JP2015190761A - storage container of radioactive material - Google Patents

storage container of radioactive material Download PDF

Info

Publication number
JP2015190761A
JP2015190761A JP2014065524A JP2014065524A JP2015190761A JP 2015190761 A JP2015190761 A JP 2015190761A JP 2014065524 A JP2014065524 A JP 2014065524A JP 2014065524 A JP2014065524 A JP 2014065524A JP 2015190761 A JP2015190761 A JP 2015190761A
Authority
JP
Japan
Prior art keywords
storage container
hydrogen
permeable membrane
tubular portion
hydrogen permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014065524A
Other languages
Japanese (ja)
Other versions
JP6242263B2 (en
Inventor
宗平 福井
Sohei Fukui
宗平 福井
大輔 渡邉
Daisuke Watanabe
大輔 渡邉
健司 野下
Kenji Noshita
健司 野下
太一 滝井
Taichi Takii
太一 滝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014065524A priority Critical patent/JP6242263B2/en
Publication of JP2015190761A publication Critical patent/JP2015190761A/en
Application granted granted Critical
Publication of JP6242263B2 publication Critical patent/JP6242263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage container of a radioactive material capable of discharging hydrogen gas generated inside the storage container by radiolysis or corrosion, to the outside of the storage container surely, efficiently and inexpensively with a simple constitution at low cost.SOLUTION: A storage container of a radioactive material includes a tubular part 3 provided inside the storage container 1 of the radioactive material 2, and having at least one end opened to the outside of the storage container 1, and a hydrogen permeable membrane 4 provided on the tubular part 3. The hydrogen permeable membrane 4 is provided on a position where at least a part of the periphery of the hydrogen permeable membrane 4 is enclosed by the radioactive material 2, when the radioactive material 2 is stored in the storage container 1.

Description

本発明は、放射性物質を収納、保管、移送、及び埋設処分するための保管容器に関する。   The present invention relates to a storage container for storing, storing, transferring, and burying radioactive materials.

原子力プラント、核燃料再処理プラント、及び廃炉プラント等で発生した放射性物質は、保管、移送、埋設、及び廃棄処分のために、容器内に収納される。この際、容器内の放射性物質は線量が高く、水分が共存する場合では、水の放射線分解により水素ガスが発生し、容器内の水素の圧力や濃度が上昇するおそれがあり好ましくない。また、除染廃液中の金属イオンを処理すると、高線量のカチオン樹脂やアニオン樹脂などが二次廃棄物として発生する。この高線量のカチオン樹脂やアニオン樹脂などからは、水素ガスが発生することが知られている。このような理由から、除染廃液の処理に用いた高線量の樹脂は、埋設処分することが認められていない。また、アルミや亜鉛などの両性金属を含む放射性物質をセメント系材料で固形化する場合にも、水素ガスが発生することが知られている(例えば、特許文献1を参照)。水素ガスは、両性金属の腐食反応によっても発生する。   Radioactive materials generated in nuclear power plants, nuclear fuel reprocessing plants, decommissioning plants, and the like are stored in containers for storage, transfer, embedding, and disposal. At this time, the radioactive substance in the container has a high dose, and when water coexists, hydrogen gas is generated due to radiolysis of water, and the pressure and concentration of hydrogen in the container may increase, which is not preferable. In addition, when metal ions in the decontamination waste liquid are treated, high doses of cationic resin, anion resin, and the like are generated as secondary waste. It is known that hydrogen gas is generated from this high dose of cationic resin or anion resin. For these reasons, the high-dose resin used in the treatment of the decontamination waste liquid is not allowed to be buried. It is also known that hydrogen gas is generated when a radioactive substance containing an amphoteric metal such as aluminum or zinc is solidified with a cement-based material (see, for example, Patent Document 1). Hydrogen gas is also generated by the corrosion reaction of amphoteric metals.

特許文献2には、除染廃液中の金属イオンの処理により高線量の樹脂が発生し、その樹脂から発生する水素ガスへの対策として、酸化剤や還元剤などの薬液により除染廃液中の金属イオンを前処理することで、水素の発生を抑制する廃液処理方法が記載されている。   In Patent Document 2, a high-dose resin is generated by treatment of metal ions in the decontamination waste liquid, and as a countermeasure against hydrogen gas generated from the resin, a chemical liquid such as an oxidizing agent or a reducing agent is used in the decontamination waste liquid. A waste liquid treatment method that suppresses the generation of hydrogen by pretreating metal ions is described.

特許文献3には、放射性物質を含む容器内での水素の発生を回避するために、放射性物質をセメント固化した後に、容器内を減圧したり加温したりすることにより水分を除去する放射性廃棄物の処理方法が開示されている。この方法では、水素発生の原因となる水分そのものを除去する前処理を行う。   In Patent Document 3, in order to avoid generation of hydrogen in a container containing a radioactive substance, the radioactive waste is removed by dehydrating or warming the container after the radioactive substance is cemented and solidified. An article processing method is disclosed. In this method, a pretreatment is performed to remove water itself that causes hydrogen generation.

また、特許文献4には、保管容器内に水素の酸化触媒を設置する放射性廃棄物の処理方法が開示されている。この方法では、保管容器内で発生した水素を酸化触媒により酸素と結合させて再び水に戻すことで、水素を除去する。   Patent Document 4 discloses a radioactive waste processing method in which a hydrogen oxidation catalyst is installed in a storage container. In this method, hydrogen generated in the storage container is combined with oxygen by an oxidation catalyst and returned to water to remove hydrogen.

特開平6−102397号公報Japanese Patent Laid-Open No. 6-102397 特開2013−221898号公報JP2013-221898A 特開2007−132787号公報JP 2007-132787 A 特開2002−286893号公報JP 2002-286893 A

放射性物質の保管容器では、放射線分解や腐食により保管容器内で発生した水素ガスを保管容器から放出したり除去したりして、保管容器内の水素の濃度や圧力の上昇を防ぐ必要がある。   In a radioactive material storage container, it is necessary to release or remove hydrogen gas generated in the storage container due to radiolysis or corrosion from the storage container to prevent an increase in hydrogen concentration or pressure in the storage container.

特許文献2に記載されたような、高線量の樹脂から水素の発生を抑制するための廃液処理方法では、除染廃液中の金属イオンを前処理するための薬液が必要であり、更に、薬液を供給するための複雑な配管系統、加温設備、フィルタ設備、及び紫外線照射設備なども必要である。また、特許文献3に記載されたような、水分を除去する前処理を行う放射性廃棄物の処理方法では、保管容器の加熱設備と減圧設備、及びオフガス処理設備などが必要である。このように、水素の発生を抑制したり回避したりするには、従来の技術では、処理系統が複雑化し、処理コストが高くなるという課題がある。   In the waste liquid treatment method for suppressing the generation of hydrogen from a high-dose resin as described in Patent Document 2, a chemical liquid for pretreating metal ions in the decontamination waste liquid is required. A complicated piping system, heating equipment, filter equipment, ultraviolet irradiation equipment, and the like are also required. Moreover, in the radioactive waste processing method which performs the pre-processing which removes a water | moisture content as described in patent document 3, the heating equipment of a storage container, the pressure reduction equipment, an off-gas processing equipment, etc. are required. Thus, in order to suppress or avoid the generation of hydrogen, the conventional technique has a problem that the processing system becomes complicated and the processing cost increases.

一方、特許文献4に記載されたような、水素の酸化触媒を設置する放射性廃棄物の処理方法では、水素ガスと反応する酸素ガスが保管容器内に限られた量しか存在しないので、わずかな量の水素しか除去できず、確実に水素を除去するのが困難であるという課題がある。   On the other hand, in the radioactive waste processing method in which a hydrogen oxidation catalyst is installed as described in Patent Document 4, oxygen gas that reacts with hydrogen gas is present in a limited amount in the storage container, so that there is a slight amount. There is a problem that only an amount of hydrogen can be removed, and it is difficult to reliably remove hydrogen.

本発明は、放射線分解や腐食により保管容器の内部で発生した水素ガスを、簡易な構成と低コストで保管容器の外部に確実かつ効率的に放出可能な放射性物質の保管容器を提供することを目的とする。   The present invention provides a radioactive substance storage container that can reliably and efficiently release hydrogen gas generated inside a storage container due to radiolysis or corrosion to the outside of the storage container with a simple configuration and low cost. Objective.

本発明による放射性物質の保管容器は、次のような特徴を有する。放射性物質の保管容器の内部に設けられ、少なくとも一端が前記保管容器の外部へ開口している管状部と、前記管状部に設けられた水素透過膜とを備える。前記水素透過膜は、前記保管容器が前記放射性物質を収納したときに、前記水素透過膜の周囲の少なくとも一部が前記放射性物質で囲まれる位置に設けられる。   The radioactive substance storage container according to the present invention has the following characteristics. A tubular part is provided inside the radioactive substance storage container, and at least one end is open to the outside of the storage container, and a hydrogen permeable membrane provided in the tubular part. The hydrogen permeable membrane is provided at a position where at least a part of the periphery of the hydrogen permeable membrane is surrounded by the radioactive substance when the storage container stores the radioactive substance.

