JPS63262544A - Hydrogen converting ratio measuring device - Google Patents

Hydrogen converting ratio measuring device

Info

Publication number
JPS63262544A
JPS63262544A JP9613687A JP9613687A JPS63262544A JP S63262544 A JPS63262544 A JP S63262544A JP 9613687 A JP9613687 A JP 9613687A JP 9613687 A JP9613687 A JP 9613687A JP S63262544 A JPS63262544 A JP S63262544A
Authority
JP
Japan
Prior art keywords
hydrogen
reactor
gas
permeable membrane
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9613687A
Other languages
Japanese (ja)
Inventor
Masato Takahashi
正人 高橋
Hideki Nakamura
秀樹 中村
Hiromi Shiomi
塩見 博己
Toshimasa Kamata
鎌田 敏正
Yoshio Wagouya
和合谷 與志雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP9613687A priority Critical patent/JPS63262544A/en
Publication of JPS63262544A publication Critical patent/JPS63262544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To directly and rapidly measure a hydrogen converting ratio with respect to the reactor such as the recombiner of an off-gas system, by providing a separator equipped with a hydrogen permeable membrane and a flowmeter to the bypass pipe bypassing the reactor. CONSTITUTION:When off-gas containing hydrogen, oxygen, nitrogen and steams flows in a recombiner 8, the greater part of hydrogen and oxygen are bonded by a catalyst 17 to generate steam and the off-gas passing through the catalyst 17 flows out to the piping 11 of an off-gas system on the downstream side. At this time, difference is generated between the hydrogen partial pressures on the upstream and downstream sides of the hydrogen permeable membrane 22 of the hydrogen converting ratio measuring device 15 provided so as to bypass a reactor 16. Hydrogen transmits through the hydrogen permeable membrane 22 by the difference between the hydrogen partial pressures to flow from the upstream side to the downstream side. The transmitting flow rate of this hydrogen is measured by a flowmeter 20 and the concn. of hydrogen is calculated from the calculated difference between the hydrogen partial pressures to make it possible to easily obtain a hydrogen converting ratio.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水素透過膜を透過する水素の流量を測定するこ
とにより水素転換比を簡易に測定可能な水素転換比測定
器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a hydrogen conversion ratio measuring device that can easily measure the hydrogen conversion ratio by measuring the flow rate of hydrogen passing through a hydrogen permeable membrane. Regarding.

(従来の技術) 一般に沸騰水型原子炉においては、第3図に示すように
原子炉1で発生した蒸気が主蒸気系2を通って蒸気ター
ビン3aに送られ、この蒸気タービン3aで仕事をした
後復水器3bに案内される。復水器3bに案内された蒸
気は、ここで凝縮されて復水となり、原子炉復水給水系
4を通って原子炉1へ再び送り込まれる。
(Prior Art) Generally, in a boiling water reactor, as shown in FIG. 3, steam generated in the reactor 1 is sent through the main steam system 2 to a steam turbine 3a, and the steam turbine 3a performs work. After that, it is guided to the condenser 3b. The steam guided to the condenser 3b is condensed here, becomes condensate, and is sent to the reactor 1 again through the reactor condensate water supply system 4.

このような原子炉の運転により上記復水器3bの上部に
はオフガスが貯よる。このオフガス中には放射性のクリ
プトンやキセノンの他に水の放射線分解で生ずる水素、
酸素、等が含まれており、そのままの状態では大気中へ
放出できないため、そのオフガスを安全に処理して大気
中へ放出するオフガス系5が設けられる。
Due to such operation of the nuclear reactor, off-gas accumulates in the upper part of the condenser 3b. In addition to radioactive krypton and xenon, this off-gas contains hydrogen produced by radiolysis of water,
Since it contains oxygen, etc., and cannot be released into the atmosphere as it is, an off-gas system 5 is provided to safely process the off-gas and release it into the atmosphere.

復水器3bに貯まったオフガスは、まずタービン系から
導いた蒸気流を利用する蒸気エジェクタ等の機械的抽出
器としての蒸気式空気抽出器6により吸引されて予熱器
7へ送られる。予熱器7へ送られたオフカスは、ここで
約160℃に昇温された後、再結合器8へ送られ、この
再結合器8内でオフガス中の大部分の水素が触媒の作用
により酸素と反応し水蒸気に転換される。
The off-gas accumulated in the condenser 3b is first sucked in by a steam air extractor 6, which is a mechanical extractor such as a steam ejector, which utilizes the steam flow led from the turbine system, and is sent to the preheater 7. The off-gas sent to the preheater 7 is heated to about 160°C here, and then sent to the recombiner 8, where most of the hydrogen in the off-gas is converted to oxygen by the action of the catalyst. It reacts with water and is converted to water vapor.

