JPS621215B2 - - Google Patents

Info

Publication number
JPS621215B2
JPS621215B2 JP56033424A JP3342481A JPS621215B2 JP S621215 B2 JPS621215 B2 JP S621215B2 JP 56033424 A JP56033424 A JP 56033424A JP 3342481 A JP3342481 A JP 3342481A JP S621215 B2 JPS621215 B2 JP S621215B2
Authority
JP
Japan
Prior art keywords
hydrogen
vacuum chamber
vacuum
orifice
ion pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033424A
Other languages
Japanese (ja)
Other versions
JPS57148234A (en
Inventor
Shiro Furumura
Juji Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3342481A priority Critical patent/JPS57148234A/en
Publication of JPS57148234A publication Critical patent/JPS57148234A/en
Publication of JPS621215B2 publication Critical patent/JPS621215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

【発明の詳細な説明】 本発明はたとえば高速増殖炉の冷却材のカバー
ガス中に含まれる水素を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for detecting hydrogen contained in a cover gas of a coolant of a fast breeder reactor, for example.

一般に高速増殖炉では一次冷却材および二次冷
却材に液体ナトリウムが使用されており、二次冷
却材は蒸気発生器で水と熱交換して蒸気を発生す
るように構成されている。したがつて、この蒸気
発生器では伝熱管の壁を介してナトリウムと水と
が接しており、万一伝熱管等に漏洩を生じるとナ
トリウムと水とが反応する不具合を生じる。この
ため、このようなものでは二次冷却材中あるいは
カバーガス中の水素を検出する水素検出装置を設
けてこれらの中の水素濃度を常時監視し、万一漏
洩が生じた場合にはナトリウムと水との反応によ
つて生じる水素を検出して漏洩が生じたことを検
出し、適当な措置を講ずることができるように構
成されている。そして、従来このような水素検出
装置は第1図に示す如く構成されていた。すなわ
ち、1は二次冷却材のカバーガスが流通されるハ
ウジングであつて、このハウジング1内にはニツ
ケル等の水素拡散材料からなる筒状の水素拡散膜
2が収容されており、この水素拡散膜2内は真空
室3に形成されている。そして、この真空室3は
排気管4を介して真空ポンプたとえばイオンポン
プ5に接続され、このイオンポンプ5によつて真
空室3を高真空に排気するように構成されてい
る。そして、この排気管4の途中には真空計6お
よび開閉弁7が設けられている。そして、上記イ
オンポンプ5は常時運転をしておく。したがつ
て、カバーガス中に含まれる水素は上記水素拡散
膜2を透過して真空室3内に流入し、イオンポン
プ5により排気される。そして、この場合水素拡
散膜2を透過して真空室3内に流入する水素の量
をQ、イオンポンプ5の排気速度をL、真空室3
あるいは排気管4内の圧力をP1とすると、定常状
態では Q=P1・L ……(1) となる。そしてこのP1を動的平衡圧力と称してい
る。また、水素拡散膜2の材料の水素透過率を
K、水素拡散膜2の面積をA、水素拡散膜2の厚
さをD、カバーガス中の水素の分圧をP2とする
と、 Q=K・A/DP〓 ……(2) となる。また、カバーガス中の水素濃度は水素分
圧に対応するから、水素濃度Sは S=P2・C ……(3) となる。なおCは定数である。したがつて、上記
(1),(2),(3)式から S=P1 2・{(D・L/K・A)・C} ……(4) が求められる。したがつて、上記(4)式中のD・
L/K・Aが一定であれば上記真空室3および排
気管4内の圧力すなわち真空度を真空計6により
検出し、この検出値を検出回路8に送つて水素濃
度Sを連続的に求めることができるものである。
なお、上記K・Lの値は実際に求めることはでき
ないので、上記P1とSとの関係はあらかじめ次の
ような較正により求めておく。すなわち、まず一
定濃度の水素を含むカバーガスをハウジング1内
に流しておき、イオンポンプ5を作動させて真空
室3および排気管4内を真空に排気し、こののち
開閉弁7を閉弁する。そして、この状態で長時間
放置しておくとカバーガス内の水素が水素拡散膜
2を透過して真空室3内に流入し、この真空室3
および排気管4内の圧力がカバーガス中の水素分
圧と等しくなつた状態で平衡状態となり、この場
合の真空室3内の圧力を静的平衡圧力と称する。
そしてこの静的平衡圧力から前記(3)式により水素
濃度を求める。次に開閉弁7を開弁するとともに
イオンポンプ5を運転し、定常状態となつたらそ
の動的平衡圧力から水素濃度の指示値を求める。
なお、上記平衡状態すなわち動的平衡圧力に達し
たか否かはイオンポンプ5の放電電流が一定値に
安定したことによつて検出する。そして、上記静
的平衡圧力から求めた真の水素濃度と動的平衡圧
力から求めた水素濃度値とを比較して較正する。
そしてカバーガス中の水素濃度を変え、各水素濃
度毎に上述の如き較正をおこない、動的平衡圧力
にもとづく水素濃度値の較正曲線を求める。とこ
ろで、上記イオンポンプ5はその電極の表面状態
や使用時間等によつて排気速度Lが変化する。こ
のため前記(4)式のD・L/K・Aの値も変化して
しまうため、頻繁に上述の如き較正をおこなわな
ければならず、きわめて面倒であつた。
Generally, fast breeder reactors use liquid sodium as a primary coolant and a secondary coolant, and the secondary coolant is configured to exchange heat with water in a steam generator to generate steam. Therefore, in this steam generator, sodium and water are in contact with each other through the walls of the heat exchanger tubes, and if a leak occurs in the heat exchanger tubes, there will be a problem in which the sodium and water will react. For this reason, such devices are equipped with a hydrogen detection device that detects hydrogen in the secondary coolant or cover gas, and the hydrogen concentration in these is constantly monitored, and in the event of a leak, sodium and It is configured to detect hydrogen produced by reaction with water to detect a leak and take appropriate measures. Conventionally, such a hydrogen detection device has been constructed as shown in FIG. That is, 1 is a housing through which the cover gas of the secondary coolant flows, and a cylindrical hydrogen diffusion membrane 2 made of a hydrogen diffusion material such as nickel is accommodated in this housing 1, and this hydrogen diffusion membrane 2 