本発明による放射性物質の保管容器は、放射線分解や腐食により保管容器の内部で発生した水素ガスを、簡易な構成と低コストで保管容器の外部に確実かつ効率的に放出することができる。   The radioactive substance storage container according to the present invention can reliably and efficiently release the hydrogen gas generated inside the storage container due to radiolysis and corrosion to the outside of the storage container with a simple configuration and low cost.

本発明の実施例1による放射性物質の保管容器の構成を示す模式図である。It is a schematic diagram which shows the structure of the storage container of the radioactive substance by Example 1 of this invention. 実施例1において、パラジウム合金膜の水素透過係数と温度の関係を示す図である。In Example 1, it is a figure which shows the hydrogen permeability coefficient of a palladium alloy membrane, and the relationship of temperature. 実施例1において、保管容器の内部から外部への水素透過流量Nと、保管容器の内部の水素濃度との関係を示す図である。In Example 1, it is a figure which shows the relationship between the hydrogen permeation | transmission flow rate N from the inside of a storage container to the exterior, and the hydrogen concentration inside a storage container. 実施例1において、保管容器の管状部の縦断面図であり、水素透過膜が管状部の側面の一部を構成する場合の図である。In Example 1, it is a longitudinal cross-sectional view of the tubular part of a storage container, and is a figure in case a hydrogen permeable film comprises a part of side surface of a tubular part. 実施例1において、保管容器の管状部の縦断面図であり、水素透過膜が管状部の底面の一部を構成する場合の図である。In Example 1, it is a longitudinal cross-sectional view of the tubular part of a storage container, and is a figure in case a hydrogen permeable film comprises a part of bottom face of a tubular part. 実施例1において、保管容器の管状部の縦断面図であり、水素透過膜が管状部の内部空間の横断面に沿って管状部の内部に設けられた場合の図である。In Example 1, it is a longitudinal cross-sectional view of the tubular part of a storage container, and is a figure at the time of providing a hydrogen permeable film in the inside of a tubular part along the cross section of the internal space of a tubular part. 実施例1において、内部に複数個の管状部を備える保管容器の構成を示す模式図である。In Example 1, it is a schematic diagram which shows the structure of the storage container provided with a some tubular part inside. 実施例1において、保管容器の管状部の縦断面図であり、管状部の長さ方向に複数枚の水素透過膜が設けられた場合の図である。In Example 1, it is a longitudinal cross-sectional view of the tubular part of a storage container, and is a figure at the time of providing a plurality of hydrogen permeable membranes in the length direction of the tubular part. 本発明の実施例2による放射性物質の保管容器の構成を示す模式図である。It is a schematic diagram which shows the structure of the storage container of the radioactive substance by Example 2 of this invention. 本発明の実施例3による放射性物質の保管容器の管状部の縦断面図である。It is a longitudinal cross-sectional view of the tubular part of the storage container of the radioactive substance by Example 3 of this invention. 本発明の実施例3による放射性物質の保管容器の別の構成の管状部の縦断面図である。It is a longitudinal cross-sectional view of the tubular part of another structure of the storage container of the radioactive substance by Example 3 of this invention.

本発明による放射性物質の保管容器は、放射性物質を外部に漏らさないように密閉性を保ちつつ、放射性物質を収納、保管、移送、及び埋設処分するために用いられる容器であり、特に、放射線分解や金属の腐食反応などにより保管容器の内部で水素が発生する場合に用いるのに好適である。   The radioactive substance storage container according to the present invention is a container used for storing, storing, transferring, and embedding radioactive substances while maintaining hermeticity so as not to leak the radioactive substances to the outside. It is suitable for use when hydrogen is generated inside the storage container due to corrosion reaction of metal or metal.

本発明による放射性物質の保管容器は、保管容器の内部に設けられて少なくとも一端が保管容器の外部へ開口している管状部を備え、管状部には、水素ガスを選択的に透過させる性質を持つ部材である水素透過膜が設けられる。水素透過膜は、放射性物質の崩壊熱により加熱される。このため、本発明による放射性物質の保管容器は、密閉性を損なうことがなく、保管容器の内部で発生した水素ガスを外部に確実、安全かつ効率的に放出することが可能であり、保管容器内の水素の濃度や圧力の上昇を防止できる。   The radioactive substance storage container according to the present invention includes a tubular part provided inside the storage container and having at least one end opened to the outside of the storage container, and the tubular part has a property of selectively transmitting hydrogen gas. A hydrogen permeable membrane which is a member is provided. The hydrogen permeable membrane is heated by the decay heat of the radioactive material. For this reason, the radioactive substance storage container according to the present invention can release the hydrogen gas generated inside the storage container to the outside reliably, safely and efficiently without impairing the hermeticity. It is possible to prevent an increase in the concentration and pressure of hydrogen in the inside.

放射性物質の保管容器に収納された放射性物質が崩壊熱を出し、崩壊熱によって保管容器の温度が上昇することは、よく知られている。例えば、特開2000−249789号公報では、放射性物質の保管容器に使用される銅合金について、300℃〜650℃の耐熱温度が得られる試験や、崩壊熱による温度上昇を想定して200℃での加熱を行った試験を実施している。したがって、放射性物質の保管容器は、収納している放射性物質の量などに依存するが、一般的に、放射性物質の崩壊熱により200℃以上にまで温度が上昇することが推測できる。本発明による放射性物質の保管容器では、このような放射性物質の崩壊熱により、水素透過膜を加熱する。   It is well known that radioactive materials stored in radioactive material storage containers generate decay heat, and the temperature of the storage container rises due to the decay heat. For example, in Japanese Patent Laid-Open No. 2000-249789, a copper alloy used in a radioactive material storage container is tested at 200 ° C., assuming a heat resistance temperature of 300 ° C. to 650 ° C. and a temperature increase due to decay heat. The test which performed the heating of is carried out. Therefore, although the radioactive substance storage container depends on the amount of radioactive substance contained therein, it can be generally estimated that the temperature rises to 200 ° C. or higher due to the decay heat of the radioactive substance. In the radioactive substance storage container according to the present invention, the hydrogen permeable membrane is heated by the decay heat of the radioactive substance.

本発明による放射性物質で用いられる水素透過膜として、パラジウム合金膜などの金属膜、ポリイミドなどの高分子膜、及び窒化ケイ素などのセラミック膜を用いることができる。金属膜と高分子膜は、一般産業向けに実用化されており、セラミック膜は、実用化に向けて開発段階にある。水素透過膜は、半導体製造、石油精製工業、及び化学工業の分野において使用される水素ガスを精製するのに用いられている。パラジウム合金膜を用いて水素ガスを分離する方法は、例えば、特開2008−289948号公報に記載されている。パラジウム合金膜の特徴は、金属パラジウムが水素分子を吸着し、吸着した水素分子が解離し、解離により生成した水素原子がパラジウム中に溶解して膜内を移動し、膜表面に移動した水素原子同士が膜表面で結合して水素分子となることで、水素ガスを選択的に透過させる点である。一方、高分子膜とセラミック膜の特徴は、分子ふるい(分子サイズによる分離)により水素ガスのみを選択的に透過させる点である。水素透過膜は、水素ガスの精製に使用されているが、水素ガスを除去するのにも応用できる。   As the hydrogen permeable film used in the radioactive material according to the present invention, a metal film such as a palladium alloy film, a polymer film such as polyimide, and a ceramic film such as silicon nitride can be used. Metal films and polymer films have been put into practical use for general industries, and ceramic films are in the development stage for practical use. Hydrogen permeable membranes are used to purify hydrogen gas used in the fields of semiconductor manufacturing, petroleum refining industry, and chemical industry. A method for separating hydrogen gas using a palladium alloy membrane is described in, for example, Japanese Patent Application Laid-Open No. 2008-289948. The characteristics of the palladium alloy film are that the metal palladium adsorbs hydrogen molecules, the adsorbed hydrogen molecules dissociate, the hydrogen atoms generated by the dissociation move in the palladium, move through the film, and move to the film surface. They are bonded to each other on the film surface to form hydrogen molecules, so that hydrogen gas is selectively permeated. On the other hand, a feature of the polymer film and the ceramic film is that only hydrogen gas is selectively permeated by molecular sieve (separation by molecular size). The hydrogen permeable membrane is used for purifying hydrogen gas, but can also be applied to remove hydrogen gas.

