耐摩耗性をそなえている
ことがわかる。
From the results shown in Table 1, comparing the surface-coated hob of the present invention and the comparative surface-coated hob having the same material and the same thickness as each other, the third maximum wear width of the hob surface at the time of cutting 12.6 m is The invention surface-coated hobs were significantly smaller, and it was found that the comparative surface-coated hobs 3 and 6 peeled off the coating layer during the cutting and immediately after the start of the cutting, respectively. Comparing the inventive surface-coated chip with the comparative surface-coated chip, the inventive surface-coated chip had a significantly longer tool life than the comparative surface-coated chip, and the comparative surface-coated chips 6 and 9 had the coating layer peeled off immediately after the start of cutting. It can be seen from the results of Examples 1 and 2 that the hobs and chips manufactured according to the present invention are remarkable in both the hobs and the throwaway chips. It can be seen that includes a superior abrasion resistance.

以上述べた説明から明らかなように、この発明による
と、密着性が著しく改善され、したがつて耐摩耗性が著
しく向上した切削工具用または耐摩耗工具用表面被覆ハ
イス部材が得られ、その結果工具寿命の著しく長いこれ
らの表面被覆ハイス部材が提供されるという産業上有用
な効果が得られる。
As is clear from the above description, according to the present invention, the adhesion is remarkably improved, and thus a surface-coated high-speed steel member for cutting tools or wear-resistant tools with significantly improved wear resistance is obtained. An industrially useful effect of providing these surface-coated high-speed steel members having a remarkably long tool life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を遂行する場合に使用される装置の
概要を示す説明図である。図において 1……反応炉、2……反応ガス、 3……基体、4……ルツボ、 5……放電用電極、6……金属チタン、 7……電子ビーム、8……電熱器。
FIG. 1 is an explanatory view showing an outline of an apparatus used for carrying out the method of the present invention. In the figure, 1 ... Reactor, 2 ... Reactive gas, 3 ... Substrate, 4 ... Crucible, 5 ... Discharge electrode, 6 ... Metal titanium, 7 ... Electron beam, 8 ... Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】物理蒸着法を利用して、炭化チタン、窒化
チタンおよび炭窒化チタンのうちのいずれか1種または
2種以上の被覆成分を切削工具用または耐摩耗工具用高
速度鋼基体にコーテイングすることによつて、前記被覆
成分からなる被覆層が表面に付着している切削工具用ま
たは耐摩耗工具用表面被覆高速度鋼部材を製造する方法
において、前記基体に対する前記被覆層の蒸着が終了し
た後、前記物理蒸着法の適用によつて前記高速度鋼焼戻
し温度以下の温度に加熱されていた前記基体を、毎時50
〜100℃の冷却速度で室温まで冷却することを特徴とす
る、前記切削工具用または耐摩耗工具用表面被覆高速度
鋼部材の製造方法。
1. A high speed steel substrate for cutting tools or wear resistant tools, which is coated with at least one of titanium carbide, titanium nitride and titanium carbonitride by a physical vapor deposition method. In the method for producing a surface-coated high-speed steel member for a cutting tool or a wear-resistant tool, wherein a coating layer comprising the coating component adheres to the surface by coating, vapor deposition of the coating layer on the substrate After completion, the substrate that had been heated to a temperature below the high speed steel tempering temperature by application of the physical vapor deposition method, 50
A method for producing a surface-coated high-speed steel member for a cutting tool or an abrasion resistant tool, which comprises cooling to room temperature at a cooling rate of -100 ° C.
JP16946286A 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool Expired - Lifetime JPH0680184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16946286A JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16946286A JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Publications (2)

Publication Number Publication Date
JPS6326348A JPS6326348A (en) 1988-02-03
JPH0680184B2 true JPH0680184B2 (en) 1994-10-12

Family

ID=15887020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946286A Expired - Lifetime JPH0680184B2 (en) 1986-07-18 1986-07-18 Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool

Country Status (1)

Country Link
JP (1) JPH0680184B2 (en)

Also Published As

Publication number Publication date
JPS6326348A (en) 1988-02-03

Similar Documents

Publication Publication Date Title
US4402994A (en) Highly hard material coated articles
DE19526387C2 (en) Double-coated composite steel article and method for its production
EP2148939A1 (en) Vacuum treatment unit and vacuum treatment process
JP6311700B2 (en) Hard coating, hard coating covering member, and manufacturing method thereof
US20180355471A1 (en) Hard coating, hard-coated member and its production method, and target for producing hard coating and its production method
CN109609925A (en) A kind of chemical vapor deposition high-purity tantalum sputtering target material production method
US3709809A (en) Sputter deposition of refractory carbide on metal working
JP4062582B2 (en) Hard coating for cutting tool, method for producing the same, and target for forming hard coating
CN111945111A (en) Composite coating deposited on surface of cubic boron nitride cutter and deposition method
CN212335269U (en) Composite coating deposited on surface of cubic boron nitride cutter and vacuum coating device
JP4951101B2 (en) Method for producing hard coating with excellent wear resistance
JPH0356675A (en) Coating of ultrahard alloy base and ultrahard tool manufactured by means of said coating
JPH0680184B2 (en) Method for manufacturing surface-coated high-speed steel member for cutting tool or wear-resistant tool
JP2006315173A (en) Hard coating film for cutting tool, and its manufacturing method
JP2005088130A (en) Hard film coated tool and target for hard film formation
JP2005177952A (en) Compound hard film coated tool and its manufacturing method
JPS6242995B2 (en)
JP2590349B2 (en) Wear-resistant coating method
EP1642998B1 (en) Production device for multiple-system film and coating tool for multiple-system film
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
JPS5918475B2 (en) coated high speed steel
KR100770938B1 (en) Production device for multiple-system film and coating tool for multiple-system film
JP4998304B2 (en) Target for hard film formation by melting method using electron beam
JP2795864B2 (en) Hard coating material and method for producing the same
KR860000016B1 (en) Highly hard material coated articles