JPH0410575B2 - - Google Patents

Info

Publication number
JPH0410575B2
JPH0410575B2 JP58042283A JP4228383A JPH0410575B2 JP H0410575 B2 JPH0410575 B2 JP H0410575B2 JP 58042283 A JP58042283 A JP 58042283A JP 4228383 A JP4228383 A JP 4228383A JP H0410575 B2 JPH0410575 B2 JP H0410575B2
Authority
JP
Japan
Prior art keywords
hydrogen
vacuum chamber
vacuum
sodium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58042283A
Other languages
Japanese (ja)
Other versions
JPS59168332A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58042283A priority Critical patent/JPS59168332A/en
Publication of JPS59168332A publication Critical patent/JPS59168332A/en
Publication of JPH0410575B2 publication Critical patent/JPH0410575B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、液体金属中への水の漏洩を検知する
水漏洩検出装置に係り、特に、ナトリウム冷却高
速増殖炉の蒸気発生器に用いるのに好適な水漏洩
検出装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a water leakage detection device for detecting water leakage into liquid metal, and is particularly suitable for use in a steam generator of a sodium-cooled fast breeder reactor. The present invention relates to a suitable water leak detection device.

〔従来技術〕[Prior art]

ナトリウム加熱蒸気発生器においてはナトリウ
ム中への水の漏洩が生じた場合、水とナトリウム
とが激しく反応し大変危険である。そのため、水
漏洩事故を小規模なうちに検出するため、従来よ
り金属拡散膜型水素検出方法により水漏洩の検知
を行つていた。この方法は、ナトリウムの水との
反応により生成した水素を検出することによつて
水漏洩を検知するもので、ナトリウム中の水素を
ニツケル等の水素透過係数が大きく、ナトリウム
との共存性のよい金属薄膜を介して真空室に導
き、真空室内の圧力上昇を測定することによつて
水漏洩事故の発生を知ることができるようにした
ものである。
In a sodium-heated steam generator, if water leaks into the sodium, the water and sodium will react violently, which is very dangerous. Therefore, in order to detect water leak accidents while they are still small-scale, water leaks have conventionally been detected using a metal diffusion membrane type hydrogen detection method. This method detects water leakage by detecting hydrogen generated by the reaction of sodium with water. The water is introduced into a vacuum chamber through a thin metal film, and by measuring the pressure rise in the vacuum chamber, it is possible to detect the occurrence of a water leakage accident.

第1図はこのような水漏洩事故の検出方法の基
本概念を示すものである。第1図において蒸気発
生器を含むナトリウム主循環系統10内を流れる
ナトリウムは、ナトリウムポンプ12により一部
が抜き出されて水素検出計14に導かれる。この
水素検出計14は、ナトリウムが流入する貯留室
16と真空室18とを有しており、貯留室16と
真空室18とは水素透過膜20によつて仕切られ
ている。そして、真空室18は真空ポンプ22に
より真空配管24を介して高真空度に保持されて
いる。ナトリウムと水との反応により生成した貯
留室内の水素は、水素透過膜20を介して真空室
18内に拡散し、真空室18内の水素分圧を変化
させる。この真空室18内の水素分圧の変化が真
空計26により検知され、指示計28に水素濃度
として支持される。
FIG. 1 shows the basic concept of such a method for detecting water leakage accidents. In FIG. 1, a portion of sodium flowing through a sodium main circulation system 10 including a steam generator is extracted by a sodium pump 12 and guided to a hydrogen detector 14. The hydrogen detector 14 has a storage chamber 16 into which sodium flows and a vacuum chamber 18, and the storage chamber 16 and the vacuum chamber 18 are separated by a hydrogen permeable membrane 20. The vacuum chamber 18 is maintained at a high degree of vacuum by a vacuum pump 22 via a vacuum pipe 24. Hydrogen in the storage chamber generated by the reaction between sodium and water diffuses into the vacuum chamber 18 via the hydrogen permeable membrane 20, changing the hydrogen partial pressure within the vacuum chamber 18. This change in the hydrogen partial pressure within the vacuum chamber 18 is detected by the vacuum gauge 26, and is supported by the indicator 28 as the hydrogen concentration.