水素透過膜は、常温より高い温度で使用すると、水素透過性能(水素透過効率)が向上することが知られている。水素透過膜を使用するのに好ましい温度は、水素透過膜の水素透過効率と水素ガスによる脆化とを考慮すると、50℃以上である。金属膜とセラミック膜では、200℃以上だとより好ましく、高分子膜では、50℃以上150℃以下だとより好ましい。本発明による保管容器では、放射性物質の崩壊熱を利用して水素透過膜を加熱し水素透過膜の温度を高くすることによって、水素透過膜の水素透過効率を向上させることが特徴である。放射性物質の保管容器は、上述したように、一般的に、放射性物質の崩壊熱により少なくとも200℃にまで温度が上昇すると推測できるので、水素透過膜は、加熱されて50℃以上の温度になり、水素透過効率が向上することが期待できる。   It is known that the hydrogen permeation membrane (hydrogen permeation efficiency) is improved when used at a temperature higher than room temperature. A preferable temperature for using the hydrogen permeable membrane is 50 ° C. or more in consideration of hydrogen permeation efficiency of the hydrogen permeable membrane and embrittlement by hydrogen gas. The metal film and the ceramic film are more preferably 200 ° C. or higher, and the polymer film is more preferably 50 ° C. or higher and 150 ° C. or lower. The storage container according to the present invention is characterized in that the hydrogen permeation efficiency of the hydrogen permeable membrane is improved by heating the hydrogen permeable membrane using the decay heat of the radioactive substance to raise the temperature of the hydrogen permeable membrane. As described above, it can be assumed that the temperature of the radioactive material storage container generally rises to at least 200 ° C. due to the decay heat of the radioactive material, so that the hydrogen permeable membrane is heated to a temperature of 50 ° C. or higher. The hydrogen permeation efficiency can be expected to improve.

なお、放射性物質の保管容器の外壁(例えば蓋)の一部を水素透過膜で構成し、水素ガスのみを保管容器の内部から外部へ放出させることも可能である。しかし、効率的に水素ガスを放出するためには、本発明による保管容器のように、水素透過膜を積極的に加熱して水素透過膜の水素透過効率を向上させる構成が極めて有効である。   It is also possible to configure a part of the outer wall (for example, lid) of the radioactive substance storage container with a hydrogen permeable membrane so that only hydrogen gas is released from the inside of the storage container to the outside. However, in order to efficiently release hydrogen gas, a configuration that improves the hydrogen permeation efficiency of the hydrogen permeable membrane by actively heating the hydrogen permeable membrane as in the storage container according to the present invention is extremely effective.

このように、本発明による保管容器は、簡易な構成を備え、保管容器の内部の水素ガスを低コストで確実、安全かつ効率的に外部へ放出することができる。   As described above, the storage container according to the present invention has a simple configuration, and can release the hydrogen gas inside the storage container to the outside reliably, safely and efficiently at low cost.

以下、本発明の実施例による放射性物質の保管容器の構成を、図面を用いて説明する。なお、以下の実施例を説明するための図面において、同一の要素には同一の符号を付け、それらの繰り返しの説明は省略する場合がある。   Hereinafter, a configuration of a radioactive substance storage container according to an embodiment of the present invention will be described with reference to the drawings. Note that in the drawings for describing the following embodiments, the same reference numerals are given to the same elements, and repeated description thereof may be omitted.

本発明の実施例1による放射性物質の保管容器の構成を説明する。保管容器には、例えば、原子力発電所などで発生した除染廃液中の金属イオンを処理することで発生したカチオン樹脂やアニオン樹脂などの廃棄物スラッジを収納したり、炉内構造物などの放射化金属をセメント系材料で固形化したものを収納したりすることができる。商業用原子力発電所で運転廃棄物として発生する放射化金属は、Co−60(約4×1014Bq/ton)などの放射性物質を含むと評価されている(日本原子力学会標準、余裕深度処分対象廃棄体の製作に関わる基本的要件:2009)。 The configuration of the radioactive substance storage container according to the first embodiment of the present invention will be described. In the storage container, for example, waste sludge such as cation resin and anion resin generated by processing metal ions in the decontamination waste liquid generated at nuclear power plants, etc. is stored, and radiation such as in-furnace structures is stored. It is possible to store a solidified metallized cementitious material. Radioactive metals generated as operational waste at commercial nuclear power plants are evaluated to contain radioactive materials such as Co-60 (approximately 4 × 10 14 Bq / ton) (Japan Atomic Energy Society standard, marginal disposal) Basic requirements for production of target waste: 2009).

図1は、本実施例による放射性物質の保管容器の構成を示す模式図である。金属製の保管容器1は、高線量の放射性物質2などを収納し、内部に管状部3を備える。   FIG. 1 is a schematic view showing a configuration of a radioactive substance storage container according to the present embodiment. The metal storage container 1 stores a high-dose radioactive substance 2 and the like, and includes a tubular portion 3 inside.

管状部3は、例えば配管で形成することができ、一端のみが保管容器1の外部へ開口しており、他端に底面を有する。管状部3の開口している一端は、保管容器1の外部へ突出しても突出しなくてもよいが、図1では外部へ突出していない場合(管状部3の開口部8が保管容器1の外面に設けられている場合)を示している。管状部3の内部は、空洞であり、保管容器1の外部と連続していて、放射性物質2を収納しない。管状部3の横断面の形状は任意であり、例えば、円形、楕円形、多角形にすることができる。管状部3の大きさ(長さ方向の長さ、内部空間の横断面の面積、及び厚さなど)は、保管容器1の大きさや、保管容器1が収納する放射性物質2の量(見積量)に応じて、任意に定めることができる。また、管状部3は、保管容器1と同じ材料で形成するのが好ましいが、保管容器1と異なる材料で形成してもよい。   The tubular portion 3 can be formed by piping, for example, and only one end is opened to the outside of the storage container 1 and has a bottom surface at the other end. One end of the opening of the tubular portion 3 may or may not protrude to the outside of the storage container 1, but in FIG. 1, when it does not protrude to the outside (the opening 8 of the tubular portion 3 is the outer surface of the storage container 1. Is provided). The inside of the tubular portion 3 is a cavity, is continuous with the outside of the storage container 1, and does not contain the radioactive substance 2. The shape of the cross section of the tubular portion 3 is arbitrary, and can be, for example, a circle, an ellipse, or a polygon. The size of the tubular portion 3 (the length in the length direction, the area of the cross section of the internal space, the thickness, etc.) is the size of the storage container 1 and the amount of the radioactive substance 2 stored in the storage container 1 (estimated amount). ) Can be determined arbitrarily. The tubular portion 3 is preferably formed of the same material as the storage container 1, but may be formed of a material different from that of the storage container 1.

管状部3は、水素ガスを選択的に透過させる性質を持つ水素透過膜4を備える。水素透過膜4は、保管容器1が放射性物質2を収納したときに、放射性物質2の最上面よりも低い位置に(放射性物質2の内部に位置するように)設けられる。すなわち、水素透過膜4は、保管容器1が放射性物質2を収納したときに、水素透過膜4の周囲の少なくとも一部が放射性物質2で囲まれるような位置に設けられる。詳細は図4A〜図4Cを用いて後述するが、水素透過膜4は、管状部3の側面の一部を構成してもよいし、管状部3の底面の少なくとも一部を構成してもよいし、管状部3の内部空間の横断面に沿って管状部3の内部に設けられてもよい。例えば、水素透過膜4が管状部3の側面の一部を構成する場合には、水素透過膜4の一方の面が放射性物質2に対向するように設けられる(図1と図4Aを参照)。水素透過膜4は、周囲の少なくとも一部が放射性物質2で囲まれており、放射性物質2に近接又は隣接しているので、放射性物質2の崩壊熱により加熱されて温度が高くなり、水素透過性能が向上する。   The tubular portion 3 includes a hydrogen permeable membrane 4 having a property of selectively transmitting hydrogen gas. When the storage container 1 stores the radioactive substance 2, the hydrogen permeable membrane 4 is provided at a position lower than the uppermost surface of the radioactive substance 2 (so as to be located inside the radioactive substance 2). That is, the hydrogen permeable membrane 4 is provided at a position where at least a part of the periphery of the hydrogen permeable membrane 4 is surrounded by the radioactive material 2 when the storage container 1 stores the radioactive material 2. Although details will be described later with reference to FIGS. 4A to 4C, the hydrogen permeable membrane 4 may constitute a part of the side surface of the tubular part 3 or may constitute at least a part of the bottom surface of the tubular part 3. Alternatively, it may be provided inside the tubular portion 3 along the cross section of the internal space of the tubular portion 3. For example, when the hydrogen permeable membrane 4 constitutes a part of the side surface of the tubular portion 3, it is provided so that one surface of the hydrogen permeable membrane 4 faces the radioactive substance 2 (see FIGS. 1 and 4A). . Since the hydrogen permeable membrane 4 is surrounded at least partially by the radioactive material 2 and is close to or adjacent to the radioactive material 2, the hydrogen permeable membrane 4 is heated by the decay heat of the radioactive material 2, and the temperature is increased. Performance is improved.