is made of a hydrogen diffusion material such as nickel. A vacuum chamber 3 is formed inside the membrane 2 . The vacuum chamber 3 is connected to a vacuum pump such as an ion pump 5 via an exhaust pipe 4, and the ion pump 5 is configured to evacuate the vacuum chamber 3 to a high vacuum. A vacuum gauge 6 and an on-off valve 7 are provided in the middle of the exhaust pipe 4. The ion pump 5 is kept in constant operation. Therefore, hydrogen contained in the cover gas passes through the hydrogen diffusion membrane 2, flows into the vacuum chamber 3, and is exhausted by the ion pump 5. In this case, the amount of hydrogen passing through the hydrogen diffusion membrane 2 and flowing into the vacuum chamber 3 is Q, the pumping speed of the ion pump 5 is L, and the vacuum chamber 3 is
Alternatively, if the pressure inside the exhaust pipe 4 is P1 , then in a steady state Q= P1・L...(1). This P 1 is called the dynamic equilibrium pressure. Further, if the hydrogen permeability of the material of the hydrogen diffusion membrane 2 is K, the area of the hydrogen diffusion membrane 2 is A, the thickness of the hydrogen diffusion membrane 2 is D, and the partial pressure of hydrogen in the cover gas is P 2 , then Q= K・A/DP〓 ……(2) becomes. Furthermore, since the hydrogen concentration in the cover gas corresponds to the hydrogen partial pressure, the hydrogen concentration S is S=P 2 ·C (3). Note that C is a constant. Therefore, the above
From equations (1), (2), and (3), S=P 1 2 {(D・L/K・A) 2・C} ...(4) can be obtained. Therefore, D・ in the above formula (4)
If L/K・A is constant, the pressure in the vacuum chamber 3 and the exhaust pipe 4, that is, the degree of vacuum, is detected by the vacuum gauge 6, and this detected value is sent to the detection circuit 8 to continuously determine the hydrogen concentration S. It is something that can be done.
Note that since the value of K·L cannot actually be determined, the relationship between P1 and S is determined in advance by the following calibration. That is, first, a cover gas containing a certain concentration of hydrogen is flowed into the housing 1, the ion pump 5 is operated to evacuate the vacuum chamber 3 and the exhaust pipe 4, and then the on-off valve 7 is closed. . If left in this state for a long time, hydrogen in the cover gas will pass through the hydrogen diffusion membrane 2 and flow into the vacuum chamber 3.
An equilibrium state is reached when the pressure in the exhaust pipe 4 becomes equal to the partial pressure of hydrogen in the cover gas, and the pressure in the vacuum chamber 3 in this case is referred to as static equilibrium pressure.
Then, the hydrogen concentration is determined from this static equilibrium pressure using equation (3) above. Next, the on-off valve 7 is opened and the ion pump 5 is operated, and when a steady state is reached, the indicated value of the hydrogen concentration is determined from the dynamic equilibrium pressure.
Note that whether or not the equilibrium state, that is, the dynamic equilibrium pressure has been reached, is detected when the discharge current of the ion pump 5 is stabilized at a constant value. Then, the true hydrogen concentration determined from the static equilibrium pressure is compared with the hydrogen concentration value determined from the dynamic equilibrium pressure for calibration.
Then, by changing the hydrogen concentration in the cover gas and performing the above-described calibration for each hydrogen concentration, a calibration curve of hydrogen concentration values based on the dynamic equilibrium pressure is obtained. Incidentally, the pumping speed L of the ion pump 5 changes depending on the surface condition of its electrodes, usage time, etc. For this reason, the value of D.L/K.A in the equation (4) also changes, and the above-mentioned calibration must be performed frequently, which is extremely troublesome.

