JPH0249451B2 - - Google Patents

Info

Publication number
JPH0249451B2
JPH0249451B2 JP57125401A JP12540182A JPH0249451B2 JP H0249451 B2 JPH0249451 B2 JP H0249451B2 JP 57125401 A JP57125401 A JP 57125401A JP 12540182 A JP12540182 A JP 12540182A JP H0249451 B2 JPH0249451 B2 JP H0249451B2
Authority
JP
Japan
Prior art keywords
pressure
hydrogen
time
static equilibrium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57125401A
Other languages
Japanese (ja)
Other versions
JPS5915834A (en
Inventor
Nobuyuki Isogai
Tatsuo Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57125401A priority Critical patent/JPS5915834A/en
Publication of JPS5915834A publication Critical patent/JPS5915834A/en
Publication of JPH0249451B2 publication Critical patent/JPH0249451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators
    • G01M3/228Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators for radiators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、高速増殖炉の冷却材として用いられ
るナトリウムやナツク(ナトリウムとカリウムの
混合物)のような水と反応して水素を生じる液体
金属中への水の漏洩の検出方法に係り、特にNa
冷却型高速増殖炉の蒸気発生器におけるナトリウ
ム中への水漏れの検出に好適な信頼性の高い水漏
洩検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the prevention of leakage of water into liquid metals that react with water to produce hydrogen, such as sodium or nuc (a mixture of sodium and potassium) used as coolant in fast breeder reactors. Regarding the detection method, especially Na
The present invention relates to a highly reliable water leakage detection method suitable for detecting water leakage into sodium in a steam generator of a cooled fast breeder reactor.

Na冷却型高速増殖炉の蒸気発生器は、その内
部に液体ナトリウム、カバーガス領域と水、蒸気
領域とを持つているため、伝熱管損傷等により両
者の接触が生じた場合には、これを早期に検出す
る必要がある。ナトリウム中への水漏洩の検出を
行う方法として現在実用化されているものとして
拡散膜型水素検出法がある。この方法は、ニツケ
ルやバナジウム等の水素透過係数の大きな金属の
薄膜を水素透過拡散膜として用い、その片側に蒸
気発生器からの液体金属ナトリウム又はそのカバ
ーガスの一部を導き、他の片側を10-6
10-8Torrの高真空に排気された真空室とし、ナ
トリウム中に漏洩した水のナトリウム−水反応に
より生じる水素を上記透過拡散膜を通して真空室
側に透過させ、この透過して来る水素による真空
室の圧力の変化を検出することによつて、ナトリ
ウム中への水漏洩を検出するものである。
The steam generator of the Na-cooled fast breeder reactor has a liquid sodium, cover gas region and water, steam region inside it, so if the two come into contact due to damage to the heat transfer tubes, etc. Early detection is necessary. A diffusion membrane hydrogen detection method is currently in practical use as a method for detecting water leakage into sodium. This method uses a thin film of metal with a large hydrogen permeability coefficient such as nickel or vanadium as a hydrogen permeation diffusion membrane, and one side of the membrane is used to introduce liquid metal sodium or a portion of its cover gas from a steam generator, while the other side is used as a hydrogen permeation diffusion membrane. 10 -6 ~
The vacuum chamber is evacuated to a high vacuum of 10 -8 Torr, and the hydrogen generated by the sodium-water reaction of the water leaking into the sodium permeates through the permeation diffusion membrane to the vacuum chamber side, and the permeated hydrogen creates a vacuum. Water leakage into the sodium is detected by detecting changes in chamber pressure.

