JPS6326307A - Molded sic lump - Google Patents

Molded sic lump

Info

Publication number
JPS6326307A
JPS6326307A JP61168860A JP16886086A JPS6326307A JP S6326307 A JPS6326307 A JP S6326307A JP 61168860 A JP61168860 A JP 61168860A JP 16886086 A JP16886086 A JP 16886086A JP S6326307 A JPS6326307 A JP S6326307A
Authority
JP
Japan
Prior art keywords
sic
cast iron
cupola
iron
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168860A
Other languages
Japanese (ja)
Inventor
Yasuo Inoue
井上 安夫
Kenji Shiyudo
首藤 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP61168860A priority Critical patent/JPS6326307A/en
Publication of JPS6326307A publication Critical patent/JPS6326307A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To efficiently absorb SiC into the cast iron melted and produced in a cupola and to stabilize C and Si components of the cast iron by adding a particulate SiC material which is molded to a lump state by a ferrous additive into the cast iron at the time of melting and producing the cast iron in the cupola. CONSTITUTION:The C and Si components in the resultant cast iron are unstable according to the ratios of using blast iron pig, iron scrap and steel scrap at the time of melting and producing the cast iron in the cupola. The SiC is used as the additive for the C and Si in order to stabilize said C and Si components. The rate at which the SiC makes contact reaction with the molten iron dropping in the cupola is low and the SiC accumulates into the bed coke if the SiC is powdery. The furnace condition is then unstabilized. The SiC powder sized <=5mm, the raw materials such as steel scrap, cast iron scrap, and iron oxide (if possible, Fe3O4) which convert to Fe in a high-temp. reducing atmosphere and Ca sources such as Ca and CaCO3 which attain 0.7-1.0 CaO/SiO2 with respect to the content of the impurity SiO2 in the SiC are added to the cast iron. Said materials are molded to the lumps of 50-120mm size, more preferably the size of 1/10 the diameter of the cupola and are added to the cupola, by which the SiC is absorbed into the molten cast iron at a high yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳鉄等の溶解操業において合金添加材として
用いられるSiC成型塊に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a SiC molded ingot used as an alloy additive in melting operations for cast iron and the like.

(従来の技術) 近年、キュポラ操業において、溶融鋳鉄中のC9Siの
成分調整用添加原料としてSiCが注目されている。こ
れは、キュポラにSiCを添加すると、SiCが合金元
素であるC、 Si源となるだけでなく、溶湯の精錬お
よび温度上昇等の効果があると言われているためである
(Prior Art) In recent years, SiC has attracted attention as an additive raw material for adjusting the composition of C9Si in molten cast iron in cupola operations. This is because it is said that when SiC is added to the cupola, it not only serves as a source of alloying elements C and Si, but also has effects such as refining the molten metal and increasing the temperature.

キュポラに添加するSiC材は、人頭大の塊から微粒の
状態で製造されるが、製造塊はそれ自体強度が弱いため
、粒径5曹璽以下にして、セメント等の無機粘結剤をバ
インダとして5〜15cmの大きさの立方体や豆炭形に
成型し、このSiC成型塊をキュポラ等への装入原料と
している。
The SiC material added to cupolas is produced in the form of head-sized lumps or fine particles, but the produced lumps themselves have low strength, so the particle size is reduced to 5 mm or less, and an inorganic binder such as cement is added to the SiC material. As a binder, it is molded into a cube or charcoal shape with a size of 5 to 15 cm, and this molded SiC lump is used as a raw material for charging into a cupola or the like.

(発明が解決しようとする問題点) キュポラ内に装入されたSiC成型塊は、自ら溶けるこ
とはなく  (SiCは2700°CでCとSiに分解
する)、成型塊中のSiCが熔解した鉄と接触すること
によって共晶反応が生して溶鉄中に溶は込んでいく。
(Problem to be solved by the invention) The molded SiC lump charged in the cupola does not melt by itself (SiC decomposes into C and Si at 2700°C), and the SiC in the molded lump melts. When it comes into contact with iron, a eutectic reaction occurs and it melts into the molten iron.