第2図は、従来の水素検出計の構造を示したも
のである。第2図において、水素検出計14は、
ステンレス等の水素透過率の小さい部材により形
成された配管30の内部にトリウムが流入する貯
留室16と真空室18とが形成されている。この
貯留室16と真空室18とは、ニツケル薄膜から
なる水素透過膜20により仕切られている。ま
た、真空室18は、真空配管24を介してイオン
ポンプ等の真空ポンプ22に接続されている。そ
して、真空室18には、真空計26が取り付けら
れ、貯留室16から真空室18内に拡散してくる
水素の分圧を検出できるようになつている。
FIG. 2 shows the structure of a conventional hydrogen detector. In FIG. 2, the hydrogen detector 14 is
A storage chamber 16 into which thorium flows and a vacuum chamber 18 are formed inside a pipe 30 formed of a material with low hydrogen permeability such as stainless steel. The storage chamber 16 and the vacuum chamber 18 are separated by a hydrogen permeable membrane 20 made of a nickel thin film. Further, the vacuum chamber 18 is connected to a vacuum pump 22 such as an ion pump via a vacuum pipe 24. A vacuum gauge 26 is attached to the vacuum chamber 18 so that the partial pressure of hydrogen diffusing from the storage chamber 16 into the vacuum chamber 18 can be detected.

上記の水素検出計14を用いたナトリウム中へ
の水漏洩の検出は次の如くして行われる。
Detection of water leakage into sodium using the hydrogen detector 14 described above is performed as follows.

真空ポンプ22を駆動し真空室18内を所定の
高真空度に保つ。そして、ナトリウムポンプ12
によりナトリウム主循環系統10内のナトリウム
の一部を水素検出計14の貯留室16に導く。貯
留室16に入つたナトリウムは、再びナトリウム
主循環系統10に戻されるが、ナトリウム中に水
が漏洩しているときは、ナトリウムと水との反応
により生成した水素が水素透過膜20を透過して
真空室18内に拡散する。このとき、水素検出計
におけ水素分圧は、第3図に示すような定状常態
における分布が貯留室内のナトリウム中の水素分
圧が高くなるに従い、真空室のナトリウム分圧
PMが高くなる。このPMの値を指示計28により
水素濃度として師示される。そこで、水素濃度の
時間的変化の割合が一定値以上に達した場合に、
ナトリウム中に水漏洩生じていると判断するよう
になつている。
The vacuum pump 22 is driven to maintain the vacuum chamber 18 at a predetermined high degree of vacuum. And sodium pump 12
A part of the sodium in the main sodium circulation system 10 is guided to the storage chamber 16 of the hydrogen detector 14. The sodium that has entered the storage chamber 16 is returned to the main sodium circulation system 10, but if water leaks into the sodium, the hydrogen produced by the reaction between sodium and water permeates through the hydrogen permeable membrane 20. and diffuse into the vacuum chamber 18. At this time, the hydrogen partial pressure in the hydrogen detector is distributed in a steady state as shown in Figure 3.As the hydrogen partial pressure in the sodium in the storage chamber increases, the sodium partial pressure in the vacuum chamber increases.
PM becomes high. The value of P M is indicated by the indicator 28 as the hydrogen concentration. Therefore, when the rate of change in hydrogen concentration over time reaches a certain value or more,
It has come to be determined that water is leaking into the sodium.

このように、上記の水漏洩検出装置において
は、真空室18内のガスを常に排除しなければな
らず、また水素透過膜20を通つて真空室18内
に拡散してきた水素を一定速度で排気するため真
空ポンプが使用されている。このため、真空ポン
プを常時運転しておく必要があるため構成が複雑
となり、真空ポンプの排気速度が変化した場合に
は、真空計26の指示値が変化し、指示計28に
示される水素濃度の値が異なつてくるため、ナト
リウム中への水漏洩を早期にかつ適格に判断する
ことが困難となる。特に、真空ポンプは、通常時
間とともに排気速度衰え、1年間で約20%程度劣
化する。そのため、真空ポンプ22の排気速度の
衰えに対応して適正な補正を行わない場合には、
約±5%程度の誤差が生ずる。
In this way, in the water leak detection device described above, the gas in the vacuum chamber 18 must be constantly removed, and the hydrogen that has diffused into the vacuum chamber 18 through the hydrogen permeable membrane 20 must be exhausted at a constant rate. A vacuum pump is used for this purpose. For this reason, the vacuum pump needs to be operated at all times, making the configuration complicated.If the pumping speed of the vacuum pump changes, the reading on the vacuum gauge 26 will change, causing the hydrogen concentration shown on the indicator 28 to change. Since the values of 1 and 2 differ, it becomes difficult to judge water leakage into sodium at an early stage and accurately. In particular, the pumping speed of vacuum pumps usually decreases over time, deteriorating by about 20% per year. Therefore, if appropriate correction is not made in response to the decline in the pumping speed of the vacuum pump 22,
An error of approximately ±5% occurs.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来技術の欠点を解消するため
になされたもので、液体金属中への水漏洩を的確
に求めることができる水漏洩検出装置を提供する
ことを目的とする。
The present invention has been made to eliminate the drawbacks of the prior art, and an object of the present invention is to provide a water leakage detection device that can accurately determine water leakage into liquid metal.