第1図は拡散膜型水素検出法を実施するのに用
いられる装置の模式図である。不図示の蒸気発生
器からの液体ナトリウムの一部或は蒸気発生器内
のカバーガスの一部は、流路1を通してニツケル
薄膜よりなる水素透過拡散膜3の一側に導かれ
る。この膜3の他側に形成された真空室2はその
内部の圧力測定用センサー4を備え、バリアブル
リークバルブ5を介して真空室排気用イオンポン
プ6により圧力10-6〜10-8Torr高真空状態に排
気される。バリアブルリークバルブ5を閉じれば
真空室2の排気は停止する。伝送器7、演算器8
は真空室2の後述する静的平衡圧力より水素濃度
の絶対値を算出する信号処理部である。
FIG. 1 is a schematic diagram of an apparatus used to carry out the diffusion membrane hydrogen detection method. A part of the liquid sodium from a steam generator (not shown) or a part of the cover gas in the steam generator is guided through the flow path 1 to one side of the hydrogen permeable diffusion membrane 3 made of a nickel thin film. A vacuum chamber 2 formed on the other side of this membrane 3 is equipped with a sensor 4 for measuring the internal pressure, and is heated to a pressure of 10 -6 to 10 -8 Torr by an ion pump 6 for exhausting the vacuum chamber via a variable leak valve 5. It is evacuated to a vacuum state. When the variable leak valve 5 is closed, exhaustion of the vacuum chamber 2 is stopped. Transmitter 7, calculator 8
is a signal processing unit that calculates the absolute value of the hydrogen concentration from the static equilibrium pressure of the vacuum chamber 2, which will be described later.

上記の装置を用いる通常の拡散膜型水素検出法
を第2図により説明する。第1図におけるバリア
ブルリークバルブ5を閉め真空室2の排気を停止
すると、水素透過拡散膜3を透過して来る水素に
より、圧力測定用センサー4の検知する真空室2
内の圧力pは第2図のように上昇し、最終的には
第1図の水素透過拡散膜3の左側の流体中の水素
分圧PNHと静的平衡状態に達する。その時の圧力
pの値をPS(これを静的平衡圧力という)とする
と PNHPS であり、このPSから液体中の水素濃度CHは下記
の式(1)、(2)より求められる。
A conventional diffusion membrane type hydrogen detection method using the above device will be explained with reference to FIG. When the variable leak valve 5 shown in FIG.
The internal pressure p rises as shown in FIG. 2, and finally reaches a static equilibrium state with the hydrogen partial pressure PNH in the fluid on the left side of the hydrogen permeation diffusion membrane 3 in FIG. If the value of the pressure p at that time is P S (this is called static equilibrium pressure), it is P NH P S , and from this P S , the hydrogen concentration C H in the liquid can be calculated from the following equations (1) and (2). Desired.

CH=KS・PS 1/2 ……(1) CH:流体中水素濃度(ppm) PS:静的平衡圧力(Tprr) KS:Siever定数(ppm/Tprr 1/2) log10KS=0.86−122.0/TNi ……(2) TNi:拡散膜温度(K) ところで上記の拡散膜型水素検出法において、
従来は、圧力Pの指示値の上昇が止つた時に静的
平衡状態に達したと判断し、その時のPの指示値
を静的平衡圧力PSとしていた。しかるに流体中の
水素濃度が低く、したがつて静的平衡圧力が小さ
い場合には、真空室2の壁面放出ガスによるバツ
クグラウンド圧力PBGの影響が相対的に大きくな
り、静的平衡圧力測定データは第3図のようにな
る。このため従来では下記(1)、(2)のような問題が
あつた。
C H = K S・P S 1/2 ...(1) C H : Hydrogen concentration in fluid (ppm) P S : Static equilibrium pressure (T prr ) K S : Siever constant (ppm/T prr 1/2 ) log 10 K S =0.86−122.0/T Ni ...(2) T Ni : Diffusion film temperature (K) By the way, in the above diffusion film type hydrogen detection method,
Conventionally, it was determined that a static equilibrium state had been reached when the indicated value of pressure P stopped increasing, and the indicated value of P at that time was taken as the static equilibrium pressure P S. However, when the hydrogen concentration in the fluid is low and therefore the static equilibrium pressure is small, the influence of the background pressure P BG due to the gas released from the wall of the vacuum chamber 2 becomes relatively large, and the static equilibrium pressure measurement data is as shown in Figure 3. For this reason, conventional methods have had the following problems (1) and (2).

(1) 真空室2内の圧力の指示値の上昇が止らない
ので、静的平衡状態に達したかどうかの判断が
容易にできず、従つて静的平衡圧力を容易に確
定できない。
(1) Since the indicated value of the pressure inside the vacuum chamber 2 does not stop rising, it is not easy to judge whether a static equilibrium state has been reached, and therefore the static equilibrium pressure cannot be easily determined.