従って、SiC成型塊は、キュポラ内で滴下する溶鉄に
接するか否かによって、溶鉄中へのSi、 Cの熔は込
み量が変化し、溶鉄の成分が安定せず、溶鉄への吸収歩
留も悪くなる。更に、長jIJ1間の連続操業を実施し
た場合、未反応のSiC塊がヘッドコークス中に多数混
入して炉況を不安定にする事態を招来する結果となる。
Therefore, depending on whether or not the SiC molded lump comes into contact with the molten iron dripping in the cupola, the amount of Si and C injected into the molten iron changes, the components of the molten iron are not stabilized, and the absorption yield into the molten iron is reduced. It also gets worse. Furthermore, if continuous operation is carried out for a long period of time, a large number of unreacted SiC lumps will be mixed into the head coke, resulting in an unstable furnace condition.

本発明はかかる問題に鑑みなされたもので、キュポラ等
の熔解炉操業において、溶湯への吸収効率が高くかつ安
定したSiC成型塊を提供することを目的とする。
The present invention was made in view of this problem, and an object of the present invention is to provide a SiC molded lump that has high absorption efficiency into molten metal and is stable in operation of a melting furnace such as a cupola.

(問題点を解決するための手段) 軟土の目的を達成するために講じられた本発明のSiC
成型塊の特徴とするところは、SiC粉粒に高IjL還
元雰囲気で溶融鉄を生成する添加材粉粒を混在させた点
にある。
(Means for solving the problems) SiC of the present invention taken to achieve the purpose of soft soil
The feature of the molded lump is that SiC powder is mixed with additive powder that produces molten iron in a high IjL reducing atmosphere.

(実施例) 本発明に係るSiC成型塊は、SiC粉粒に高温還元雰
囲気で溶融鉄を生成する添加材粉粒が混在して成型され
たものである。
(Example) The SiC molded lump according to the present invention is formed by mixing SiC powder with additive powder that generates molten iron in a high-temperature reducing atmosphere.

SiC粉粒は、既述の通り、別途製造された塊状のst
c+Jを粉砕したものであり、望ましくば、成型性およ
び溶解容易性から5++n以下にしたものである。勿論
、SiC材の製造過程で生じた粉粒も用いられる。
As mentioned above, the SiC powder particles are separately manufactured in the form of lumps of st.
It is obtained by pulverizing c+J, and preferably has a particle size of 5++n or less in view of moldability and ease of dissolution. Of course, powder particles produced during the manufacturing process of the SiC material can also be used.

前記SiC材は、SiC成分が重量%で50〜95%程
度のものまでいろいろ供給されているが、本発明におい
てはいずれの種類のものでも使用できる。
Various types of SiC materials are available, ranging from 50 to 95% by weight of the SiC component, but any type of material can be used in the present invention.

尚、他の成分は、主としてSiO□、 FreeC,S
であり、通常SiC成分が低くなるほど5i02成分が
増大する傾向にある。因みに、−分析例を紹介すると、
SiC50%−3iO□15.3%、SiC70%−3
I0211゜7%、SiC93%−3in2Q、9%で
ある。
In addition, other components are mainly SiO□, FreeC,S
Generally, the lower the SiC component, the more the 5i02 component tends to increase. By the way, - to introduce an analysis example,
SiC50%-3iO□15.3%, SiC70%-3
I0211°7%, SiC93%-3in2Q, 9%.

前記SiC粉粒に添加される添加材粉粒は、キュポラ等
の溶解炉内の高温還元雰囲気下で溶融鉄を生成すること
ができるものであり、例えば鋼材、鋳鉄材、酸化鉄等の
鉄材の粉粒を例示することができる。
The additive powder added to the SiC powder is capable of producing molten iron in a high-temperature reducing atmosphere in a melting furnace such as a cupola. An example is powder particles.

添加材粉粒の大きさは、成型性、均一分散性、溶解容易
性からSiC粉粒と同程以下、望ましくは粒径3菖薦以
下とされる。
The size of the additive powder particles is set to be the same or smaller than that of the SiC powder particles, preferably 3 mm or less, from the viewpoint of moldability, uniform dispersibility, and ease of dissolution.