〔発明の概要〕[Summary of the invention]

本発明は、液体金属と水との反応生成物を透過
させる透過膜を介して貯留室と隣接して設けた真
空室を、前記反応生成物を透過する部材により形
成することにより前記目的を達成できるように構
成したものである。
The present invention achieves the above object by forming a vacuum chamber adjacent to the storage chamber through a permeable membrane that allows the reaction product of liquid metal and water to pass therethrough, using a member that allows the reaction product to pass through. It is configured so that it can be done.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る水漏洩検出装置の好ましい実施例
を、添付図面に従つて詳説する。なお、前記実施
例において説明した部分に対応する部分について
は、同一の符号を付しその説明を省略する。
A preferred embodiment of the water leak detection device according to the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals are given to the parts corresponding to those explained in the above embodiment, and the explanation thereof will be omitted.

第4図は、本発明に係る水漏洩検出装置の本体
をなす水素検出計の断面図である。第4図におい
て、水漏洩検出装置の本体をなす水素検出計14
は、先端部に水素透過膜20が設けてある。更
に、配管30の先端部には、水素透過膜20を覆
つて真空室壁32が取り付けられ、真空室18を
形成している。この真空室壁32は、水素の透過
率が高く、かつ他のガスの透過しにくい金属また
は合金により構成されている。このような金属ま
たは合金としては、パラジウムまたはパラジウム
合金等が実用的である(USP3155467参照)。そ
して、真空室壁32の外面は、大気34に接して
いる。
FIG. 4 is a cross-sectional view of a hydrogen detector forming the main body of the water leak detection device according to the present invention. In Fig. 4, a hydrogen detector 14 forming the main body of the water leak detection device
A hydrogen permeable membrane 20 is provided at the tip. Further, a vacuum chamber wall 32 is attached to the tip of the piping 30 to cover the hydrogen permeable membrane 20, forming a vacuum chamber 18. The vacuum chamber wall 32 is made of a metal or alloy that has a high permeability for hydrogen and is difficult for other gases to permeate. Practical examples of such metals or alloys include palladium or palladium alloys (see USP 3,155,467). The outer surface of the vacuum chamber wall 32 is in contact with the atmosphere 34.

真空室壁32には、真空室18内の水素分圧を
検出する真空計28が固定され、また真空室壁3
2の先端部に弁36を有す真空配管24が固定し
てある。
A vacuum gauge 28 for detecting hydrogen partial pressure in the vacuum chamber 18 is fixed to the vacuum chamber wall 32.
A vacuum pipe 24 having a valve 36 is fixed to the tip of the vacuum pipe 24.

上記の如く構成した実施例の作用は次の通りで
ある。
The operation of the embodiment configured as described above is as follows.

まず、第4図の破線で示す如く、真空ポンプ2
2を弁36を介して水素検出計14に接続する。
そして、弁36を開放し真空ポンプ22を駆動し
て真空室18内を所定の真空度にする。その後、
弁36を閉じ真空ポンプ22を取り外す。そし
て、従来と同様にナトリウムポンプ12により貯
留室16内にナトリウム主循環系統10のナトリ
ウムを導く。このようにすることにより、次の原
理によつてナトリウム中への水漏洩を検出するこ
とができる。
First, as shown by the broken line in Fig. 4, the vacuum pump 2
2 is connected to the hydrogen detector 14 via a valve 36.
Then, the valve 36 is opened and the vacuum pump 22 is driven to bring the inside of the vacuum chamber 18 to a predetermined degree of vacuum. after that,
Close valve 36 and remove vacuum pump 22. Then, as in the conventional case, sodium from the main sodium circulation system 10 is introduced into the storage chamber 16 by the sodium pump 12. By doing this, water leakage into sodium can be detected based on the following principle.