本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは真空ポンプの排気速
度が変化しても水素濃度の測定値に影響を与え
ず、安定した高精度の水素検出をおこなうことが
でき、頻繁に較正をおこなう必要のない水素検出
装置を得ることにある。
The present invention was made based on the above circumstances, and its purpose is to perform stable and highly accurate hydrogen detection without affecting the measured value of hydrogen concentration even if the pumping speed of the vacuum pump changes. The object of the present invention is to obtain a hydrogen detection device that can perform calibrations and that does not require frequent calibration.

以下本発明を第2図に示す一実施例にしたがつ
て説明する。この一実施例は液体ナトリウム冷却
形高速増殖炉の二次冷却材のカバーガス中の水素
濃度を検出する装置である。図中101はハウジ
ングであつて、このハウジング101内には流入
口102および流出口103を介して被測定物質
つまりアルゴンガス等のカバーガスが流通される
ように構成されている。なお、このカバーガスの
圧力は通常1気圧である。そして、このハウジン
グ101内には水素拡散膜104が収容されてい
る。この水素拡散膜はニツケル等の水素拡散性の
材料から形成され薄肉の円筒容器状をなし、その
内部は真空室105に形成されている。したがつ
て、上記カバーガス中に水素が含まれている場合
にはこの水素のみがこの水素拡散膜104を透過
して真空室105内に流入するように構成されて
いる。そして、この真空室105は排気管106
を介して真空ポンプたとえばイオンポンプ107
に接続され、上記真空室105内はこのイオンポ
ンプ107によつて高真空に排気されるように構
成されている。なお、このイオンポンプ107は
その排気速度が100/secのものが用いられてい
る。また、上記排気管106の途中には上記真空
室105側から順次電離真空計108、開閉弁1
09およびオリフイス110が設けられている。
そして、上記電離真空計108によつて排気管1
06および真空室105内の圧力を検出してその
信号を検出回路111に送り、カバーガス中の水
素濃度を求めるように構成されている。また、上
記オリフイス110はその抵抗が比較的大きく、
たとえば10-4Torr以下程度の高真空状態で0.5
/secの流量のガスが通過するように構成され
ている。なお、このような高真空状態ではオリフ
イス110を通過する流量は前後の差圧にはほと
んど影響されずオリフイス110の開口面積によ
つて決定されるほぼ一定の流量が得られるもので
ある。また、前記水素拡散膜104はこのオリフ
イス110の通過流量に対応してその水素透過面
積の小さなものが用いられている。
The present invention will be described below with reference to an embodiment shown in FIG. This embodiment is an apparatus for detecting the hydrogen concentration in the cover gas of the secondary coolant of a liquid sodium-cooled fast breeder reactor. In the figure, reference numeral 101 denotes a housing, and the housing 101 is configured such that a substance to be measured, that is, a cover gas such as argon gas, flows through the housing 101 through an inlet 102 and an outlet 103. Note that the pressure of this cover gas is usually 1 atmosphere. A hydrogen diffusion membrane 104 is housed within this housing 101. This hydrogen diffusion membrane is made of a hydrogen diffusing material such as nickel and has the shape of a thin cylindrical container, and a vacuum chamber 105 is formed inside the membrane. Therefore, when the cover gas contains hydrogen, only this hydrogen permeates through the hydrogen diffusion membrane 104 and flows into the vacuum chamber 105. This vacuum chamber 105 is connected to an exhaust pipe 106.
via a vacuum pump such as an ion pump 107
The inside of the vacuum chamber 105 is configured to be evacuated to a high vacuum by the ion pump 107. The ion pump 107 used has an evacuation speed of 100/sec. Further, in the middle of the exhaust pipe 106, an ionization vacuum gauge 108 and an on-off valve 1 are provided in order from the vacuum chamber 105 side.
09 and an orifice 110 are provided.
Then, the exhaust pipe 1 is
06 and the pressure inside the vacuum chamber 105 and sends the signal to the detection circuit 111 to determine the hydrogen concentration in the cover gas. Further, the orifice 110 has a relatively large resistance.
For example, in a high vacuum state of 10 -4 Torr or less, 0.5
It is configured so that a gas with a flow rate of /sec passes through it. Note that in such a high vacuum state, the flow rate passing through the orifice 110 is almost unaffected by the differential pressure before and after it, and a substantially constant flow rate determined by the opening area of the orifice 110 is obtained. Further, the hydrogen diffusion membrane 104 used has a small hydrogen permeation area corresponding to the flow rate passing through the orifice 110.