添加材粉粒とSiC粉粒との混合割合は、成型塊が溶解
炉投入作業用マグネットに吸着する程度であればよく、
通常、添加材粉粒が重量%で40%以」二とするが、特
に限定されない。尚、添加材を酸化鉄とした場合、Fe
31]4(マグネタイト)であればマグネットに吸着す
るので問題ないが、Fe2O+等の吸着しないものにつ
いては、他の搬送手段で炉内へ装入すればよい。
The mixing ratio of the additive powder and the SiC powder may be such that the molded lump is adsorbed to the magnet for feeding into the melting furnace.
Usually, the amount of additive powder particles is 40% or more by weight, but there is no particular limitation. In addition, when the additive is iron oxide, Fe
31] 4 (magnetite), there is no problem since it is adsorbed by the magnet, but materials that do not adsorb, such as Fe2O+, may be charged into the furnace using other conveyance means.

軟土の通り、添加材粉粒の混合割合は、自在に決定する
ことができるが、望ましくは、SiC中のSiと添加材
粉粒中のFeとが融点の低いFe−5iを生成できる範
囲に決定する方が、熔解歩留りの向」二を期待できる。
As with soft soil, the mixing ratio of the additive powder particles can be determined freely, but it is preferably within a range where Si in SiC and Fe in the additive powder particles can generate Fe-5i with a low melting point. If you decide to do this, you can expect to see an improvement in the melting yield.

前記Fe−5iとしては、Fe3Si (14゜4%S
i) 、Fe55i3(23,2%Si) 、Fe5i
2(50,5%Si)を挙げることができる。
As the Fe-5i, Fe3Si (14°4%S
i), Fe55i3 (23,2%Si), Fe5i
2 (50.5% Si).

例えば、Fe5Si3を狙って配合する場合について説
明すると次の通りである。SiC粉粒として、SiC純
度70%(21%C149%Si )のSiC材粉粒を
用い、添加材粉粒として、4.2%C,1,0%Siの
鋳鉄材粉粒を用いた場合、添加材粉粒の配合割合をX%
とすると、下記式が成立し、 1.0X+49(100−X)  −23,2x  1
00X=53.8%が決定される。
For example, the case where Fe5Si3 is targeted for blending will be explained as follows. When using SiC powder with a SiC purity of 70% (21%C, 149%Si) as the SiC powder, and using cast iron powder with 4.2%C and 1.0%Si as the additive powder. , the blending ratio of additive powder particles is X%
Then, the following formula is established, 1.0X+49(100-X) -23,2x 1
00X=53.8% is determined.

尚、添加材粉粒として、酸化鉄粉粒を用いた場合は、例
えば下記式のように Fe304+SiC→Fe−1−3i02+C3iC中
のSiが還元剤として用いられるので、この分を考慮し
て配合割合を決定する必要がある。
In addition, when iron oxide powder is used as the additive powder, Si in Fe304+SiC→Fe-1-3i02+C3iC is used as a reducing agent as shown in the following formula, so take this into account when adjusting the blending ratio. need to be determined.

上記SiC粉粒と添加材粉粒とを均一に混合した後、成
型塊に成型される。成型された成型塊の大きさは、自由
に決定することができるが、通常50〜120 vsv
s程度とされる。尚、キュポラに投入する場合では、炉
径の1/10程度がよいと言われている。
After the SiC powder and the additive powder are uniformly mixed, they are molded into a molded lump. The size of the molded lump can be determined freely, but is usually 50 to 120 vsv
It is said to be about s. In addition, when charging into a cupola, it is said that about 1/10 of the diameter of the furnace is good.

ところで、SiC粉粒のSiC純度が低い場合、既述し
た通り、不純物として5io2が多く含有される。
By the way, when the SiC purity of the SiC powder is low, as described above, a large amount of 5io2 is contained as an impurity.