(2) バリアブルリークバルブ5を閉じて真空室2
の排気を停止してからある一定時間経過した時
に静的平衡状態に達したものとみなして、その
時の圧力Pの指示値P′Sを静的平衡圧力として
採用するものとすれば、その値P′Sには流体中
の水素分圧PNH(PS)の他に壁面放出ガスによ
るバツクグラウンド圧力PBGが誤差として含ま
れるので、P′Sの値が実際の静的平衡圧力PS
り大きくなり、水素濃度CHの算出の精度が悪
くなる。
(2) Close the variable leak valve 5 and open the vacuum chamber 2.
It is assumed that a static equilibrium state has been reached after a certain period of time has elapsed since the evacuation of the air is stopped, and if the indicated value P' S of the pressure P at that time is adopted as the static equilibrium pressure, then that value Since P′ S includes the hydrogen partial pressure P NH (P S ) in the fluid as well as the background pressure P BG due to gas discharged from the wall, the value of P′ S is the actual static equilibrium pressure P S becomes larger, and the accuracy of calculating the hydrogen concentration C H deteriorates.

本発明の目的は、上記した従来技術の問題点を
解決し、真空室の壁面ガス放出によるバツクグラ
ウンド圧力の影響を除去して精度よく静的平衡圧
力を測定することが可能なこの種の水漏洩検出方
法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to provide this type of water solution that can eliminate the influence of background pressure caused by gas discharge from the wall of a vacuum chamber and accurately measure static equilibrium pressure. An object of the present invention is to provide a leakage detection method.

本発明の方法は、静的平衡状態の到達後の真空
室内の圧力の変化率が壁面ガス放出率と一致して
一定になることを利用することにより静的平衡状
態に達した時点を判定し、上記変化率からバツク
グラウンド圧力を算出してその影響を補正した正
しい静的平衡圧力の測定をするものである。
The method of the present invention determines when a static equilibrium state has been reached by utilizing the fact that the rate of change in pressure within the vacuum chamber after reaching a static equilibrium state is constant and coincides with the wall gas release rate. , the background pressure is calculated from the above rate of change, and the correct static equilibrium pressure is measured by correcting the influence of the background pressure.

以下、本発明の方法をより明瞭に理解し得るよ
うに、第4〜6図によりこれを説明する。検出測
定装置としては第1図と同様なものを用いてもよ
い。
In order to understand the method of the present invention more clearly, it will be explained below with reference to FIGS. 4 to 6. As the detection and measurement device, one similar to that shown in FIG. 1 may be used.

第4図に示すように、時刻toでバルブ5を閉じ
て真空室2の排気を停止すると、水素透過拡散膜
3を透過して来る水素により真空室2内の圧力P
は時間の経過と共に上昇する。真空室2の壁面ガ
ス放出量が相対的に大きい場合いは、水素透過拡
散膜3の左側の流体中に存在する水素の分圧と静
的平衡状態に達した後には圧力Pは一定勾配で上
昇を続ける。その理由は、上記流体中の水素濃度
が一定で且つ真空室2のリークがない場合には、
静的平衡状態到達後においては、圧力Pの上昇原
因は真空室2の壁面放出ガスだけであるから圧力
Pの上昇率Rは壁面ガス放出率RBGと一致し、且
つRBGは静的平衡圧力測定に要するような比較的
短時間の内には大きく変化することはなく一定と
みなし得るからである。従つて、第5図に示すよ
うに、圧力Pの上昇率即ち変化率Rは、時刻toか
ら静的平衡状態到達時点tEまでの間では減少する
が、この時点tE以後は一定値になる。よつて、時
該to後の各時点において圧力Pの指示値から変化
率Rを求め、それが一定となつたことを確認した
時点を静的平衡状態が達せられた時点tEと判定
し、時点tEにおけるこの一定となつた変化率R
(これは上記の如く壁面ガス放出率RBGに等しい)
の値に時刻toから時点tEまでの時間を乗ずること
により、壁面ガス放出による時点tEでのバツクグ
ランド圧力PBGを求め、このPBGの値を時点tEでの
圧力Pの指示値から差し引くことにより、正しい
静的平衡圧力PSを求めることができる。
As shown in FIG. 4, when the valve 5 is closed at time to to stop evacuation of the vacuum chamber 2, the pressure inside the vacuum chamber 2 is increased due to hydrogen passing through the hydrogen permeation diffusion membrane 3.
increases over time. If the amount of gas released from the wall of the vacuum chamber 2 is relatively large, the pressure P will have a constant gradient after reaching a static equilibrium state with the partial pressure of hydrogen existing in the fluid on the left side of the hydrogen permeation diffusion membrane 3. Continue to rise. The reason is that if the hydrogen concentration in the fluid is constant and there is no leakage in the vacuum chamber 2,
After the static equilibrium state is reached, the rise in pressure P is caused only by the gas released from the wall of the vacuum chamber 2, so the rate of increase in pressure P matches the wall gas release rate RBG , and RBG is at static equilibrium. This is because the pressure does not change significantly within a relatively short period of time required for pressure measurement and can be regarded as constant. Therefore, as shown in Fig. 5, the rate of increase in pressure P, that is, the rate of change R, decreases from time to to time tE when static equilibrium is reached, but after this time tE it remains constant. Become. Therefore, the rate of change R is determined from the indicated value of the pressure P at each point after the time, and the time when it is confirmed that it becomes constant is determined as the time t E when the static equilibrium state is reached. This constant rate of change R at time t E
(This is equal to the wall gas release rate R BG as described above)
By multiplying the value of by the time from time to to time tE , find the background pressure PBG at time tE due to wall gas release, and use this value of PBG as the indicated value of pressure P at time tE . By subtracting from , the correct static equilibrium pressure P S can be determined.