触媒中で水蒸気を生成しIζオフガスは反応熱により昇
温しで約300℃となり、アフタコンデンサ9に流入す
る。アフタコンデンサ9に流入したオーツガスは冷却さ
れ、オフガス中の水蒸気が水に変わり、ぞの水分が除去
される。水分が除去されたオフガスはオフガス処即装置
10内で活性炭により放射性ガス等が除去された後、図
示しないスタックから大気中へ放出される。
Steam is generated in the catalyst, and the Iζ off-gas is heated to about 300° C. by the heat of reaction, and flows into the aftercondenser 9. The oat gas flowing into the after-condenser 9 is cooled, the water vapor in the off-gas is changed to water, and the moisture is removed. The off-gas from which moisture has been removed has radioactive gas and the like removed by activated carbon in the off-gas treatment device 10, and is then released into the atmosphere from a stack (not shown).

(発明が解決、しようとする問題点) オフガスが人気中へ放出されるためには、オフガス中の
水素が適切に除去されな【プればならない。そのために
は、再結合器8出口側の水素温度を取扱上充分安全な濃
度範囲以下に押える必要がある。通常、再結合器8内の
反応器に収容される触媒は、長期間使用されるため、M
!媒中での水素酸素反応と触媒の性能の健全性を監視す
ることが必要である。
(Problems to be solved and attempted by the invention) In order for the off-gas to be released into the public, hydrogen in the off-gas must be properly removed. For this purpose, it is necessary to suppress the hydrogen temperature at the outlet side of the recombiner 8 to a concentration range that is sufficiently safe for handling. Usually, the catalyst accommodated in the reactor in the recombiner 8 is used for a long period of time, so M
! It is necessary to monitor the health of the hydrogen-oxygen reaction in the medium and the performance of the catalyst.

従来触媒性能と水素酸素反応の監視は、反応器内の温度
計を測定することにより間接的に行なわれている。すな
わち、反応熱と反応器とが比例関係にあることから、反
応熱を計測し、その計測値から間接的に触媒の健全性を
評価、監視している。
Traditionally, catalyst performance and hydrogen-oxygen reactions have been monitored indirectly by measuring thermometers inside the reactor. That is, since the heat of reaction and the reactor are in a proportional relationship, the heat of reaction is measured, and the health of the catalyst is indirectly evaluated and monitored from the measured value.

しかし、反応器中の温度は、蒸気流けや炉心での水素発
生量によって変化する。したがって、このような場合に
は反応熱を正確に計測することができず、水素反応量や
触媒の健全性に基づく正確な水素転換比を得ることが困
難であった。
However, the temperature in the reactor changes depending on the steam flow and the amount of hydrogen generated in the core. Therefore, in such cases, the heat of reaction cannot be measured accurately, and it is difficult to obtain an accurate hydrogen conversion ratio based on the amount of hydrogen reaction and the health of the catalyst.

本発明は上記の事情を考慮してなされたものでオフガス
系の再結合器等の反応器について、直接的かつ迅速に正
確な水素転換比を測定することが可能な水素転換化測定
器を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and provides a hydrogen conversion measuring device that can directly and quickly measure the accurate hydrogen conversion ratio of reactors such as off-gas recombiners. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明に係る水素転換比測定器は、水素と酸素とを結合
させる反応器をバイパスするバイパス配管が設けられる
とともに、このバイパス配管に上流側から分1tilt
器および流量計が順次設けられ、上記分離器内に水素透
過膜が備えられたものである。
(Means for Solving the Problems) The hydrogen conversion ratio measuring device according to the present invention is provided with a bypass pipe that bypasses a reactor that combines hydrogen and oxygen, and is provided with a 1-tilt angle from the upstream side of the bypass pipe.
A hydrogen permeable membrane is provided in the separator, and a hydrogen permeable membrane is provided in the separator.