保管容器1の内部では、水の放射線分解により、水素ガスが発生する。保管容器1の内部の水素ガスは、水素透過膜4を透過して管状部3の内部に流入し、管状部3の内部を流れて、管状部3の開口している一端(開口部8)から保管容器1の外部へ放出される。水素透過膜4は水素ガスのみを選択的に透過させるので、放射性物質2は、保管容器1の外部に流出しない。すなわち、保管容器1は、水素ガスのみを選択的に外部に放出する。水素透過膜4を透過して保管容器1の外部に放出された水素ガスは、大気中の空気と混じって希釈されて排出される。   Inside the storage container 1, hydrogen gas is generated by water radiolysis. The hydrogen gas inside the storage container 1 permeates the hydrogen permeable membrane 4 and flows into the tubular portion 3, flows inside the tubular portion 3, and is open at one end (opening portion 8) of the tubular portion 3. To the outside of the storage container 1. Since the hydrogen permeable membrane 4 selectively transmits only hydrogen gas, the radioactive substance 2 does not flow out of the storage container 1. That is, the storage container 1 selectively releases only hydrogen gas to the outside. The hydrogen gas that has permeated the hydrogen permeable membrane 4 and released to the outside of the storage container 1 is mixed with air in the atmosphere, diluted, and discharged.

管状部3の内部に流入した水素ガスは、保管容器1の上部に向かって流れる。このため、管状部3の開口している一端は、保管容器1の上面に開口するのが好ましい。ただし、管状部3は、保管容器1の側面に開口してもよい。   The hydrogen gas that has flowed into the tubular portion 3 flows toward the upper portion of the storage container 1. For this reason, it is preferable that the open end of the tubular portion 3 opens on the upper surface of the storage container 1. However, the tubular portion 3 may be opened on the side surface of the storage container 1.

高線量の放射性物質2を収納した保管容器1において、水の放射線分解により発生する水素ガスの量は、保管容器1の形状と、廃棄物スラッジなどの種類、充填量、及び含水量とに依存する。代表的な条件では、年間1〜500L/年の水素ガスを発生する可能性があると評価されている。   In the storage container 1 containing the high-dose radioactive material 2, the amount of hydrogen gas generated by radiolysis of water depends on the shape of the storage container 1, the type of waste sludge, the filling amount, and the water content To do. Under typical conditions, it is evaluated that hydrogen gas of 1 to 500 L / year may be generated per year.

図2は、パラジウム合金膜の水素透過係数と温度の関係を示す図である。図2に示す温度特性は、膜の種類がPd−5%Au、厚さが100μm、膜面積が12cm、膜温度が300℃での水素透過係数が1.2×10−8mol・s−1・m−1・Pa−0.5のパラジウム合金膜についての特性である。本実施例では、水素透過膜4としてこのパラジウム合金膜を用いた例を説明する。以下では、パラジウム合金膜の水素透過性能を評価する。 FIG. 2 is a graph showing the relationship between the hydrogen permeability coefficient and temperature of the palladium alloy membrane. The temperature characteristics shown in FIG. 2 are as follows: the membrane type is Pd-5% Au, the thickness is 100 μm, the membrane area is 12 cm 2 , and the hydrogen permeability coefficient is 1.2 × 10 −8 mol · s when the membrane temperature is 300 ° C. This is a characteristic of a palladium alloy film of −1 · m −1 · Pa −0.5 . In this embodiment, an example in which this palladium alloy film is used as the hydrogen permeable film 4 will be described. In the following, the hydrogen permeation performance of the palladium alloy membrane is evaluated.

一般に、水素透過膜の水素透過流量は、水素透過係数を用いて、式(1)により計算される。
J=φ・S/L×((P0.5−(P0.5) (1)
式(1)において、Jは水素透過流量(mol・s−1)、φは水素透過係数(mol・m−1・s−1・Pa−0.5)、Sは膜面積(m)、Lは膜の厚さ(m)、Pは保管容器1の内部の水素分圧(MPa)、Pは保管容器1の外部の水素分圧(MPa)を表す。なお、保管容器1の外部の水素濃度は大気条件でほとんどゼロと評価できるため、式(1)においてP=0とすることができる。
In general, the hydrogen permeation flow rate of the hydrogen permeable membrane is calculated by the equation (1) using the hydrogen permeation coefficient.
J = φ · S / L × ((P 1 ) 0.5 − (P 2 ) 0.5 ) (1)
In the formula (1), J is a hydrogen permeation flow rate (mol · s −1 ), φ is a hydrogen permeation coefficient (mol · m −1 · s −1 · Pa −0.5 ), and S is a membrane area (m 2 ). , L represents the film thickness (m), P 1 represents the hydrogen partial pressure (MPa) inside the storage container 1, and P 2 represents the hydrogen partial pressure (MPa) outside the storage container 1. Since the hydrogen concentration outside the storage container 1 can be evaluated as almost zero under atmospheric conditions, P 2 = 0 can be set in Equation (1).

図3は、本実施例による保管容器1(水素透過膜4として上記のパラジウム合金膜を用いている)において、式(1)を用いて求めた、保管容器1の内部から外部への水素透過流量N(L/年)と、保管容器1の内部の水素濃度(%)との関係を示す図である。   FIG. 3 shows the hydrogen permeation from the inside of the storage container 1 to the outside, obtained by using the formula (1), in the storage container 1 according to the present embodiment (the above-described palladium alloy film is used as the hydrogen permeable film 4). It is a figure which shows the relationship between the flow volume N (L / year) and the hydrogen concentration (%) inside the storage container.

図3からわかるように、保管容器1の内部の水素濃度が可燃限界濃度の4%であると、水素透過膜4の水素透過流量Nは5600L/年である。近年、水素透過係数は、水素濃度が低い領域において、理想の水素透過係数よりも1桁ほど小さい傾向にあることが知られている。この知見を考慮して水素透過膜4の水素透過性能を1/10とし、図3から求めた値を1/10にして水素透過流量を見積もると、水素透過流量Nは560L/年である。この水素透過流量Nの値560L/年は、前述した保管容器1に廃棄物スラッジを収納した際の最大の水素発生速度500L/年を上回る。すなわち、本実施例による保管容器1では、内部で発生する量よりも多くの量の水素を外部へ排出することができ、保管容器1の内部の水素濃度を、常に可燃限界濃度の4%よりも低く保つことができる。   As can be seen from FIG. 3, when the hydrogen concentration inside the storage container 1 is 4% of the flammability limit concentration, the hydrogen permeation flow rate N of the hydrogen permeable membrane 4 is 5600 L / year. In recent years, it has been known that the hydrogen permeability coefficient tends to be smaller by one digit than the ideal hydrogen permeability coefficient in a region where the hydrogen concentration is low. Taking this knowledge into consideration, assuming that the hydrogen permeation performance of the hydrogen permeable membrane 4 is 1/10 and the value obtained from FIG. 3 is 1/10, the hydrogen permeation flow rate N is estimated to be 560 L / year. The value 560 L / year of the hydrogen permeation flow rate N exceeds the maximum hydrogen generation rate of 500 L / year when the waste sludge is stored in the storage container 1 described above. That is, in the storage container 1 according to the present embodiment, a larger amount of hydrogen than the amount generated inside can be discharged to the outside, and the hydrogen concentration inside the storage container 1 is always higher than 4% of the flammability limit concentration. Can also be kept low.

図3には、比較例として、膜の種類がPd−5%Au、厚さが25μm、膜面積が12cm、膜温度が20℃のパラジウム合金膜について、式(1)を用いて求めた水素透過流量N(L/年)と水素濃度(%)との関係も示した。比較例では、温度が20℃の水素透過係数を、図2のグラフを外挿して、3.0×10−10mol・s−1・m−1・Pa−0.5と求めた。図3からわかるように、比較例の水素透過膜の水素透過流量Nは、保管容器の内部の水素濃度が可燃限界濃度の4%であると、560L/年である。比較例の場合も、本実施例の場合と同様に水素透過流量を1/10に見積もると、水素透過流量Nは56L/年であり、保管容器に廃棄物スラッジを収納した際の最大の水素発生速度500L/年を下回る。したがって、膜温度が20℃のパラジウム合金膜では、保管容器1の内部で発生する水素を十分に外部へ排出できない可能性がある。比較例では、膜の厚さを25μmとして、本実施例での厚さ(100μm)よりも薄くして水素ガスが透過しやすいようにしたが、それでも比較例の水素透過膜は、温度が低いため、本実施例の水素透過膜よりも水素透過流量Nが小さい。 In FIG. 3, as a comparative example, a palladium alloy film having a film type of Pd-5% Au, a thickness of 25 μm, a film area of 12 cm 2 , and a film temperature of 20 ° C. was obtained using the formula (1). The relationship between the hydrogen permeation flow rate N (L / year) and the hydrogen concentration (%) is also shown. In the comparative example, the hydrogen permeation coefficient at a temperature of 20 ° C. was determined as 3.0 × 10 −10 mol · s −1 · m −1 · Pa −0.5 by extrapolating the graph of FIG. As can be seen from FIG. 3, the hydrogen permeation flow rate N of the hydrogen permeable membrane of the comparative example is 560 L / year when the hydrogen concentration inside the storage container is 4% of the flammability limit concentration. Also in the case of the comparative example, when the hydrogen permeation flow rate is estimated to be 1/10 as in the case of this example, the hydrogen permeation flow rate N is 56 L / year, which is the maximum hydrogen when waste sludge is stored in the storage container. The generation rate is less than 500L / year. Therefore, in the case of a palladium alloy film having a film temperature of 20 ° C., hydrogen generated inside the storage container 1 may not be sufficiently discharged to the outside. In the comparative example, the thickness of the membrane was set to 25 μm so as to make the hydrogen gas permeate easily by making it thinner than the thickness (100 μm) in this embodiment, but the hydrogen permeable membrane of the comparative example still has a low temperature. Therefore, the hydrogen permeation flow rate N is smaller than that of the hydrogen permeable membrane of this example.