以上の如く構成された本発明の一実施例は、使
用に先立つて従来と同様に一定の水素濃度の試験
用カバーをハウジング101内に流通し、イオン
ポンプ107で真空室105内を真空に排気し、
開閉弁109を閉弁してこの真空室105および
排気管106内の圧力がカバーガス中の水素分圧
と平衡するまで放置し、静的平衡圧力を求める。
次に開閉弁109を開弁してイオンポンプ107
を運転し、定常状態となつたら真空室105およ
び排気管106内の動的平衡圧力を求め、この動
的平衡圧力にもとづく水素濃度の指示値の較正を
おこなう。そして試験用カバーガス中の水素濃度
の変る毎に上記の如き較正をおこない、第3図に
示す如き較正特性を求める。そして、このものを
実際の測定に用いる場合には上記ハウジング10
1内に測定すべきカバーガスを流通させるととも
にイオンポンプ107を作動させて真空室105
内を排気し、真空室105および排気管106内
の動的平衡圧力P1を電離真空計108により検出
し、前記した S=P1 2{(D・L/K・A)・C}……(4) 式によりカバーガス中の水素濃度を連続的に測定
監視する。そして、この一実施例のものは前記水
素拡散膜104を透過して真空室105内に流入
した水素はオリフイス110を介してイオンポン
プ107により排気される。そしてこの場合、定
常状態では上記オリフイス110を単位時間に通
過する水素の質量とイオンポンプ107で排気さ
れる水素の質量とは等しくなる。しかし、上記オ
リフイス110の通過流量(容積)は0.5/sec
であるのに対し、イオンポンプ107の排気速度
(容積)は100/secである。このため、上記オ
リフイス110からイオンポンプ107までの間
では圧力が低下し、この部分の圧力はオリフイス
110の上流側の圧力に対して上記イオンポンプ
107の排気速度とオリフイス110の通過流量
との比に対応して低下し、この一実施例の場合は
約10-2Torrだけ低くなる。そして、上記オリフ
イス110を通過する流量は前述の如く高真空下
では前後の差圧にはほとんど影響されず、ほぼ一
定となる。したがつてイオンポンプ107の排気
能力が変化してもこのイオンポンプ107とオリ
フイス110との間の圧力が多少変化するだけで
あり、オリフイス110を通過する流量は変化し
ない。したがつて前記(4)式における排気速度Lは
ほぼ一定となり、イオンポンプ107の排気速度
が変化してもオリフイス110の上流側の圧力す
なわち動的平衡圧力は一定となる。したがつて、
第4図の実線に示す如く、イオンポンプ107の
排気速度が変化しても水素濃度の指示値は変化せ
ず、高精度な水素濃度の検出が可能となり、また
頻繁に較正をおこなう必要もない。なお、第4図
には第1図に示す如き従来の水素検出装置のイオ
ンポンプ107の排気速度が変化した場合の水素
濃度の指示値の変化を破線で示す。
In the embodiment of the present invention configured as described above, a test cover with a constant hydrogen concentration is passed through the housing 101 as in the conventional case, and the inside of the vacuum chamber 105 is evacuated by the ion pump 107. death,
The on-off valve 109 is closed and the pressure in the vacuum chamber 105 and the exhaust pipe 106 is left in equilibrium with the partial pressure of hydrogen in the cover gas, and the static equilibrium pressure is determined.
Next, the on-off valve 109 is opened and the ion pump 107 is opened.
When a steady state is reached, the dynamic equilibrium pressure in the vacuum chamber 105 and the exhaust pipe 106 is determined, and the indicated value of the hydrogen concentration is calibrated based on this dynamic equilibrium pressure. Then, each time the hydrogen concentration in the test cover gas changes, the above calibration is performed, and the calibration characteristics as shown in FIG. 3 are obtained. When this device is used for actual measurement, the housing 10 is
The cover gas to be measured flows through the vacuum chamber 105 and the ion pump 107 is operated.