(作用) 反応器を通過するガス中の水素と酸素とが結合すると、
反応器J:り上流側と下流側のガスの水素分圧に差が生
じる。そのため、反応器をバイパスするバイパス配管に
設けられた分離器の上流側と下流側のガスの水素分圧に
も同様に差が生じる。
(Function) When hydrogen and oxygen in the gas passing through the reactor combine,
Reactor J: A difference occurs in the hydrogen partial pressure of the gas on the upstream and downstream sides. Therefore, a difference similarly occurs in the hydrogen partial pressure of the gas on the upstream side and the downstream side of the separator provided in the bypass piping that bypasses the reactor.

分離器の上流側と下流側のガスの水素分圧に差が生じる
と、分離器内に備えられた水素透過膜を通って上流から
下流へ水素が流れる。この水素の流量は分離器の下流側
に設けられた流量計によってh4測され、その計測値か
ら水素転換比が求められる。
When a difference occurs between the hydrogen partial pressures of the gases on the upstream and downstream sides of the separator, hydrogen flows from upstream to downstream through the hydrogen permeable membrane provided in the separator. The flow rate of this hydrogen is measured h4 by a flow meter provided on the downstream side of the separator, and the hydrogen conversion ratio is determined from the measured value.

(実施例) 本発明に係る水素転換比測定器の一実施例を図面を参照
して説明する。
(Example) An example of the hydrogen conversion ratio measuring device according to the present invention will be described with reference to the drawings.

本発明に係る水素転換比測定器15は沸騰水型原子炉の
オフガス系に備えられる水素転換比測定器として好適に
使用され、第2図に示すようにオフガス系5の再結合器
8をバイパスして設けられる。
The hydrogen conversion ratio measuring device 15 according to the present invention is suitably used as a hydrogen conversion ratio measuring device provided in the off-gas system of a boiling water reactor, and bypasses the recombiner 8 of the off-gas system 5 as shown in FIG. It will be established as follows.

オフガス系5の再結合器8はオフガス系配管11に介装
され、この再結合器8内には反応!16が備えられると
ともに、この反応器16に触媒17が収容される。触媒
17としては例えば直径5〜10m程度の粒子状のアル
ミナ(八12o3)の周囲にパラジウム(Pd)を担持
させたものが用いられる。そして、この触媒17が水素
と酸素との結合を促進させることによって、水素を安全
な水蒸気に転換するようになっている。
A recombiner 8 of the off-gas system 5 is installed in the off-gas system piping 11, and a reaction! 16 is provided, and a catalyst 17 is accommodated in this reactor 16. As the catalyst 17, for example, palladium (Pd) is supported around particulate alumina (812o3) having a diameter of about 5 to 10 m. This catalyst 17 promotes the bonding of hydrogen and oxygen, thereby converting hydrogen into safe steam.

水素転換比測定器15には、上記再結合器8をバイパス
するバイパス配管18が設けられ、このバイパス配管1
8に上流側から分離器19および流量計20が順次設【
プられる。また、流量計20の下流側には測定しない場
合にガスの流れを止めるためのバルブ21が設けられる
The hydrogen conversion ratio measuring device 15 is provided with a bypass pipe 18 that bypasses the recombiner 8, and this bypass pipe 1
8, a separator 19 and a flow meter 20 are sequentially installed from the upstream side.
be pulled. Furthermore, a valve 21 is provided downstream of the flow meter 20 to stop the flow of gas when not measuring.

上記分離器19内には、第1図に示すように水素通過膜
22が備えられる一方、この水素透過膜22によって分
囚器19内が2室の分離室23a。
The separator 19 is provided with a hydrogen permeable membrane 22 as shown in FIG. 1, and the hydrogen permeable membrane 22 forms two separation chambers 23a within the separator 19.

23bに隔離される。上記水素透過膜22としては例え
ばパラジウム(Pd)の薄膜状金属または有機膜として
はポリイミド、酢酸セルロース等のポリスルホン酸多孔
膜にシリコン系ポリマーをコートした複合膜が用いられ
る。この断面構造はガスとの接触面積を確保し、かつ水
素のみを通過させるものであれば、その他の構造であっ
てもよい。
23b. As the hydrogen permeable membrane 22, for example, a thin metal film of palladium (Pd) is used, or as an organic membrane, a composite membrane in which a polysulfonic acid porous membrane such as polyimide or cellulose acetate is coated with a silicone polymer is used. This cross-sectional structure may have any other structure as long as it ensures a contact area with gas and allows only hydrogen to pass through.