以上に示したように、水素透過膜4は、温度によって水素透過流量が大きく変化する。本実施例による放射性物質の保管容器では、放射性物質2の崩壊熱を利用し、水素透過膜4の温度を高く維持することで、水素透過膜4の水素透過流量を大きく維持することができる。また、水素透過膜4の温度を高く維持することで十分な水素透過流量が得られれば、水素透過膜4の厚さを厚くすることができる。水素透過膜4の厚さを厚くすることにより、水素透過膜4の機械的強度を向上し、水素透過膜4の破損を防止できる。   As described above, the hydrogen permeable membrane 4 has a large change in the hydrogen permeation flow rate depending on the temperature. In the radioactive material storage container according to the present embodiment, the hydrogen permeation flow rate of the hydrogen permeable membrane 4 can be maintained large by utilizing the decay heat of the radioactive material 2 and maintaining the temperature of the hydrogen permeable membrane 4 high. Further, if a sufficient hydrogen permeation flow rate can be obtained by keeping the temperature of the hydrogen permeable membrane 4 high, the thickness of the hydrogen permeable membrane 4 can be increased. By increasing the thickness of the hydrogen permeable membrane 4, the mechanical strength of the hydrogen permeable membrane 4 can be improved and the hydrogen permeable membrane 4 can be prevented from being damaged.

また、式(1)より、水素透過膜4の厚さLや面積Sを変えると、水素透過膜4の水素透過流量を変えることができる。したがって、保管容器1の内部で発生する水素ガスの量(見積量)に合わせて、水素透過膜4の厚さや面積を適切な値に設定すると、保管容器1の内部の水素ガスを可燃限界濃度以下に抑制することが可能である。   Further, according to the equation (1), when the thickness L and area S of the hydrogen permeable membrane 4 are changed, the hydrogen permeation flow rate of the hydrogen permeable membrane 4 can be changed. Therefore, when the thickness and area of the hydrogen permeable membrane 4 are set to appropriate values according to the amount (estimated amount) of hydrogen gas generated inside the storage container 1, the hydrogen gas inside the storage container 1 is reduced to the flammable limit concentration. It is possible to suppress to the following.

図4Aは、保管容器1の管状部3の構成を示す図であり、管状部3の縦断面図である。水素透過膜4は、管状部3の側面の一部を構成し、一方の面が放射性物質2に対向するように設けられる。管状部3の周方向に、1枚の水素透過膜4を設けてもよいし、複数枚の水素透過膜4を設けてもよい。管状部3の周方向に1枚の水素透過膜4を設ける場合には、水素透過膜4を、管状部3の周方向の全体に設けてもよく(図1を参照)、周方向の一部に設けてもよい。また、管状部3の周方向に複数枚の水素透過膜4を設ける場合には、水素透過膜4を、管状部3の周方向に連続的に設けてもよく、不連続に設けてもよい。   FIG. 4A is a view showing the configuration of the tubular portion 3 of the storage container 1 and is a longitudinal sectional view of the tubular portion 3. The hydrogen permeable membrane 4 constitutes a part of the side surface of the tubular portion 3 and is provided so that one surface faces the radioactive substance 2. One hydrogen permeable membrane 4 or a plurality of hydrogen permeable membranes 4 may be provided in the circumferential direction of the tubular portion 3. When one hydrogen permeable membrane 4 is provided in the circumferential direction of the tubular portion 3, the hydrogen permeable membrane 4 may be provided in the entire circumferential direction of the tubular portion 3 (see FIG. 1). You may provide in a part. Further, when a plurality of hydrogen permeable membranes 4 are provided in the circumferential direction of the tubular portion 3, the hydrogen permeable membrane 4 may be provided continuously in the circumferential direction of the tubular portion 3 or may be provided discontinuously. .

管状部3は、放射性物質2に接する開孔板5と、管状部3の内部空間に接する補強板6とを備えてもよい。開孔板5と補強板6は、水素透過膜4の支持部材であり、水素透過膜4を挟んで保持する。開孔板5は、管状部3の外周面を形成し、補強板6は、管状部3の内周面を形成し、開孔板5と補強板6との間に水素透過膜4が設置される。開孔板5は、開孔板5の一方の面と他方の面とを連通する複数の孔を有し、補強板6は、補強板6の一方の面と他方の面とを連通する複数の孔を有する。水素ガスは、これらの孔を通って、放射性物質2から水素透過膜4へ流れ、水素透過膜4を透過して管状部3の内部へ流れる。   The tubular portion 3 may include an aperture plate 5 that contacts the radioactive substance 2 and a reinforcing plate 6 that contacts the internal space of the tubular portion 3. The perforated plate 5 and the reinforcing plate 6 are supporting members for the hydrogen permeable membrane 4 and hold the hydrogen permeable membrane 4 therebetween. The aperture plate 5 forms the outer peripheral surface of the tubular portion 3, the reinforcing plate 6 forms the inner peripheral surface of the tubular portion 3, and the hydrogen permeable membrane 4 is installed between the aperture plate 5 and the reinforcing plate 6. Is done. The aperture plate 5 has a plurality of holes that allow one surface of the aperture plate 5 to communicate with the other surface, and the reinforcing plate 6 includes a plurality that communicates one surface of the reinforcement plate 6 with the other surface. Of holes. The hydrogen gas flows from the radioactive substance 2 to the hydrogen permeable membrane 4 through these holes, and passes through the hydrogen permeable membrane 4 and flows into the tubular portion 3.

水素透過膜4を開孔板5と補強板6とで挟んで保持することにより、水素透過膜4の破損の可能性を極めて小さくすることができる。また、開孔板5を設けて放射性物質2と水素透過膜4との間に空間を形成することにより、水素透過膜4の劣化を防止したり、水素透過膜4の近傍で水素ガスの対流を起こして水素ガスの流れをよくしたりすることができる。   By holding the hydrogen permeable membrane 4 between the aperture plate 5 and the reinforcing plate 6, the possibility of damage to the hydrogen permeable membrane 4 can be extremely reduced. Further, by providing an aperture plate 5 to form a space between the radioactive substance 2 and the hydrogen permeable membrane 4, the hydrogen permeable membrane 4 can be prevented from being deteriorated or convection of hydrogen gas can be performed in the vicinity of the hydrogen permeable membrane 4. To improve the flow of hydrogen gas.

開孔板5と補強板6は、同じ材料で形成することができ、例えば、金属のメッシュシート、パンチングメタル、又は多孔質セラミック層などを用いて形成することができる。開孔板5と補強板6が有する孔の大きさ(孔径)は、任意に定めることができる。ただし、開孔板5の孔の大きさは、放射性物質2が開孔板5の孔の中に入らないように、放射性物質2の大きさよりも小さいことが好ましい。開孔板5と補強板6の厚さは、任意に定めることができ、例えば、水素透過膜4を挟んで保持するときの強度を考慮して定めることができる。   The aperture plate 5 and the reinforcing plate 6 can be formed of the same material, for example, using a metal mesh sheet, a punching metal, a porous ceramic layer, or the like. The size (hole diameter) of the holes of the aperture plate 5 and the reinforcing plate 6 can be arbitrarily determined. However, the size of the hole of the aperture plate 5 is preferably smaller than the size of the radioactive material 2 so that the radioactive material 2 does not enter the hole of the aperture plate 5. The thicknesses of the perforated plate 5 and the reinforcing plate 6 can be arbitrarily determined. For example, the thickness can be determined in consideration of the strength when the hydrogen permeable membrane 4 is held therebetween.

図4Bは、保管容器1の管状部3の別な構成を示す図であり、管状部3の縦断面図である。水素透過膜4は、管状部3の底面の一部を構成し、一方の面が放射性物質2に対向するように設けられる。水素透過膜4は、管状部3の底面の全体を構成してもよい。水素透過膜4を、開孔板5と補強板6とで挟んで保持してもよい。図4Bには、一例として、水素透過膜4を、開孔板5と補強板6との間に設けた場合を示しており、水素透過膜4と開孔板5と補強板6とで、管状部3の底面を構成している。   FIG. 4B is a diagram showing another configuration of the tubular portion 3 of the storage container 1, and is a longitudinal sectional view of the tubular portion 3. The hydrogen permeable membrane 4 constitutes a part of the bottom surface of the tubular portion 3 and is provided so that one surface faces the radioactive substance 2. The hydrogen permeable membrane 4 may constitute the entire bottom surface of the tubular portion 3. The hydrogen permeable membrane 4 may be held between the aperture plate 5 and the reinforcing plate 6. In FIG. 4B, as an example, a case where the hydrogen permeable membrane 4 is provided between the aperture plate 5 and the reinforcing plate 6 is shown. In the hydrogen permeable membrane 4, the aperture plate 5 and the reinforcing plate 6, The bottom surface of the tubular portion 3 is configured.