The inside of the vacuum chamber 105 and the exhaust pipe 106 are evacuated, and the dynamic equilibrium pressure P 1 in the vacuum chamber 105 and the exhaust pipe 106 is detected by the ionization vacuum gauge 108, and the above-mentioned S=P 1 2 {(D・L/K・A) 2・C} ...The hydrogen concentration in the cover gas is continuously measured and monitored using equation (4). In this embodiment, hydrogen that has passed through the hydrogen diffusion membrane 104 and flowed into the vacuum chamber 105 is exhausted by the ion pump 107 through the orifice 110. In this case, in a steady state, the mass of hydrogen passing through the orifice 110 per unit time is equal to the mass of hydrogen exhausted by the ion pump 107. However, the flow rate (volume) passing through the orifice 110 is 0.5/sec.
On the other hand, the pumping speed (volume) of the ion pump 107 is 100/sec. Therefore, the pressure decreases between the orifice 110 and the ion pump 107, and the pressure in this area is the ratio of the pumping speed of the ion pump 107 and the flow rate passing through the orifice 110 to the pressure on the upstream side of the orifice 110. and, in this example, by about 10 -2 Torr. As described above, the flow rate passing through the orifice 110 is almost unaffected by the pressure difference between the front and rear under high vacuum conditions, and remains almost constant. Therefore, even if the evacuation capacity of the ion pump 107 changes, the pressure between the ion pump 107 and the orifice 110 only changes somewhat, and the flow rate passing through the orifice 110 does not change. Therefore, the pumping speed L in equation (4) is approximately constant, and even if the pumping speed of the ion pump 107 changes, the pressure on the upstream side of the orifice 110, that is, the dynamic equilibrium pressure, remains constant. Therefore,
As shown by the solid line in Figure 4, even if the pumping speed of the ion pump 107 changes, the indicated value of the hydrogen concentration does not change, making it possible to detect the hydrogen concentration with high accuracy, and eliminating the need for frequent calibration. . In addition, in FIG. 4, a broken line shows a change in the indicated value of hydrogen concentration when the pumping speed of the ion pump 107 of the conventional hydrogen detection apparatus shown in FIG. 1 changes.

なお、本発明は上記の一実施例には限定されな
い。
Note that the present invention is not limited to the above embodiment.