水素透過膜22は」−流側の分離室23aと下流側の分
離室23bとの水素分圧差により水素を透過させ、その
透過量は水素分圧差の大きさに比例する。
The hydrogen permeable membrane 22 allows hydrogen to permeate due to the hydrogen partial pressure difference between the upstream side separation chamber 23a and the downstream side separation chamber 23b, and the amount of permeation is proportional to the magnitude of the hydrogen partial pressure difference.

上記水素透過膜22の水素透過率は温度と密接な関係を
有し、温度が変化すると水素透過率が変化覆る。したが
っ”C1正確な水素転換比を測定するためには水素透過
膜22を一定の温度に維持する必要がある。オフガス系
5の再結合器8の水素転換比を測定づる場合には、オフ
ガスの温度がゴ定に安定しておれば問題ないが、もし水
素透過膜22の温度が変化するおそれがある場合には、
温度を一定に維持する装置を設ける必要がある。温度を
一定に維持する装置としてはサーモスタット付ヒータ等
が考えられる。
The hydrogen permeability of the hydrogen permeable membrane 22 has a close relationship with temperature, and as the temperature changes, the hydrogen permeability changes. Therefore, in order to accurately measure the hydrogen conversion ratio, it is necessary to maintain the hydrogen permeable membrane 22 at a constant temperature.When measuring the hydrogen conversion ratio of the recombiner 8 of the off-gas system 5, There is no problem if the temperature is stable, but if there is a risk that the temperature of the hydrogen permeable membrane 22 may change,
A device must be provided to maintain a constant temperature. A heater with a thermostat or the like can be considered as a device for maintaining a constant temperature.

上記分離器19の下流側に設けられる流量計20として
はガスメータが用いられ、上記水素透過膜22を透過し
て流れる水素の流量を正確に測定することができるよう
になっている。
A gas meter is used as the flow meter 20 provided on the downstream side of the separator 19, so that the flow rate of hydrogen passing through the hydrogen permeable membrane 22 can be accurately measured.

このように、本発明は水素透過膜22を透過して流れる
水素の流量が、水素透過Wi!22の上流側と下流側の
ガスの水素分圧差に比例する特性を利用して、水素の透
過流量を測定することによって水素転換比を求めるもの
である。この場合、水素透過膜22を透過する水素の流
量と水素分圧差との関係は、用いられる水素透過膜22
の種類、形状、構造、温度等により左右されるため、予
め一定条件の下で実験により、その水素透過膜22固有
の透過mと水素分圧差との関係を求めておく必要がある
。そして、実際に分離器19内に設置して、一定条件下
で流量計20により水素の流ωを測定することによって
、水素分圧差が一義的に求められ、その水素分圧差から
水素転換比を容易に得ることができる。
In this way, the present invention allows the flow rate of hydrogen passing through the hydrogen permeable membrane 22 to be determined by the hydrogen permeation Wi! The hydrogen conversion ratio is determined by measuring the hydrogen permeation flow rate using the characteristic that is proportional to the hydrogen partial pressure difference between the gases on the upstream side and the downstream side of 22. In this case, the relationship between the flow rate of hydrogen passing through the hydrogen permeable membrane 22 and the hydrogen partial pressure difference is
Since it depends on the type, shape, structure, temperature, etc. of the hydrogen permeable membrane 22, it is necessary to determine the relationship between the permeation m and the hydrogen partial pressure difference unique to the hydrogen permeable membrane 22 through experiments under certain conditions in advance. Then, by actually installing it in the separator 19 and measuring the hydrogen flow ω with the flow meter 20 under certain conditions, the hydrogen partial pressure difference can be uniquely determined, and the hydrogen conversion ratio can be calculated from the hydrogen partial pressure difference. can be obtained easily.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

水素、酸素、窒素、水蒸気等を含んだオフガスが再結合
器8内に流入すると、再結合器8内の反応器16に収容
される触媒17により大部分の水素と酸素とが結合され
、水蒸気が生ずる。そうして、触媒17間を通過したオ
フガスは再結合器8から下流側のオフガス系配管11へ
流出する。
When off-gas containing hydrogen, oxygen, nitrogen, water vapor, etc. flows into the recombiner 8, most of the hydrogen and oxygen are combined by the catalyst 17 housed in the reactor 16 in the recombiner 8, and water vapor is generated. occurs. The off-gas that has passed between the catalysts 17 then flows out from the recombiner 8 to the off-gas system piping 11 on the downstream side.