図4Cは、保管容器1の管状部3の別な構成を示す図であり、管状部3の縦断面図である。水素透過膜4は、管状部3の内部空間の横断面に沿って管状部3の内部に設けられる。水素透過膜4を、開孔板5と補強板6とで挟んで保持してもよい。図4Cには、一例として、水素透過膜4を、開孔板5と補強板6との間に設けた場合を示している。   FIG. 4C is a view showing another configuration of the tubular portion 3 of the storage container 1, and is a longitudinal sectional view of the tubular portion 3. The hydrogen permeable membrane 4 is provided inside the tubular portion 3 along the cross section of the internal space of the tubular portion 3. The hydrogen permeable membrane 4 may be held between the aperture plate 5 and the reinforcing plate 6. FIG. 4C shows a case where the hydrogen permeable membrane 4 is provided between the aperture plate 5 and the reinforcing plate 6 as an example.

図4A〜4Cに示すように、水素透過膜4は、保管容器1が放射性物質2を収納したときに、放射性物質2の最上面よりも低い位置に(放射性物質2の内部に位置するように)設けられる。すなわち、水素透過膜4は、保管容器1が放射性物質2を収納したときに、水素透過膜4の周囲の少なくとも一部が放射性物質2で囲まれるような位置に設けられる。水素透過膜4は、周囲の少なくとも一部が放射性物質2で囲まれており、放射性物質2に近接又は隣接しているので、放射性物質2の崩壊熱により加熱されて温度が高くなり、水素透過性能が向上する。   As shown in FIGS. 4A to 4C, when the storage container 1 stores the radioactive substance 2, the hydrogen permeable membrane 4 is located at a position lower than the uppermost surface of the radioactive substance 2 (so that it is located inside the radioactive substance 2. ) Is provided. That is, the hydrogen permeable membrane 4 is provided at a position where at least a part of the periphery of the hydrogen permeable membrane 4 is surrounded by the radioactive material 2 when the storage container 1 stores the radioactive material 2. Since the hydrogen permeable membrane 4 is surrounded at least partially by the radioactive material 2 and is close to or adjacent to the radioactive material 2, the hydrogen permeable membrane 4 is heated by the decay heat of the radioactive material 2, and the temperature is increased. Performance is improved.

本実施例では、水素透過膜4として、パラジウム合金膜を用いた場合を説明した。パラジウム合金膜以外にも、水素透過性のある白金、ニッケル、ニオブ、バナジウム、ジルコニウム、タングステン、チタン、及びルテニウムのうち、少なくともいずれか1種を含む合金膜や、ポリイミドを主成分として含む高分子膜、又は窒化ケイ素を主成分として含むセラミック膜を水素透過膜4として用いても、本実施例と同じ効果が期待できる。   In this embodiment, the case where a palladium alloy film is used as the hydrogen permeable film 4 has been described. Besides palladium alloy films, hydrogen permeable platinum, nickel, niobium, vanadium, zirconium, tungsten, titanium, and an alloy film containing at least one of ruthenium, and a polymer containing polyimide as a main component Even if a membrane or a ceramic membrane containing silicon nitride as a main component is used as the hydrogen permeable membrane 4, the same effect as in this embodiment can be expected.

水素透過膜4により、保管容器1の内部と外部は仕切られており、放射性物質2が保管容器1の外部へ移行することはない。   The inside and outside of the storage container 1 are partitioned by the hydrogen permeable membrane 4, and the radioactive substance 2 does not migrate to the outside of the storage container 1.

本実施例では、放射線分解によって水素が発生する場合を例に挙げて説明したが、原子力発電所で発生したアルミや亜鉛などの両性金属を含む雑固体廃棄物等の腐食によって水素が発生する場合にも、本発明は適用可能である。   In this embodiment, the case where hydrogen is generated by radiolysis has been described as an example. However, when hydrogen is generated by corrosion of miscellaneous solid waste containing amphoteric metals such as aluminum and zinc generated at a nuclear power plant. In addition, the present invention is applicable.

図5は、内部に複数個の管状部3を備える保管容器1の構成を示す模式図である。図5に示すように、保管容器1は、内部に複数個の管状部3を備えることもできる。複数個の管状部3は、保管容器1から水素ガスを効率的に放出するために、保管容器1の内部に等間隔に配置するのが好ましい。また、管状部3における水素透過膜4の位置は、複数個の管状部3で同じでも異なってもよい。   FIG. 5 is a schematic diagram showing a configuration of the storage container 1 having a plurality of tubular portions 3 therein. As shown in FIG. 5, the storage container 1 can also include a plurality of tubular portions 3 inside. The plurality of tubular parts 3 are preferably arranged at equal intervals inside the storage container 1 in order to efficiently release hydrogen gas from the storage container 1. Further, the position of the hydrogen permeable membrane 4 in the tubular portion 3 may be the same or different in the plurality of tubular portions 3.

図6は、保管容器1の管状部3の構成を示す図であり、管状部3の縦断面図である。水素透過膜4は、管状部3の側面の一部を構成し、一方の面が放射性物質2に対向するように設けられる。図6に示す保管容器1では、1つの管状部3の長さ方向に、複数枚の水素透過膜4が設けられている。水素透過膜4は、管状部3の長さ方向に連続的に設けてもよく、不連続に設けてもよい。図6に示した例では、2枚の水素透過膜4が、管状部3の長さ方向に不連続に設けられている。   FIG. 6 is a view showing the configuration of the tubular portion 3 of the storage container 1, and is a longitudinal sectional view of the tubular portion 3. The hydrogen permeable membrane 4 constitutes a part of the side surface of the tubular portion 3 and is provided so that one surface faces the radioactive substance 2. In the storage container 1 shown in FIG. 6, a plurality of hydrogen permeable membranes 4 are provided in the length direction of one tubular portion 3. The hydrogen permeable membrane 4 may be provided continuously in the length direction of the tubular portion 3 or may be provided discontinuously. In the example shown in FIG. 6, the two hydrogen permeable membranes 4 are discontinuously provided in the length direction of the tubular portion 3.

図5や図6に示す保管容器1は、保管容器1の内部の水素ガスを更に効率的に外部へ放出することができるという利点を持つ。   The storage container 1 shown in FIGS. 5 and 6 has an advantage that the hydrogen gas inside the storage container 1 can be discharged to the outside more efficiently.

本発明の実施例2による放射性物質の保管容器の構成を説明する。本実施例の保管容器は、実施例1の保管容器と同様の構成を備えるが、管状部が相違する。以下では、実施例1との相違点を主に説明する。   The configuration of the radioactive substance storage container according to the second embodiment of the present invention will be described. The storage container of the present embodiment has the same configuration as the storage container of Embodiment 1, but the tubular portion is different. In the following, differences from the first embodiment will be mainly described.

図7は、本実施例による放射性物質の保管容器の構成を示す模式図である。保管容器1は、内部に管状部13を備える。管状部13は、両端が保管容器1の外部へ開口している。すなわち、管状部13は、両端に開口部8を備え、保管容器1の外部の大気は、管状部13を通り保管容器1を貫通して流れることができる。管状部13の両端の開口部8は、保管容器1の外面に設けられている。水素透過膜4は、管状部13の側面の一部を構成してもよく(図4A)、管状部13の内部空間の横断面に沿って管状部13の内部に設けられてもよい(図4C)。水素透過膜4は、周囲の少なくとも一部が放射性物質2で囲まれており、放射性物質2に近接又は隣接しているので、放射性物質2の崩壊熱により加熱されて温度が高くなり、水素透過性能が向上する。   FIG. 7 is a schematic diagram showing a configuration of a radioactive substance storage container according to the present embodiment. The storage container 1 includes a tubular portion 13 inside. Both ends of the tubular portion 13 are open to the outside of the storage container 1. That is, the tubular portion 13 includes openings 8 at both ends, and the atmosphere outside the storage container 1 can flow through the storage container 1 through the tubular portion 13. The openings 8 at both ends of the tubular portion 13 are provided on the outer surface of the storage container 1. The hydrogen permeable membrane 4 may constitute a part of the side surface of the tubular portion 13 (FIG. 4A), or may be provided inside the tubular portion 13 along the cross section of the internal space of the tubular portion 13 (FIG. 4C). Since the hydrogen permeable membrane 4 is surrounded at least partially by the radioactive material 2 and is close to or adjacent to the radioactive material 2, the hydrogen permeable membrane 4 is heated by the decay heat of the radioactive material 2, and the temperature is increased. Performance is improved.