Sin□が多く含有していると、溶解炉内で高融点の5
i02系スラグが生成する。このスラグは流動性が悪い
ので、コークスやSiCの表面に付着し易く、コークス
の燃焼性やSiCの共晶反応を阻害する。
If a large amount of Sin□ is contained, the high melting point of 5
i02 series slag is generated. Since this slag has poor fluidity, it easily adheres to the surface of coke and SiC, inhibiting the combustibility of coke and the eutectic reaction of SiC.

その結果、キュポラの炉況を悪化させる傾向を生じる。As a result, there is a tendency to deteriorate the furnace condition of the cupola.

これを防止するためには、スラグの流動性を上げること
が必要であり、本発明においては、SiC粉粒中の5i
02の作用を中和するためにCa化合物を用い、添加材
粉粒として、鉄材粉粒とCa化合物粉粒との混合粉粒を
用いる。
In order to prevent this, it is necessary to increase the fluidity of the slag, and in the present invention, it is necessary to increase the fluidity of the slag.
In order to neutralize the effect of 02, a Ca compound is used, and a mixed powder of iron material powder and Ca compound powder is used as the additive powder.

Ca化合物としては、CaOやCaC03を例示するこ
とができ、その添加量はCaOに換算して、重量比でC
aO/5iO2= 0.7〜1.0とするのがよい。0
.7未満ではスラグの流動性改善の効果が少なく、−方
、1.0を越えると、溶解炉の操業が塩基性操業となり
、酸化したSiがCで還元されずに、5in2がCaO
と結合してしまいSiの合金化が妨げられ、StCのS
i歩留が悪化する。
Examples of Ca compounds include CaO and CaC03, and the amount added is calculated as CaO in terms of weight ratio.
It is preferable that aO/5iO2=0.7 to 1.0. 0
.. If it is less than 7, the effect of improving the fluidity of slag will be small; if it exceeds 1.0, the operation of the melting furnace will become basic, and oxidized Si will not be reduced by C, and 5in2 will become CaO.
This prevents the alloying of Si, and the S of StC
i Yield deteriorates.

尚、前記Ca化合物の添加量の算定基準となる5i02
は、厳密に言えば、溶鉄の精錬におけるスラグ中の5i
02量ということになり、SiC粉粒中の5iOiのほ
かに、SiCが溶鉄を精錬することによって発生する5
i02量も考慮しなければならないが、後者の量は実際
上微量であり、前者の5ho2量だけで十分実用的であ
る。
In addition, 5i02 is the calculation standard for the amount of Ca compound added.
Strictly speaking, 5i in slag in molten iron refining is
In addition to the 5iOi in the SiC powder, the amount of 5iOi generated by SiC refining molten iron is
Although the amount of i02 must also be taken into consideration, the latter amount is actually very small, and the former amount of 5ho2 alone is sufficient for practical use.

Ca化合物の配合例を挙げると下記の通りである。Examples of the combination of Ca compounds are as follows.

SiC粉粒として、SiC70%−5i02量2%のも
のを用い、Cab/ 5iOz−0,7とするとCab
/12%=0.7 これによりCaO−8,4%を得る。従って、SiCに
対して8.4%のCaO粉粒を添加すればよい。
As SiC powder particles, if SiC70%-5i02 amount 2% is used and Cab/5iOz-0,7 is used, Cab
/12%=0.7 This gives CaO-8.4%. Therefore, it is sufficient to add 8.4% of CaO powder to SiC.

この場合、Ca化合物としてCaC03を用いるとする
と、分子量の割合で となり、SiCに対して15%のCaC03を添加すれ
ばよい。
In this case, if CaC03 is used as the Ca compound, the molecular weight ratio is as follows, and it is sufficient to add 15% of CaC03 to SiC.