大気中の水素濃度は、一般的に1Vppm(体積混
合比0.01%)近傍であり、場所が決まると1年中
略一定した値となる。この1Vppmの水素濃度は、
水素分圧に換算すると7.6×10-4torrである。他
方、ナトリウム中の水素濃度は、通常170ppb〜
10ppmであり、水素分圧に換算すると10-3
5torrの範囲内にあり、常時大気中の水素分圧よ
り大きい。
The hydrogen concentration in the atmosphere is generally around 1Vppm (volume mixing ratio 0.01%), and once the location is determined, it remains approximately constant throughout the year. This 1Vppm hydrogen concentration is
When converted to hydrogen partial pressure, it is 7.6×10 -4 torr. On the other hand, the hydrogen concentration in sodium is usually 170 ppb ~
It is 10 ppm, and when converted to hydrogen partial pressure, it is 10 -3 ~
It is within the range of 5 torr, which is higher than the partial pressure of hydrogen in the atmosphere at all times.

ところで、真空室18を構成している真空室壁
32は、水素の透過係数が高い物質でできている
ため、真空室18内の水素分圧が大気中の水素分
圧より高くなると、真空室18内の水素が容易に
真空室壁32を透過して大気中に拡散していく。
このため、貯留室16側から水素透過膜20を介
して真空室18内に透過してきた水素は、真空室
壁32を通り、一定の割合をもつて大気34中に
放出される。この結果、定常状態においては第3
図に示したと同様な水素分圧の分布が生じる。即
ち、第3図に示した真空ポンプを真空室壁32に
置き換えることにより第3図と同様の水素分圧の
分布を得ることができる。そして、真空計26
は、真空室18内の水素分圧を測定し、ナトリウ
ム中の水素濃度に換算し、指示計28に表示す
る。以上の如く本実施例によれば、真空ポンプ2
2は、真空室18内の水素濃度を検出する前に真
空室18内のガスを排気するときにのみ使用する
だけでよく、常時運転を必要としないため、水漏
洩検出装置の構成が簡単になり、1台の真空ポン
プをもつて複数台の水素検出計を稼動させること
ができる。また、大気中の水素濃度は、場所が決
まると殆ど一定(変動幅は、±1%以下)である
ため、真空室壁32を介しての水素の排気速度が
常に一定となる。このため、真空ポンプ22の経
時変化に伴う補正を必要とせず、補正をしなくと
も測定精度を約±1%に保つことができ、ナトリ
ウム中への水漏洩を容易かつ的確に判断すること
ができる。
By the way, the vacuum chamber wall 32 that constitutes the vacuum chamber 18 is made of a material with a high hydrogen permeability coefficient, so when the hydrogen partial pressure in the vacuum chamber 18 becomes higher than the hydrogen partial pressure in the atmosphere, the vacuum chamber wall 32 Hydrogen in the chamber 18 easily permeates the vacuum chamber wall 32 and diffuses into the atmosphere.
Therefore, hydrogen that has permeated into the vacuum chamber 18 from the storage chamber 16 side via the hydrogen permeable membrane 20 passes through the vacuum chamber wall 32 and is released into the atmosphere 34 at a constant rate. As a result, in steady state, the third
A hydrogen partial pressure distribution similar to that shown in the figure occurs. That is, by replacing the vacuum pump shown in FIG. 3 with the vacuum chamber wall 32, a hydrogen partial pressure distribution similar to that shown in FIG. 3 can be obtained. And vacuum gauge 26
measures the hydrogen partial pressure in the vacuum chamber 18, converts it to the hydrogen concentration in sodium, and displays it on the indicator 28. As described above, according to this embodiment, the vacuum pump 2
2 only needs to be used when exhausting the gas in the vacuum chamber 18 before detecting the hydrogen concentration in the vacuum chamber 18, and does not require constant operation, which simplifies the configuration of the water leak detection device. Therefore, multiple hydrogen detectors can be operated with one vacuum pump. Furthermore, since the hydrogen concentration in the atmosphere is almost constant once the location is determined (with a variation range of ±1% or less), the rate of hydrogen exhaust through the vacuum chamber wall 32 is always constant. Therefore, there is no need for correction due to changes in the vacuum pump 22 over time, and the measurement accuracy can be maintained at approximately ±1% without correction, making it possible to easily and accurately determine water leakage into sodium. can.

