JPS63261912A - Sampling frequency converter - Google Patents

Sampling frequency converter

Info

Publication number
JPS63261912A
JPS63261912A JP9511787A JP9511787A JPS63261912A JP S63261912 A JPS63261912 A JP S63261912A JP 9511787 A JP9511787 A JP 9511787A JP 9511787 A JP9511787 A JP 9511787A JP S63261912 A JPS63261912 A JP S63261912A
Authority
JP
Japan
Prior art keywords
frequency
time
output
interpolation
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9511787A
Other languages
Japanese (ja)
Inventor
Makoto Onishi
誠 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9511787A priority Critical patent/JPS63261912A/en
Publication of JPS63261912A publication Critical patent/JPS63261912A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the circuit constitution and to make the interpolation highly accurate by using a time changing coefficient noncyclic filter and using a phase locked loop so as to convert the sampling frequency. CONSTITUTION:The input sampling signal having a frequency fS1 is inputted to a phase comparator 1, where it is subject to phase comparison with an output being the result of 1/M frequency division of the oscillating frequency of a VCO 2 by a frequency divider 4 and the output is inputted to the VCO 2. Thus, the center frequency fC of the VCO 2 is locked to the least common multiple of the frequency fS1 and the output sampling frequency fS2. The output of the VCO 2 is subject to 1/N frequency division by a frequency divider 3 and the frequency becomes the frequency fS2 to apply phase locking of the input/output sampling frequencies. Then the count of the frequency divider 4 is latched and the frequency fS2 is used as the latching clock to read out a time changing coefficient. On the other hand, the input data f<(n>T<)> is inputted to memories 9-12 via delay elements 6-8 to write the product of the time changing coefficient. The result is summed by adders 13-15 and the result is outputted. Thus, high- order interpolation is applied while using digital signals and highly accurate processing is attained and the circuit constitution is simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は補間装置に係り、特にディジタル画像信号の標
本化周波数変換に好適な補間装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an interpolation device, and particularly to an interpolation device suitable for sampling frequency conversion of a digital image signal.

〔従来の技術〕[Conventional technology]

画像信号は直流から数MHzの広いスペクトラムを有し
ており、ディジタル化するときの標本化周波数は10数
M Hzになる。標本化周波数が異なる方式の装置間で
信号をやりとりするときには標本化周波数を変換する必
要があるが、従来はアナログ信号に変換したり、データ
を保持し、異なる標本化周波数で読み出すなどの方法が
用いられていた。また、ディジタル的に一次補間する方
法としては、特開昭55−166333号に記載された
ディジタル補間方法などが知られている。
The image signal has a wide spectrum ranging from direct current to several MHz, and the sampling frequency when digitized is about 10-odd MHz. When exchanging signals between devices with different sampling frequencies, it is necessary to convert the sampling frequency, but conventional methods include converting it to an analog signal, holding the data, and reading it out at a different sampling frequency. It was used. Further, as a method of performing digital linear interpolation, a digital interpolation method described in Japanese Patent Laid-Open No. 166333/1984 is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では画像信号に適用すると標本化周波数が
高いため5回路動作周波数が高くなって複雑となるにも
かかわらず補間の近似精度が低いため、誤差が大きい欠
点があった。またA/D。
When applied to an image signal, the above-mentioned conventional technique has a drawback that the sampling frequency is high and the five-circuit operating frequency becomes high and complicated, but the approximation accuracy of interpolation is low and errors are large. Also A/D.

D/Aを用いてアナログに変換して標本化周波数を変換
する方法でも、やはり部品点数が多くなるわりに雑音が
混入しやすく問題が多かった。
Even with the method of converting the sampling frequency by converting it to analog using a D/A, there were many problems in that although the number of parts increased, noise was likely to be mixed in.