次に本発明に係るSiC成型塊を用いたキュポラ操業実
施例について、従来のSiC粉粒のみからなる成型塊を
用いた場合と比較して説明する。
Next, an example of cupola operation using the SiC molded lump according to the present invention will be described in comparison with a case where a conventional molded lump made only of SiC powder particles is used.

fl、l  使用したSiC成型塊 ■実施例 SiC粉粒・・・ SiC純度70%のSiC材の粉砕
粒(粒径3mm以下)を使用 添加材粉粒−C4,2%、Si 1.0%、Mn 0.
6%、残部実質的にFeの銑鉄の粉砕粒( 粒径3 am以下)を使用 配合比 ・・・ SiC粉粒5o%、添加材粉粒5o%
成型塊の大きさ・・・100mmφX 100 mm 
klの円柱形■従来例 ■で挙げたSiC粉粒のみを使用して、100龍φX1
00+nhの円柱形に成型した。
fl, l SiC molded lump used ■Example SiC powder granules...Crushed granules of SiC material with SiC purity of 70% (particle size 3 mm or less) were used Additive powder granules - C4.2%, Si 1.0% , Mn 0.
6%, the balance is essentially Fe crushed pig iron particles (particle size 3 am or less).Blending ratio: 50% SiC powder, 50% additive powder.
Size of molded lump...100mmφX 100mm
kl cylindrical shape ■ Conventional example ■ Using only the SiC powder particles, 100 dragon
It was molded into a cylindrical shape of 00+nh.

(2)キュポラ装入原料および配合(重量%)・・・第
1表に示す。
(2) Cupola charging raw materials and composition (wt%)...shown in Table 1.

次      葉 第  1  表 (3)  操業結果 出銑が安定した後、5時間に亘って20分毎(サンプリ
ング総数15)に、出銑温度、出銑C%、出銑St%に
ついて調べた。その結果を第2表に示す。
Table 1 (3) Operation results After the tapping became stable, the tapping temperature, tapping C%, and tapping St% were investigated every 20 minutes for 5 hours (total number of samples: 15). The results are shown in Table 2.

第2表 第2表より、実施例は従来例に比べて、成分のバラツキ
が小さくなっていることが確認された。
Table 2 From Table 2, it was confirmed that the variations in the components were smaller in the examples than in the conventional examples.

また、第1表および第2表に基づいて、Si歩留を下記
の計算式により算出した。
Furthermore, based on Tables 1 and 2, the Si yield was calculated using the following formula.

又 Si歩留= −X100% ここに、Xは全原料中のSi含有量(χ)であり、X=
Σ(原料中のSi%)×(その原料の配合%) 又は第2表中の平均St%を示す。
Also, Si yield = -X100% Here, X is the Si content (χ) in the total raw material, and X =
Σ (Si% in the raw material) x (blending % of the raw material) or the average St% in Table 2 is shown.

尚、原料中のSi含有量は次の通りである。Incidentally, the Si content in the raw materials is as follows.

銑鉄1.0%、故銑1.7%、鋼屑0.1%SiC成型
塊(実施例)25% (従来例)49% 計算結果は、実施例85%、従来例81%であり、本発
明のSiC成型塊を用いた場合、Si歩留の向上が確認
された。
Pig iron 1.0%, waste pig iron 1.7%, steel scrap 0.1% SiC molded ingot (example) 25% (conventional example) 49% The calculation results are 85% in the example and 81% in the conventional example, When the SiC molded lump of the present invention was used, it was confirmed that the Si yield was improved.

(発明の効果) 以上説明した通り、本発明のSiC成型塊は、SiC粉
粒に高温還元雰囲気で溶融鉄を生成する添加材粉粒が混
在しているので、溶解炉中で添加材粉粒より生じた溶解
鉄がSiC粉粒に極めて容易に接触し、SiCとFeと
の共晶反応を促進させることができ、溶鉄中のC,Si
成分の安定化、吸収歩留の向上に資することができ、延
いては炉況の安定した操業を図ることができ、当分野に
おける利用価値は著大である。
(Effects of the Invention) As explained above, the SiC molded lump of the present invention contains SiC powder mixed with additive powder that generates molten iron in a high-temperature reducing atmosphere. The molten iron generated from the molten iron contacts the SiC powder very easily, promoting the eutectic reaction between SiC and Fe.
It can contribute to stabilizing the components and improving the absorption yield, which in turn allows stable operation of the furnace, and has great utility value in this field.