保管容器1の内部の水素ガスは、水素透過膜4を透過して管状部13の内部に流入し、管状部13の内部を流れて、保管容器1の外部へ放出される。管状部13及び水素透過膜4は放射性物質2の崩壊熱により加熱されるので、管状部13の内部では大気の自然対流が起きる。このため、水素透過膜4を透過した水素ガスは、管状部13の内部での大気の自然対流により、大気中の空気と混じって希釈され、保管容器1の外部に排出されやすくなる。更に、水素ガスが希釈されて排出されやすくなることにより、式(1)において水素分圧Pがより小さくなり、水素透過膜4の水素透過流量が増加する。これらのことから、本実施例による放射性物質の保管容器1は、保管容器1の内部の水素ガスを更に効率的に排出することができる。 The hydrogen gas inside the storage container 1 passes through the hydrogen permeable membrane 4 and flows into the tubular portion 13, flows inside the tubular portion 13, and is released to the outside of the storage container 1. Since the tubular portion 13 and the hydrogen permeable membrane 4 are heated by the decay heat of the radioactive substance 2, natural convection of the atmosphere occurs inside the tubular portion 13. For this reason, the hydrogen gas that has passed through the hydrogen permeable membrane 4 is diluted with the air in the atmosphere by natural convection of the atmosphere inside the tubular portion 13, and is easily discharged to the outside of the storage container 1. Further, since the hydrogen gas is diluted and easily discharged, the hydrogen partial pressure P 2 in the equation (1) becomes smaller, and the hydrogen permeation flow rate of the hydrogen permeable membrane 4 increases. Therefore, the radioactive substance storage container 1 according to the present embodiment can discharge the hydrogen gas inside the storage container 1 more efficiently.

本実施例による放射性物質の保管容器1は、管状部13の両端が保管容器1の外部へ開口しているので、水素透過膜4を透過した水素ガスを、大気の自然対流により更に効率的かつ安全に希釈して排出することができる。   In the radioactive substance storage container 1 according to the present embodiment, both ends of the tubular portion 13 are opened to the outside of the storage container 1, so that the hydrogen gas that has permeated through the hydrogen permeable membrane 4 is more efficiently and efficiently generated by natural convection in the atmosphere. It can be safely diluted and discharged.

本発明の実施例3による放射性物質の保管容器の構成を説明する。本実施例の保管容器は、実施例1の保管容器と同様の構成を備えるが、管状部が相違する。以下では、実施例1との相違点を主に説明する。   A configuration of the radioactive substance storage container according to the third embodiment of the present invention will be described. The storage container of the present embodiment has the same configuration as the storage container of Embodiment 1, but the tubular portion is different. In the following, differences from the first embodiment will be mainly described.

図8は、本実施例による放射性物質の保管容器の管状部の構成を示す図であり、管状部の縦断面図である。保管容器1は、内部に管状部23を備える。管状部23は、内部に水素再結合触媒層7を備える。水素再結合触媒層7は、水素再結合触媒が充填されており、水素ガスを酸素ガスと再結合させて水蒸気に変換する。水素透過膜4を透過した水素ガスは、水素再結合触媒層7により水蒸気に変換され、大気中の空気と混じって、管状部23の内部から保管容器1の外部へ排出される。   FIG. 8 is a view showing the configuration of the tubular portion of the radioactive substance storage container according to the present embodiment, and is a longitudinal sectional view of the tubular portion. The storage container 1 includes a tubular portion 23 inside. The tubular portion 23 includes the hydrogen recombination catalyst layer 7 inside. The hydrogen recombination catalyst layer 7 is filled with a hydrogen recombination catalyst, and recombines hydrogen gas with oxygen gas to convert it into water vapor. The hydrogen gas that has permeated through the hydrogen permeable membrane 4 is converted into water vapor by the hydrogen recombination catalyst layer 7, mixed with air in the atmosphere, and discharged from the inside of the tubular portion 23 to the outside of the storage container 1.

水素再結合触媒層7は、水素透過膜4を透過した水素ガスを水蒸気に変換するため、管状部23の内部において、水素透過膜4と管状部23の開口部8との間に設置するのが好ましい。図8に示した例では、水素再結合触媒層7は、管状部23の内部において、水素透過膜4の面のうち、放射性物質2に対向しない面(放射性物質2に対向する面と反対側の面)に対向する位置に設置されている。   The hydrogen recombination catalyst layer 7 is installed between the hydrogen permeable membrane 4 and the opening 8 of the tubular portion 23 inside the tubular portion 23 in order to convert the hydrogen gas that has permeated the hydrogen permeable membrane 4 into water vapor. Is preferred. In the example shown in FIG. 8, the hydrogen recombination catalyst layer 7 is a surface of the hydrogen permeable membrane 4 that does not face the radioactive substance 2 (opposite to the face that faces the radioactive substance 2). It is installed at a position facing the surface.

水素再結合触媒層7に充填される水素再結合触媒としては、酸化セリウム、又は酸化セリウムと酸化ジルコニウムとの混合酸化物からなる担体と、この担体に担持されたパラジウムとから構成される触媒を例示することができる。   The hydrogen recombination catalyst filled in the hydrogen recombination catalyst layer 7 includes a catalyst composed of a carrier made of cerium oxide or a mixed oxide of cerium oxide and zirconium oxide, and palladium supported on the carrier. It can be illustrated.

図9は、本実施例による放射性物質の保管容器の管状部の別の構成を示す図であり、管状部の縦断面図である。保管容器1は、内部に管状部33を備える。管状部33は、内部に水素再結合触媒層7を備え、実施例2の保管容器(図7)と同様に、両端が保管容器1の外部へ開口している(すなわち、管状部13は両端に開口部8を備える)。水素再結合触媒層7の構成と機能と設置位置は、図8を用いた上記の説明と同様である。   FIG. 9 is a view showing another configuration of the tubular portion of the radioactive substance storage container according to the present embodiment, and is a longitudinal sectional view of the tubular portion. The storage container 1 includes a tubular portion 33 inside. The tubular portion 33 includes the hydrogen recombination catalyst layer 7 therein, and both ends open to the outside of the storage container 1 (that is, the tubular portion 13 has both ends as in the storage container of the second embodiment (FIG. 7)). Provided with an opening 8). The configuration, function, and installation position of the hydrogen recombination catalyst layer 7 are the same as described above with reference to FIG.

本実施例による放射性物質の保管容器1は、水素再結合という化学反応を利用して、水素透過膜4を透過した水素ガスを除去する。このため、本実施例による放射性物質の保管容器1は、実施例1と実施例2の保管容器1が持つ効果を有するとともに、水素透過膜4を透過した水素ガスを水蒸気に変換することで、より安全に放射性物質を収納、保管、移送、及び埋設処分することができる。   The radioactive substance storage container 1 according to the present embodiment removes hydrogen gas that has permeated through the hydrogen permeable membrane 4 using a chemical reaction called hydrogen recombination. Therefore, the radioactive substance storage container 1 according to the present embodiment has the effects of the storage containers 1 of the first embodiment and the second embodiment, and converts the hydrogen gas that has permeated the hydrogen permeable membrane 4 into water vapor. Radioactive materials can be stored, stored, transported, and buried safely.

なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例を含む。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成を追加・削除・置換することが可能である。   In addition, this invention is not limited to said Example, Various modifications are included. For example, the above-described embodiments are described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to an aspect including all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, with respect to a part of the configuration of each embodiment, the configuration of another embodiment can be added, deleted, or replaced.

1…保管容器、2…放射性物質、3、13、23、33…管状部、4…水素透過膜、5…開孔板、6…補強板、7…水素再結合触媒層、8…開口部。   DESCRIPTION OF SYMBOLS 1 ... Storage container, 2 ... Radioactive material, 3, 13, 23, 33 ... Tubular part, 4 ... Hydrogen permeable membrane, 5 ... Opening plate, 6 ... Reinforcement plate, 7 ... Hydrogen recombination catalyst layer, 8 ... Opening part .