たとえば上記一実施例はオリフイスの通過流量
をイオンポンプの排気速度に比較して充分に小さ
なものとしたが、本発明は必らずしもこのように
構成する必要はなく、要は真空ポンプの排気速度
より小さな通過流量のオリフイスを設ければよい
ものである。
For example, in the above embodiment, the flow rate passing through the orifice is made sufficiently small compared to the pumping speed of the ion pump, but the present invention does not necessarily have to be configured in this way. It is sufficient to provide an orifice with a flow rate smaller than the pumping speed.

また、本発明は必らずしもガバーガス中の水素
濃度を検出するものに限らず、液体ナトリウム、
リチウム、カリウム、ビスマス、亜鉛等の冷却材
中の水素濃度を検出するものについても適用でき
る。
Furthermore, the present invention is not limited to detecting hydrogen concentration in gas gas, but also detects liquid sodium,
It can also be applied to devices that detect hydrogen concentration in coolants such as lithium, potassium, bismuth, and zinc.

上述の如く本発明は水素を含有する被測定流体
が流通されるハウジングと、このハウジング内に
設置される水素拡散膜によつて区画された真空室
と、この真空室と排気管を介して接続され真空室
内を真空に排気する真空ポンプと、上記排気管に
介挿され上記真空室と真空ポンプとの連通を遮断
する開閉弁と、この開閉弁と上記真空ポンプとの
間の排気管に介挿され上記真空ポンプの排気速度
より小さな通過流量のオリフイスと、上記開閉弁
と真空室との間の排気管に介挿され上記オリフイ
スと真空室との間の圧力を検出する真空計と、こ
の真空計からの検出信号を入力して被測定流体中
の水素濃度を算出する検出回路とを具備したもの
である。したがつて、真空ポンプで排気をなす場
合、その排気速度はこのオリフイスの通過流量に
よつて決定され、真空ポンプの排気能力が変化し
てもこのオリフイスを通過する流量はほぼ一定に
保たれ、一定の排気速度が得られる。したがつて
高精度な水素検出をおこなうことができるととも
に頻繁に較正をおこなう必要もない等その効果は
大である。
As described above, the present invention includes a housing through which a fluid to be measured containing hydrogen flows, a vacuum chamber partitioned by a hydrogen diffusion membrane installed within the housing, and a vacuum chamber connected to the vacuum chamber via an exhaust pipe. a vacuum pump that evacuates the vacuum chamber; an on-off valve inserted in the exhaust pipe to cut off communication between the vacuum chamber and the vacuum pump; and an on-off valve inserted in the exhaust pipe between the on-off valve and the vacuum pump. an orifice inserted into the exhaust pipe between the opening/closing valve and the vacuum chamber to detect the pressure between the orifice and the vacuum chamber; It is equipped with a detection circuit that inputs a detection signal from a vacuum gauge and calculates the hydrogen concentration in the fluid to be measured. Therefore, when evacuation is performed using a vacuum pump, the evacuation speed is determined by the flow rate passing through this orifice, and even if the evacuation capacity of the vacuum pump changes, the flow rate passing through this orifice remains approximately constant. A constant pumping speed is obtained. Therefore, highly accurate hydrogen detection can be performed and there is no need for frequent calibration, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素検出装置の概略構成図であ
る。第2図は本発明の一実施例の概略構成図、第
3図はその較正特性を示す線図、第4図は一実施
例および従来例の排気速度の変化に対する水素濃
度指示値の変化を示す線図である。 104……水素拡散膜、105……真空室、1
06……排気管、107……イオンポンプ、10
8……電離真空計、109……開閉弁、110…
…オリフイス。
FIG. 1 is a schematic diagram of a conventional hydrogen detection device. Fig. 2 is a schematic configuration diagram of an embodiment of the present invention, Fig. 3 is a diagram showing its calibration characteristics, and Fig. 4 shows changes in the hydrogen concentration indication value with respect to changes in pumping speed in the embodiment and the conventional example. FIG. 104...Hydrogen diffusion membrane, 105...Vacuum chamber, 1
06...Exhaust pipe, 107...Ion pump, 10
8...Ionization vacuum gauge, 109...Opening/closing valve, 110...
...orifice chair.