次に、上記の方法を実施する一連の具体的過程
の例を第6図に示すフローチヤート及び第4図、
第5図を参照して説明する。
Next, an example of a series of specific steps for carrying out the above method is shown in the flowchart shown in FIG. 6, and in FIG.
This will be explained with reference to FIG.

(1) 静的平衡圧力測定開始の指示を出す。(1) Issue an instruction to start static equilibrium pressure measurement.

(2) 時刻toでバリアブルリークバルブ5を閉めて
真空室2の排気を停止する。
(2) At time to, close the variable leak valve 5 to stop evacuation of the vacuum chamber 2.

(3) 時刻toから時間n△tを経過した各時点tnに
おける真空室2内の圧力Po(Tprr)をサンプリ
ングする。(nは自然数、△tはサンプリング
周期(分)) (4) サンプリングした圧力Pnより時点tnにおけ
るその変化率Ro(Tprr/分)を算出する。算出
式は下記のとおりである。
(3) Sample the pressure P o (T prr ) in the vacuum chamber 2 at each time tn after time nΔt has elapsed from time to. (n is a natural number, Δt is the sampling period (minutes)) (4) Calculate the rate of change R o (T prr /minute) at time tn from the sampled pressure Pn. The calculation formula is as follows.

Ro=Po−Po-1/△t ……(3) (5) Roの差を順にとつて行き、その差の絶対値 △Ro=|Ro−Ro-1| ……(4) を算出し、△Roが或る微小な正を値εより大
か小かを比較し、大なら(3)に戻り、小なら次の
ステツプに進む。
R o = P o −P o-1 / △t ...(3) (5) Take the differences in R o in order and find the absolute value of the difference △R o = |R o −R o-1 | ... ...(4) is calculated, and a comparison is made to see if △R o is larger or smaller than the value ε, and if it is larger, return to (3), and if smaller, proceed to the next step.

(6) △Roがεより小になつた回数hをカウント
する。
(6) Count the number h of times △R o becomes smaller than ε.

(7) △Roが一定回数l以上の回数だけεより小
さくなつたら静的平衡状態に達したと判断す
る。すなわち第4図における一定勾配領域、第
5図における一定値領域に達したと判断する。
(7) When △R o becomes smaller than ε a certain number of times l or more, it is determined that a static equilibrium state has been reached. That is, it is determined that the constant slope region in FIG. 4 and the constant value region in FIG. 5 have been reached.

例えばl=3の場合、時点toで初めて△Ro
εより小さくなり、時点to+1、to+2でも△Ro
εであつたとするとh=3となり上記の条件を
満たす。よつてこの時点to+2が静的平衡状態到
達時点tEであると判断(次のステツプに移る。
そして下記の演算 (a) T=to+2−t0 ……(5) T:静的平衡圧力到達時間(分) (b) RBG=Ro+2=Po+2−Po+1/△t ……(6) RBG:バツクグラウンド圧力PBGの変化率
(Tprr/分) を行い、次の式よりPBGを算出する。
For example, when l = 3, △R o becomes smaller than ε for the first time at time t o , and even at time t o+1 and t o+2 , △R o
If ε, then h=3, which satisfies the above condition. Therefore, it is determined that this time t o+2 is the time t E when the static equilibrium state is reached (move to the next step).
Then, calculate the following: (a) T=t o+2 −t 0 ...(5) T: Time to reach static equilibrium pressure (minutes) (b) R BG = R o+2 = P o+2 − P o +1 /△t...(6) RBG : Rate of change of background pressure PBG ( Tprr /min) and calculate PBG from the following formula.