Claims (13)

放射性物質の保管容器の内部に設けられ、少なくとも一端が前記保管容器の外部へ開口している管状部と、
前記管状部に設けられた水素透過膜とを備え、
前記水素透過膜は、前記保管容器が前記放射性物質を収納したときに、前記水素透過膜の周囲の少なくとも一部が前記放射性物質で囲まれる位置に設けられることを特徴とする放射性物質の保管容器。
A tubular portion provided inside the storage container of radioactive material, at least one end opening to the outside of the storage container;
A hydrogen permeable membrane provided in the tubular portion,
The hydrogen permeable membrane is provided at a position where at least a part of the periphery of the hydrogen permeable membrane is surrounded by the radioactive substance when the storage container stores the radioactive substance. .
前記水素透過膜は、前記管状部の側面の一部を構成している請求項1に記載の放射性物質の保管容器。   The radioactive hydrogen storage container according to claim 1, wherein the hydrogen permeable membrane forms part of a side surface of the tubular portion. 前記管状部は、一端のみが前記保管容器の外部へ開口し、他端に底面を有し、
前記水素透過膜は、前記底面の少なくとも一部を構成している請求項1に記載の放射性物質の保管容器。
The tubular portion has only one end opened to the outside of the storage container and has a bottom surface at the other end,
The radioactive hydrogen storage container according to claim 1, wherein the hydrogen permeable membrane constitutes at least a part of the bottom surface.
前記水素透過膜は、前記管状部の内部空間の横断面に沿って、前記管状部の内部に設けられる請求項1に記載の放射性物質の保管容器。   2. The radioactive substance storage container according to claim 1, wherein the hydrogen permeable membrane is provided inside the tubular portion along a transverse section of the internal space of the tubular portion. 前記管状部は、両端が前記保管容器の外部へ開口している請求項1に記載の放射性物質の保管容器。   2. The radioactive substance storage container according to claim 1, wherein both ends of the tubular portion are open to the outside of the storage container. 前記管状部は、複数の孔を有する2つの支持部材を備え、
前記水素透過膜は、2つの前記支持部材の間に設けられる請求項1に記載の放射性物質の保管容器。
The tubular portion includes two support members having a plurality of holes,
The radioactive hydrogen storage container according to claim 1, wherein the hydrogen permeable membrane is provided between the two support members.
複数の前記管状部を備える請求項1に記載の放射性物質の保管容器。   The radioactive substance storage container according to claim 1, comprising a plurality of the tubular portions. 前記管状部は、複数の前記水素透過膜を備える請求項1に記載の放射性物質の保管容器。   The radioactive tubular storage container according to claim 1, wherein the tubular portion includes a plurality of the hydrogen permeable membranes. 前記管状部は、内部に水素再結合触媒層を備え、
前記水素再結合触媒層は、水素再結合触媒が充填されており、前記水素透過膜と前記管状部の開口している開口部との間に設けられる請求項1に記載の放射性物質の保管容器。
The tubular portion includes a hydrogen recombination catalyst layer inside,
2. The radioactive substance storage container according to claim 1, wherein the hydrogen recombination catalyst layer is filled with a hydrogen recombination catalyst and is provided between the hydrogen permeable membrane and the opening of the tubular portion. .
前記水素透過膜は、パラジウム、白金、ニッケル、ニオブ、バナジウム、ジルコニウム、タングステン、チタン、及びルテニウムのうち、少なくともいずれか1種を含む合金膜である請求項1に記載の放射性物質の保管容器。   The radioactive hydrogen storage container according to claim 1, wherein the hydrogen permeable film is an alloy film including at least one of palladium, platinum, nickel, niobium, vanadium, zirconium, tungsten, titanium, and ruthenium. 前記水素再結合触媒は、酸化セリウム、又は酸化セリウムと酸化ジルコニウムとの混合酸化物からなる担体と、前記担体に担持されたパラジウムとから構成される請求項9に記載の放射性物質の保管容器。   10. The radioactive substance storage container according to claim 9, wherein the hydrogen recombination catalyst is composed of a carrier made of cerium oxide or a mixed oxide of cerium oxide and zirconium oxide, and palladium supported on the carrier. 前記水素透過膜は、ポリイミドを含む高分子膜である請求項1に記載の放射性物質の保管容器。   The radioactive substance storage container according to claim 1, wherein the hydrogen permeable membrane is a polymer membrane containing polyimide. 前記水素透過膜は、窒化ケイ素を含むセラミック膜である請求項1に記載の放射性物質の保管容器。   The radioactive hydrogen storage container according to claim 1, wherein the hydrogen permeable membrane is a ceramic membrane containing silicon nitride.
JP2014065524A 2014-03-27 2014-03-27 Radioactive material storage container Active JP6242263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014065524A JP6242263B2 (en) 2014-03-27 2014-03-27 Radioactive material storage container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014065524A JP6242263B2 (en) 2014-03-27 2014-03-27 Radioactive material storage container

Publications (2)

Publication Number Publication Date
JP2015190761A true JP2015190761A (en) 2015-11-02
JP6242263B2 JP6242263B2 (en) 2017-12-06

Family

ID=54425380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014065524A Active JP6242263B2 (en) 2014-03-27 2014-03-27 Radioactive material storage container

Country Status (1)

Country Link
JP (1) JP6242263B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129443A (en) * 2016-01-20 2017-07-27 株式会社Ihi Storage method and device of radioactive waste
JP2020020726A (en) * 2018-08-03 2020-02-06 株式会社太平洋コンサルタント Hydrogen gas vent for radioactive substance storage container and radioactive substance storage container using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292599A (en) * 1985-06-21 1986-12-23 株式会社東芝 Vessel for radioactive waste
JPS63262544A (en) * 1987-04-21 1988-10-28 Nippon Atom Ind Group Co Ltd Hydrogen converting ratio measuring device
JPH03200000A (en) * 1989-02-11 1991-08-30 Kernforschungszentrum Karlsruhe Gmbh Apparatus for reducing internal pressure attached to container with radioactive waste
JP2003165704A (en) * 2001-11-28 2003-06-10 Toshiba Corp Hydrogen manufacturing system
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
US20130312610A1 (en) * 2011-02-11 2013-11-28 Tn International Device for trapping flammable gases produced by radiolysis or thermolysis in a containment
JP2014013175A (en) * 2012-07-04 2014-01-23 Hitachi-Ge Nuclear Energy Ltd Hydrogen processing system for nuclear power plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292599A (en) * 1985-06-21 1986-12-23 株式会社東芝 Vessel for radioactive waste
JPS63262544A (en) * 1987-04-21 1988-10-28 Nippon Atom Ind Group Co Ltd Hydrogen converting ratio measuring device
JPH03200000A (en) * 1989-02-11 1991-08-30 Kernforschungszentrum Karlsruhe Gmbh Apparatus for reducing internal pressure attached to container with radioactive waste
JP2003165704A (en) * 2001-11-28 2003-06-10 Toshiba Corp Hydrogen manufacturing system
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP2012066199A (en) * 2010-09-24 2012-04-05 Tokyo Gas Co Ltd Method and device for separating hydrogen
US20130312610A1 (en) * 2011-02-11 2013-11-28 Tn International Device for trapping flammable gases produced by radiolysis or thermolysis in a containment
JP2014013175A (en) * 2012-07-04 2014-01-23 Hitachi-Ge Nuclear Energy Ltd Hydrogen processing system for nuclear power plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129443A (en) * 2016-01-20 2017-07-27 株式会社Ihi Storage method and device of radioactive waste
JP2020020726A (en) * 2018-08-03 2020-02-06 株式会社太平洋コンサルタント Hydrogen gas vent for radioactive substance storage container and radioactive substance storage container using the same
JP7211729B2 (en) 2018-08-03 2023-01-24 株式会社太平洋コンサルタント Hydrogen gas vent for radioactive material storage container and radioactive material storage container using the same

Also Published As

Publication number Publication date
JP6242263B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
US4468235A (en) Hydrogen separation using coated titanium alloys
JP6876447B2 (en) Nuclear power plant
RU2620584C1 (en) Adsorbent of radioactive iodine and method of processing of radioactive iodine
EP2435361B1 (en) Multilayer composite getter
JP6242263B2 (en) Radioactive material storage container
WO2019142746A1 (en) Nuclear reactor containment vessel vent system
ITRM20100340A1 (en) PROCESS FOR THE DETRIFICATION OF SOFT HOUSEKEEPING WASTE AND RELATIVE SYSTEM
JP2018151355A (en) Reactor containment vent system
JP6215710B2 (en) Device for capturing flammable gases produced by radiolysis or pyrolysis in containment
JP2014013175A (en) Hydrogen processing system for nuclear power plant
JP2014115207A (en) Hydrogen removal facility for nuclear reactor building
JP2015034722A (en) Storage container for radioactive material
JP2019082343A (en) Radioactive waste disposal system and disposal method
FR3030861B1 (en) NUCLEAR PLANT
JP6963371B2 (en) New tritium system and new transmission system for separating tritium from radioactive waste
SE422474B (en) SET IN A RUDE OF A ZIRCONIUM-BASED Alloy WITH INTERNAL, ELECTROLYTIC APPLIED LAYER OF COPPER ASTADKOMMA A BARRIER TO INDIFFUSION OF COPPER IN THE Zirconium-Based Alloy
JP7121669B2 (en) Gaseous waste treatment facility and gaseous waste treatment method
KR100716532B1 (en) Apparatus for the removal of dissolved oxygen from water
KR101536235B1 (en) gas filtration device having pressure and speed control
JP5637429B2 (en) Titanium hydrogen storage container
JP5231302B2 (en) Reactive metal hydride encapsulation method
JP2021076460A (en) Nuclear power plant
JP2016008878A (en) Method and system for treating radioactive contaminated water
JP7333917B2 (en) heat pipe
Balashevska et al. PROMISING METHODS OF SPENT ION− EXCHANGE RESINS TREATMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171107

R150 Certificate of patent or registration of utility model

Ref document number: 6242263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150