上記のように触117により水素と酸素とが結合される
ことによって、反応器16より上流側と下流側のオフガ
スの水素分圧に差が生じる。そのため、反応器16をバ
イパスして設(プられる水素転換比測定器15の水素透
過膜22より上流側と下流側の水素分圧にも同様に差が
生じる。
By combining hydrogen and oxygen by the contact 117 as described above, a difference occurs in the hydrogen partial pressure of the off-gas on the upstream side and the downstream side of the reactor 16. Therefore, a difference similarly occurs in the hydrogen partial pressures on the upstream and downstream sides of the hydrogen permeable membrane 22 of the hydrogen conversion ratio measuring device 15, which is installed by bypassing the reactor 16.

この水素分圧差により水素が水素透過膜22を透過して
、上流側から下流側へ流れる。この水素の透過流量が流
量計20により削測さ、れ、その計測値から一義的に水
素分圧差が求められ、その水素分圧差から水素温度を求
めることにより容易に水素転換比を得ることができる。
Due to this hydrogen partial pressure difference, hydrogen permeates the hydrogen permeable membrane 22 and flows from the upstream side to the downstream side. This permeation flow rate of hydrogen is measured by the flowmeter 20, the hydrogen partial pressure difference is uniquely determined from the measured value, and the hydrogen conversion ratio can be easily obtained by determining the hydrogen temperature from the hydrogen partial pressure difference. can.

上記実施例は基本的に駆動部を有しないため取扱いが容
易であり、機構が簡素である。また、水素流量を直接測
定するため、直接的かつ迅速に極めて正確な水素転換比
を測定して触媒の性能評価を行なうことができる。さら
に、上記実施例においては、従来のような触媒17のロ
ーリング等により測定値が影響を受けることがない。
The above-mentioned embodiment basically does not have a driving part, so it is easy to handle and has a simple mechanism. Furthermore, since the hydrogen flow rate is directly measured, the performance of the catalyst can be evaluated by directly and quickly measuring the extremely accurate hydrogen conversion ratio. Furthermore, in the above embodiment, the measured values are not affected by rolling of the catalyst 17, etc. as in the conventional case.

上記実施例においては、オフガス1系5における水素転
換比測定器15について説明したが、本発明はこれに限
定されず、一般的な水素転換比の測定に広く適用可能で
ある。
In the above embodiment, the hydrogen conversion ratio measuring device 15 in the off-gas 1 system 5 has been described, but the present invention is not limited thereto, and can be widely applied to general hydrogen conversion ratio measurements.

(発明の効果) 本発明に係る水素転換比測定器は、水素と酸素とを結合
させる反応器をバイパスするバイパス配管が設けられる
とともに、このバイパス配管に上流側から分離器および
流量計が順次設けられ、上記分離器内に水素透過膜が備
えられたから、流量計により直接水素透過流量を測定し
、その水素透過流量から水素分圧差を求めることによっ
て、直接的かつ迅速に極めて正確な水素転換比を測定す
ることができる。
(Effects of the Invention) The hydrogen conversion ratio measuring device according to the present invention is provided with a bypass pipe that bypasses a reactor that combines hydrogen and oxygen, and a separator and a flow meter are sequentially provided in this bypass pipe from the upstream side. Since the separator is equipped with a hydrogen permeation membrane, the hydrogen permeation flow rate can be directly measured with a flowmeter, and the hydrogen partial pressure difference can be determined from the hydrogen permeation flow rate, thereby directly and quickly achieving an extremely accurate hydrogen conversion ratio. can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水素転換比測定器の実施例を示す
構成図、第2図はオフガス系の再結合器をバイパスして
設けられた上記実施例に係る水素転換比測定器を示す構
成図、第3図は一般的なオフガス系を示す構成図である
。 15・・・水素転換比測定器、16・・・反応器、17
・・・触媒、18・・・バイパス配管、19・・・分離
器、20・・・流量計、22・・・水素透過膜、23a
、23b・・・分離室。 出願人代理人   波 多 野   久第1図
Fig. 1 is a block diagram showing an embodiment of the hydrogen conversion ratio measuring device according to the present invention, and Fig. 2 shows the hydrogen conversion ratio measuring device according to the above embodiment, which is provided by bypassing the off-gas system recombiner. The configuration diagram, FIG. 3, is a configuration diagram showing a general off-gas system. 15...Hydrogen conversion ratio measuring device, 16...Reactor, 17
...Catalyst, 18...Bypass piping, 19...Separator, 20...Flowmeter, 22...Hydrogen permeation membrane, 23a
, 23b... Separation chamber. Applicant's agent Hisashi Hatano Figure 1