Claims (4)

【特許請求の範囲】[Claims] (1)SiC粉粒が塊状に成型されたSiC成型塊にお
いて、SiC粉粒に高温還元雰囲気で溶融鉄を生成する
添加材粉粒が混在していることを特徴とするSiC成型
塊。
(1) A SiC molded lump in which SiC powder particles are molded into a lump shape, characterized in that the SiC powder particles are mixed with additive powder particles that generate molten iron in a high-temperature reducing atmosphere.
(2)添加材粉粒が鉄材粉粒であることを特徴とする特
許請求の範囲第1項記載のSiC成型塊。
(2) The SiC molded ingot according to claim 1, wherein the additive powder particles are iron powder particles.
(3)添加材粉粒が鉄材粉粒とCa化合物粉粒とである
ことを特徴とする特許請求の範囲第1項記載のSiC成
型塊。
(3) The SiC molded lump according to claim 1, wherein the additive powder particles are iron material powder particles and Ca compound powder particles.
(4)Ca化合物はSiC粉粒中の不純物SiO_2含
有量に対してCaOに換算して重量比でCaO/SiO
_2が0.7〜1.0となる範囲で添加されていること
を特徴とする特許請求の範囲第3項記載のSiC成型塊
(4) The Ca compound is calculated as CaO/SiO in terms of the weight ratio of CaO to the impurity SiO_2 content in the SiC powder particles.
The SiC molded lump according to claim 3, wherein _2 is added in a range of 0.7 to 1.0.
JP61168860A 1986-07-17 1986-07-17 Molded sic lump Pending JPS6326307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168860A JPS6326307A (en) 1986-07-17 1986-07-17 Molded sic lump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168860A JPS6326307A (en) 1986-07-17 1986-07-17 Molded sic lump

Publications (1)

Publication Number Publication Date
JPS6326307A true JPS6326307A (en) 1988-02-03

Family

ID=15875901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168860A Pending JPS6326307A (en) 1986-07-17 1986-07-17 Molded sic lump

Country Status (1)

Country Link
JP (1) JPS6326307A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571563A (en) * 1980-06-03 1982-01-06 Shin Kobe Electric Mach Co Ltd Production of grid body for pole plate of storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571563A (en) * 1980-06-03 1982-01-06 Shin Kobe Electric Mach Co Ltd Production of grid body for pole plate of storage battery

Similar Documents

Publication Publication Date Title
KR102410368B1 (en) Cast iron inoculum and method of producing cast iron inoculant
KR102409324B1 (en) Cast iron inoculum and method of producing cast iron inoculant
KR102493172B1 (en) Cast iron inoculants and methods of producing cast iron inoculants
KR20200100821A (en) Cast iron inoculant and method of producing cast iron inoculant
CA1083824A (en) Slag fluidizing agent and method of using same for iron and steel-making processes
KR102410364B1 (en) Cast iron inoculum and method of producing cast iron inoculant
US4731112A (en) Method of producing ferro-alloys
JPH06172916A (en) Manufacturing of stainless steel
CN102586666B (en) Special cleansing agent for short-flow high-strength cast iron and manufacturing process thereof
CN101250609B (en) Rear earth calsibar deoxidizer and preparation technique thereof
JPS6326307A (en) Molded sic lump
US5698009A (en) Method for agglomerating pre-reduced hot iron ore particles to produce ingot iron
HU187645B (en) Process for the production of complex ferro-alloys of si-base
KR20110124408A (en) Ferroalloy briquette and producing method for the same
SU1708907A1 (en) Aluminothermic method of producing ferrovanadium
CN114032349B (en) Alterant for high-chromium cast iron and preparation method thereof
JP3510408B2 (en) Method for producing coke for iron-containing metallurgy and iron-containing granulated product
US1065855A (en) Process of manufacturing alloys.
JPH01268814A (en) Recarburizing material for steel making
JPS5952940B2 (en) Dephosphorization method for high carbon ferromanganese
US3271139A (en) Process for the production of low sulfur ferrochromium
JPH0587571B2 (en)
RU2078843C1 (en) Method of charge preparation for ferromolybdenum production
RU2167203C1 (en) Charge for smelting foundry pig iron
RU2059014C1 (en) Method to produce briquets for direct steel alloying and deoxidizing with manganese