PBG=RBGXT ……(7) PBG:時点to+2における真空室2内のバツ
クグラウンド圧力(Tprr) (c) 静的平衡圧力Ps(Tprr)を次式より算出す
る。
P BG = R BG XT ...(7) P BG : Background pressure in vacuum chamber 2 at time t o+2 (T prr ) (c) Calculate static equilibrium pressure P s (T prr ) from the following formula do.

Ps=Po+2−PBG (8) PSの演算が終了したらバリアブルリークバル
ブ5を開け真空室2内にたまつた全てのガスを
排気して全操作が終了する。
P s = P o+2 −P BG (8) When the calculation of P S is completed, the variable leak valve 5 is opened to exhaust all the gas accumulated in the vacuum chamber 2, and the entire operation is completed.

なお、上述した演算過程は全て電算機を用い
て自動的に遂行し得ることは言うまでもない。
It goes without saying that all of the above-mentioned calculation steps can be automatically performed using a computer.

以上詳述したように、本発明によれば、水と反
応して水素を生ずる液体金属中への水漏洩検出の
ための拡散膜型水素検出法において、真空室の壁
面放出ガスによるバツクグラウンド圧力の影響を
なくして、静的平衡状態到達時点の明確な判定及
び静的平衡圧力の正確な測定が可能となり、しか
もこれらの判定及び測定は全て自動化することが
できる。静的平衡状態に到達するまでの時間は一
般に長いから、その到達時点を明確に且つ自動的
に判定して正しい静的平衡圧力の値を測定し得る
ことは非常に有利であり、操作性の向上および省
力化に役立つ。
As described in detail above, according to the present invention, in a diffusion membrane hydrogen detection method for detecting water leakage into a liquid metal that reacts with water to produce hydrogen, background pressure due to gas released from the wall of a vacuum chamber is detected. By eliminating the influence of static equilibrium, it is possible to clearly determine when the static equilibrium state is reached and to accurately measure the static equilibrium pressure, and all of these determinations and measurements can be automated. Since the time it takes to reach a static equilibrium state is generally long, it is very advantageous to be able to clearly and automatically determine the point at which the static equilibrium state is reached and to measure the correct static equilibrium pressure value, which improves operability. Useful for improvement and labor saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は拡散膜型水素検出方法に用いる検出部
の構成を示す模式図、第2図及び第3図は該方法
における静的平衡圧力測定を例示するグラフ、第
4図は本発明において利用する静的平衡圧力とバ
ツクグラウンド圧力の関係を示すグラフ、第5図
は本発明において利用する真空室圧力の変化率の
時間的変化を示すグラフ、第6図は本発明の実施
例において真空室圧力から壁面放出ガスによるバ
ツクグラウンド圧力を差し引いて静的平衡圧力を
算出するまでのフローチヤートを示す。 1……流体流路、2……真空室、3……水素拡
散透過膜、4……圧力測定用センサー、5……バ
リアブルリークバルブ、6……真空室排気用イオ
ンポンプ。
Figure 1 is a schematic diagram showing the configuration of the detection unit used in the diffusion membrane type hydrogen detection method, Figures 2 and 3 are graphs illustrating static equilibrium pressure measurement in this method, and Figure 4 is used in the present invention. 5 is a graph showing the relationship between the static equilibrium pressure and the background pressure used in the present invention. FIG. 6 is a graph showing the temporal change in the rate of change of the vacuum chamber pressure used in the present invention. A flowchart is shown for calculating the static equilibrium pressure by subtracting the background pressure due to wall discharge gas from the pressure. 1...Fluid channel, 2...Vacuum chamber, 3...Hydrogen diffusion permeable membrane, 4...Pressure measurement sensor, 5...Variable leak valve, 6...Ion pump for exhausting the vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 水と反応して水素を発生するような液体金属
中への水の漏洩を検出する水漏洩検出方法であつ
て、水の漏洩を検出さるべき液体金属又は該液体
金属のカバーガスを水素を拡散透過させる水素透
過拡散膜の一側に導き、該膜の他側を高真空状態
に排気した後にその排気を停止し、この排気を停
止した時点後の各区分された時点において上記他
側の圧力の変化率を測定し、該変化率が一定とな
つた時点を判定し、この判定された時点における
該変化率と上記排気停止時点から上記判定された
時点までの時間との積を求め、この積を上記判定
された時点における上記他側の圧力から差し引く
ことにより、上記膜の上記一側における水素の分
圧と静的に平衡する上記他側の圧力を測定するこ
とを特徴とする水漏洩検出方法。
1 A water leak detection method for detecting leakage of water into a liquid metal that reacts with water to generate hydrogen, the method comprising: detecting the leakage of water into a liquid metal that reacts with water to generate hydrogen; Hydrogen is introduced into one side of the diffusion membrane to be diffused and permeated, and after the other side of the membrane is evacuated to a high vacuum state, the evacuation is stopped. Measuring the rate of change in pressure, determining the point at which the rate of change becomes constant, and finding the product of the rate of change at this determined point and the time from the point at which the exhaust stops to the determined point, By subtracting this product from the pressure on the other side at the determined time point, the pressure on the other side that statically equilibrates with the partial pressure of hydrogen on the one side of the membrane is measured. Leak detection method.
JP57125401A 1982-07-19 1982-07-19 Detection of water leak into liquid metal Granted JPS5915834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57125401A JPS5915834A (en) 1982-07-19 1982-07-19 Detection of water leak into liquid metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57125401A JPS5915834A (en) 1982-07-19 1982-07-19 Detection of water leak into liquid metal