第5図は、本発明に係る水漏洩検出装置に用い
る水素検出計の他の実施例の断面図である。本実
施例に示した水素検出計14は、真空室18の外
側を水素吸蔵物質38で覆い、更に水素吸蔵物質
38の表面に加熱手段、例えばヒータ40を設け
たものである。このようにすることにより、真空
室18からの水素を大気中に放出せず、水素吸蔵
物質38により吸収するため、真空室壁32の水
素吸蔵物質38との接触面が常に水素濃度零の状
態に保つことができ、真空室壁32を介しての水
素排気速度が真空室18内の水素分圧だけで決定
される。この結果、第3図に示した水素分圧の分
布が、貯留室16側の水素分圧によつて一義的に
定まり、真空室18内の水素分圧からナトリウム
中の水素濃度をより正確に求めることができる。
そして、原子炉の定期点検時等においてヒータ4
0をもつて水素吸蔵物質38と加熱することによ
り、水素吸蔵物質38吸蔵した水素を大気34中
に放出し、水素吸蔵物質38の再生を図ることが
できる。なお、この水素吸蔵物質38としては、
金属チタンやジルコニウムが実用的である。
FIG. 5 is a sectional view of another embodiment of the hydrogen detector used in the water leak detection device according to the present invention. The hydrogen detector 14 shown in this embodiment has a vacuum chamber 18 covered with a hydrogen storage material 38 on the outside, and a heating means such as a heater 40 provided on the surface of the hydrogen storage material 38. By doing this, the hydrogen from the vacuum chamber 18 is not released into the atmosphere, but is absorbed by the hydrogen storage material 38, so that the surface of the vacuum chamber wall 32 in contact with the hydrogen storage material 38 is always in a state where the hydrogen concentration is zero. The rate of hydrogen pumping through the vacuum chamber wall 32 is determined solely by the hydrogen partial pressure within the vacuum chamber 18. As a result, the hydrogen partial pressure distribution shown in FIG. You can ask for it.
Then, during periodic inspections of the nuclear reactor, etc., the heater 4
By heating the hydrogen storage material 38 with a temperature of 0, the hydrogen stored in the hydrogen storage material 38 can be released into the atmosphere 34, and the hydrogen storage material 38 can be regenerated. Note that this hydrogen storage material 38 is as follows:
Metallic titanium or zirconium are practical.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、液体金属
と水との反応生成物を透過する部材により真空室
を形成することにより、真空室内の前記反応生成
物を一定速度で大気中に放出でき、真空室内の前
記生成物濃度を一定に保つことにより、液体金属
中への水漏洩を的確に判断することができる。
As explained above, according to the present invention, by forming the vacuum chamber with a member that transmits the reaction product of liquid metal and water, the reaction product in the vacuum chamber can be released into the atmosphere at a constant rate, By keeping the concentration of the product in the vacuum chamber constant, leakage of water into the liquid metal can be accurately determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は液体金属ナトリウム中への水漏洩を検
出する原理を示す図、第2図は従来の水漏洩検出
装置に用いられる水素検出計の断面図、第3図は
定常状態における水素検出計の水素分圧の分布を
示す図、第4図は本発明に係る水漏洩検出装置に
用いる水素検出計の実施例の断面図、第5図は本
発明に係る水漏洩検出装置に用いる水素検出計の
他の実施例の断面図である。 10…貯留室、14…水素検出計、18…真空
室、20…水素透過膜、22…真空ポンプ、26
…真空計、28…指示計、32…真空室壁、38
…水素吸蔵物質。
Figure 1 is a diagram showing the principle of detecting water leakage into liquid metal sodium, Figure 2 is a cross-sectional view of a hydrogen detector used in a conventional water leak detection device, and Figure 3 is a hydrogen detector in a steady state. FIG. 4 is a cross-sectional view of an embodiment of a hydrogen detector used in the water leak detection device according to the present invention, and FIG. 5 is a diagram showing the hydrogen detection device used in the water leak detection device according to the present invention. FIG. 3 is a sectional view of another embodiment of the meter. 10...Storage chamber, 14...Hydrogen detector, 18...Vacuum chamber, 20...Hydrogen permeable membrane, 22...Vacuum pump, 26
...Vacuum gauge, 28...Indicator, 32...Vacuum chamber wall, 38
...Hydrogen storage material.