Claims (1)

【特許請求の範囲】 1、水素と酸素とを結合させる反応器をバイパスするバ
イパス配管が設けられるとともに、このバイパス配管に
上流側から分離器および流量計が順次設けられ、上記分
離器内に水素透過膜が備えられたことを特徴とする水素
転換比測定器。 2、上記分離器内に分離室が形成され、この分離室が上
記水素透過膜によって2室に隔離された特許請求の範囲
第1項記載の水素転換比測定器。
[Claims] 1. A bypass pipe is provided that bypasses a reactor that combines hydrogen and oxygen, and a separator and a flow meter are sequentially provided in this bypass pipe from the upstream side, and hydrogen is injected into the separator. A hydrogen conversion ratio measuring device characterized by being equipped with a permeable membrane. 2. The hydrogen conversion ratio measuring device according to claim 1, wherein a separation chamber is formed in the separator, and the separation chamber is separated into two chambers by the hydrogen permeable membrane.
JP9613687A 1987-04-21 1987-04-21 Hydrogen converting ratio measuring device Pending JPS63262544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613687A JPS63262544A (en) 1987-04-21 1987-04-21 Hydrogen converting ratio measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613687A JPS63262544A (en) 1987-04-21 1987-04-21 Hydrogen converting ratio measuring device

Publications (1)

Publication Number Publication Date
JPS63262544A true JPS63262544A (en) 1988-10-28

Family

ID=14156972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613687A Pending JPS63262544A (en) 1987-04-21 1987-04-21 Hydrogen converting ratio measuring device

Country Status (1)

Country Link
JP (1) JPS63262544A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187570A (en) * 2014-03-27 2015-10-29 日立Geニュークリア・エナジー株式会社 Radioactive waste containment with hydrogen discharge device
JP2015190761A (en) * 2014-03-27 2015-11-02 日立Geニュークリア・エナジー株式会社 storage container of radioactive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187570A (en) * 2014-03-27 2015-10-29 日立Geニュークリア・エナジー株式会社 Radioactive waste containment with hydrogen discharge device
JP2015190761A (en) * 2014-03-27 2015-11-02 日立Geニュークリア・エナジー株式会社 storage container of radioactive material

Similar Documents

Publication Publication Date Title
US3943751A (en) Method and apparatus for continuously measuring hydrogen concentration in argon gas
JP3230923B2 (en) Reactor water level measurement device
JP2014010049A (en) Hydrogen treatment system for nuclear power plant
JPS63262544A (en) Hydrogen converting ratio measuring device
US4319966A (en) Technique for monitoring SO3, H2 SO4 in exhaust gases containing SO2
JP2014013175A (en) Hydrogen processing system for nuclear power plant
US4835395A (en) Continuous aqueous tritium monitor
KR20000006296A (en) Ammonia analyzer
Zhao et al. Studies on palladium membrane reactor for dehydrogenation reaction
Willms et al. Recent palladium membrane reactor development at the tritium systems test assembly
US3622303A (en) Method for removing hydrogen from liquid alkali metals and the like
CN207248580U (en) One kind is based on flue-gas temperature and thermostat water bath coolant controlled SO3Sampling system
JPS6283301A (en) Oxygen-hydrogen recombiner
Glatzmaier Hydrogen sensor for parabolic trough expansion tanks
JP3697517B2 (en) Gas permeable membrane equipment
JPS6042647A (en) Method and device for measuring concentration of hydrogen in high temperature and high pressure steam
JPS6042690A (en) Gas analyzer in container for nuclear reactor
JPH0410575B2 (en)
JPH0412270A (en) Silicon hydride detector
JP7331030B2 (en) Reactor containment venting system
JPH0217372A (en) Chemical reactor
JP2005172655A (en) Gas sensor, fuel cell system using it, and vehicle
Sessions Processing tritiated water at the Savannah River Site: A production-scale demonstration of a palladium membrane reactor
Glatzmaier Acciona power plant hydrogen mitigation project
McManus et al. Continuous aqueous tritium monitor