Publications (2)

Publication Number Publication Date
JPS5915834A JPS5915834A (en) 1984-01-26
JPH0249451B2 true JPH0249451B2 (en) 1990-10-30

Family

ID=14909212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57125401A Granted JPS5915834A (en) 1982-07-19 1982-07-19 Detection of water leak into liquid metal

Country Status (1)

Country Link
JP (1) JPS5915834A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2997763B1 (en) * 2012-11-06 2015-01-16 Commissariat Energie Atomique DEVICE AND METHOD FOR ESTIMATING A GAS STREAM IN AN ENCLOSURE CONTINUED IN LOW GAS DEPRESSION
JP2017111015A (en) * 2015-12-17 2017-06-22 株式会社日立製作所 Hydrogen measurement device and hydrogen measurement method
CN111579303A (en) * 2020-05-25 2020-08-25 中国原子能科学研究院 Sampling device for hydrogen in liquid metal

Also Published As

Publication number Publication date
JPS5915834A (en) 1984-01-26

Similar Documents

Publication Publication Date Title
US3943751A (en) Method and apparatus for continuously measuring hydrogen concentration in argon gas
GB2054871A (en) Measuring leakage rates
US3177704A (en) Leak testing method
JPH0249451B2 (en)
CN109141770A (en) A method of reducing leak detector state change influences helium mass spectrum suction gun backing space technique
JPS5484763A (en) Volume measuring method and apparatus
JPS58215521A (en) Water leakage detector
CN107255555B (en) A kind of system and method measuring valve tiny leakage rate
JP2957220B2 (en) Trace leak gas measurement method
JPS621215B2 (en)
JPS5848608Y2 (en) hydrogen detector
JPS60157085A (en) Monitor device for gas in housing vessel for reactor
CN113023919B (en) Pressurized water reactor sample water gas-liquid separation device and fission gas measurement method
JPS63215932A (en) Leakage detector
CN219104842U (en) Liquefied gas moisture testing arrangement
JPS58151541A (en) Water leakage detecting device
JPS574534A (en) Measuring apparatus for concentration of hydrogen and oxygen
JPS59137823A (en) Measuring device for water level in container
JPH0410575B2 (en)
JPS5844205B2 (en) Method for measuring hydrogen in liquid metal
JPS57105692A (en) Leakage detecting device for heat transferring tube of heat exchanger
CN117554461A (en) Calibration method and calibration device of hydrogen meter
JPS58150836A (en) Determining method for scale leakage of sodium
Trouve et al. 74 Hydrogen diffusion and permeation in sodium
JP2002181801A (en) Salinometer