Claims (1)

【特許請求の範囲】 1 液体金属が流入する貯留室と、この貯留室に
隣接して形成した真空室と、この真空室と前記貯
留室とを仕切り前記液体金属と水との反応生成物
を透過させる透過膜と、前記真空室に設けた前記
反応生成物濃度を検出する濃度検出器とを有する
水漏洩検出装置において、前記真空室が前記記反
応生成物を透過する部材により形成されているこ
とを特徴とする水漏洩検出装置。 2 前記真空室は、前記反応生成物を透過する部
材の表面が前記反応生成物を吸蔵する物質により
覆われていることを特徴とする特許請求の範囲第
1項記載の水漏洩検出装置。
[Scope of Claims] 1. A storage chamber into which liquid metal flows, a vacuum chamber formed adjacent to this storage chamber, and a partition between this vacuum chamber and the storage chamber to prevent a reaction product between the liquid metal and water. In the water leakage detection device having a permeable membrane that transmits the water and a concentration detector that detects the concentration of the reaction product provided in the vacuum chamber, the vacuum chamber is formed of a member that transmits the reaction product. A water leak detection device characterized by: 2. The water leakage detection device according to claim 1, wherein the vacuum chamber has a surface of a member that allows the reaction product to pass therethrough and is covered with a substance that occludes the reaction product.
JP58042283A 1983-03-16 1983-03-16 Device for detecting water leakage Granted JPS59168332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58042283A JPS59168332A (en) 1983-03-16 1983-03-16 Device for detecting water leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58042283A JPS59168332A (en) 1983-03-16 1983-03-16 Device for detecting water leakage

Publications (2)

Publication Number Publication Date
JPS59168332A JPS59168332A (en) 1984-09-22
JPH0410575B2 true JPH0410575B2 (en) 1992-02-25

Family

ID=12631717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58042283A Granted JPS59168332A (en) 1983-03-16 1983-03-16 Device for detecting water leakage

Country Status (1)

Country Link
JP (1) JPS59168332A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104034485B (en) * 2014-06-12 2016-08-24 中国人民解放军63605部队 Low temperature leak detection liquid for liquid propellant storage and transportation equipment airtight test

Also Published As

Publication number Publication date
JPS59168332A (en) 1984-09-22

Similar Documents

Publication Publication Date Title
Vissers et al. A hydrogen-activity meter for liquid sodium and its application to hydrogen solubility measurements
RU2197718C2 (en) Device and method of detection of leak
JPS5812545B2 (en) How to drain argon gas
US3683272A (en) Method and apparatus for determining hydrogen concentration in liquid sodium utilizing an ion pump to ionize the hydrogen
JPH07270576A (en) Water level measuring apparatus for reactor
Vissers et al. A hydrogen monitor for detection of leaks in LMFBR steam generators
US5012672A (en) Hydrogen gas sensor and method of manufacture
JPH0410575B2 (en)
JPH01227045A (en) Detecting apparatus of gas for oil-immersed apparatus, collecting apparatus of gas in oil and detecting method of gas
GB1327068A (en) Leak detection in heat exchangers
JPH0224460B2 (en)
US4255963A (en) Hydrogen meter for liquid lithium
JPS6313466Y2 (en)
JPS58143238A (en) Hydrogen detector
JPS63262544A (en) Hydrogen converting ratio measuring device
JPS5915834A (en) Detection of water leak into liquid metal
JPS6131943A (en) Composite type detecting sensor for carbon and hydrogen
JPS58129231A (en) Water leakage detector
JPH0217372A (en) Chemical reactor
JPS6241358B2 (en)
JPS6039171B2 (en) Hydrogen detection device
JPS58151541A (en) Water leakage detecting device
CN117554460A (en) Calibration method and calibration device of hydrogen meter
JPS58150836A (en) Determining method for scale leakage of sodium
JPS5925452B2 (en) Hydrogen concentration measurement device in liquid metal