Claims (1)

【特許請求の範囲】[Claims] 1 水素を含有する被測定流体が流通されるハウ
ジングと、このハウジング内に設置される水素拡
散膜によつて区画された真空室と、この真空室と
非気管を介して接続され真空室内を真空に排気す
る真空ポンプと、上記排気管に介挿され上記真空
室と真空ポンプとの連通を遮断する開閉弁と、こ
の開閉弁と上記真空ポンプとの間の排気間に介挿
され上記真空ポンプの排気速度より小さな通過流
量のオリフイスと、上記開閉弁と真空室との間の
排気管に介挿され上記オリフイスと真空室との間
の圧力を検出する真空計と、この真空計からの検
出信号を入力して被測定流体中の水素濃度を算出
する検出回路とを具備したことを特徴とする水素
検出装置。
1. A housing through which a fluid to be measured containing hydrogen flows, a vacuum chamber partitioned by a hydrogen diffusion membrane installed within this housing, and a vacuum chamber connected to this vacuum chamber via a non-tracheal tube. a vacuum pump for evacuation, an on-off valve inserted in the exhaust pipe to cut off communication between the vacuum chamber and the vacuum pump, and an on-off valve inserted between the on-off valve and the vacuum pump for evacuation; an orifice with a passing flow rate smaller than the pumping speed of 1. A hydrogen detection device comprising: a detection circuit that inputs a signal and calculates a hydrogen concentration in a fluid to be measured.
JP3342481A 1981-03-09 1981-03-09 Hydrogen detector Granted JPS57148234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342481A JPS57148234A (en) 1981-03-09 1981-03-09 Hydrogen detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342481A JPS57148234A (en) 1981-03-09 1981-03-09 Hydrogen detector

Publications (2)

Publication Number Publication Date
JPS57148234A JPS57148234A (en) 1982-09-13
JPS621215B2 true JPS621215B2 (en) 1987-01-12

Family

ID=12386170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342481A Granted JPS57148234A (en) 1981-03-09 1981-03-09 Hydrogen detector

Country Status (1)

Country Link
JP (1) JPS57148234A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004034381A1 (en) * 2004-07-16 2006-02-16 Inficon Gmbh Gas sensor and method for operating a getter pump
DE102005021909A1 (en) * 2005-05-12 2006-11-16 Inficon Gmbh Sniffer leak detector with quartz window sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54691A (en) * 1977-06-03 1979-01-06 Hitachi Ltd Hydrogen detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54691A (en) * 1977-06-03 1979-01-06 Hitachi Ltd Hydrogen detector

Also Published As

Publication number Publication date
JPS57148234A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
Durrill et al. Diffusion and solution of gases in thermally softened or molten polymers: Part I. Development of technique and determination of data
US4384925A (en) Gas sensing unit with automatic calibration method
Gorman et al. Hydrogen permeation through metals
Vissers et al. A hydrogen-activity meter for liquid sodium and its application to hydrogen solubility measurements
KR20040058057A (en) Gas permeability measurement method and gas permeability measurement device
US3992153A (en) Dosimeter for oxides of nitrogen
US3683272A (en) Method and apparatus for determining hydrogen concentration in liquid sodium utilizing an ion pump to ionize the hydrogen
EP0266955A2 (en) Diffusion measurement
JPS621215B2 (en)
EP0147752A2 (en) Direct readout dissolved gas measurement apparatus
US4047102A (en) Dual chamber, high sensitivity gas sensor and pump
JPS62119433A (en) Hydrogen transmission coefficient measuring apparatus for film
RU2334979C1 (en) Device for measurement of hydrogen content in liquids and gases
US4255963A (en) Hydrogen meter for liquid lithium
JPH09113394A (en) Pressure transmitter
JPH0249451B2 (en)
JP3173272B2 (en) Pressure transmitter
JPS58215521A (en) Water leakage detector
JPS59168332A (en) Device for detecting water leakage
JPS5988644A (en) Hydrogen detector
JPS58151541A (en) Water leakage detecting device
RU2091755C1 (en) Process of determination of gas permeability of polymer films
JPS58143238A (en) Hydrogen detector
CN117554460A (en) Calibration method and calibration device of hydrogen meter
JPS5929809B2 (en) Hydrogen detection device