本発明の目的はディジタルのまま高次の補間を行なうこ
とによりアナログ回路による雑音の混入を避け、かつ低
次の補間による精度の低さを押えかつ、回路構成が簡単
な補間装置を提供することにある。本発明の他の目的は
、標本化周波数の変換を位相同期ループで行ない、これ
によって補間装置の補間時刻を与える回路構成を簡単化
することにある。
An object of the present invention is to provide an interpolation device that performs high-order interpolation in digital form to avoid noise from analog circuits, suppresses the low precision caused by low-order interpolation, and has a simple circuit configuration. It is in. Another object of the present invention is to convert the sampling frequency using a phase-locked loop, thereby simplifying the circuit configuration for providing the interpolation time of the interpolator.

本発明の更に他目的は標本化周波数を2倍にする装置に
おいてディジタルのまま高次の補間を行なうことにより
、低次の補間による精度の低さを押え、かつ回路構成が
簡単な標本化周波数変換装置を提供することにある。
Still another object of the present invention is to perform high-order interpolation digitally in a device that doubles the sampling frequency, thereby suppressing the low precision caused by low-order interpolation, and simplifying the circuit configuration of the sampling frequency. The purpose of the present invention is to provide a conversion device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、時変係数非巡回型フィルタを用いた補間方
式を用い、かつこれと位相同期ループを組合せることに
より達成される。時変係数非巡回型フィルタによる補間
については特願昭61−15633号に詳述されている
が、簡単に説明する。
The above object is achieved by using an interpolation method using a time-varying coefficient acyclic filter and by combining this with a phase-locked loop. Interpolation using a time-varying coefficient acyclic filter is detailed in Japanese Patent Application No. 15633/1982, but will be briefly explained.

信号f(t)のサンプル値f(iT)、 こ:でi=0
〜n、T:サンプル周期を用いて任意の時刻tの値を近
似する公式は g(t)= ao(t)・f(OT)+ a t(t)
 ・ f CT)+・・・・=+an−z(t)f((
n−1)T)+arl(t)f(nT)・・・・・・(
1) で与えられる。 (1)式はf (i T)を入力とし
、ai(t)を係数とする非巡回型フィルタの動作を表
わす差分方程式の形をしている。ただし、係数は出力デ
ータの時刻tの関数であり、したがって(1)式による
補間は時変係数をもつ非巡回型フィルタによって実行で
きることがわかる。第2図に時変係数非巡回型フィルタ
の構成を示す。入力信号f (n T)は遅延素子20
1 、202 、−2 Onによって人力信号の標本化
周期1゛だけ遅延され。
Sample value f(iT) of signal f(t), where i=0
~n, T: The formula for approximating the value at any time t using the sampling period is g(t) = ao(t)・f(OT)+a t(t)
・ f CT)+...=+an-z(t)f((
n-1)T)+arl(t)f(nT)・・・・・・(
1) is given by. Equation (1) is in the form of a difference equation representing the operation of an acyclic filter with f (i T) as an input and ai(t) as a coefficient. However, the coefficient is a function of the time t of the output data, so it can be seen that the interpolation according to equation (1) can be performed by an acyclic filter with time-varying coefficients. FIG. 2 shows the configuration of a time-varying coefficient acyclic filter. The input signal f (n T) is the delay element 20
1, 202, -2 On causes a delay of 1 sampling period of the human input signal.

n+1個のデータf (0)、 f (T)、 ・= 
f (n T)となって係数掛算器211,212.・
・・21nに人力される。
n+1 data f (0), f (T), ・=
f (n T) and the coefficient multipliers 211, 212 .・
...21n will be powered by humans.

係数掛算器で出力データの時刻tでも決まる係数a i
 (t)が入力データf (i T)に掛けられ、加算
器221,222.・・・22nに入力されて積算され
(1)式のg (t)となって出力される。係数a i
 (t)は出力データの時刻tだけの関数であり。
Coefficient a i determined by the time t of the output data using the coefficient multiplier
(t) is multiplied by the input data f (i T), and the adders 221, 222 . . . . is input to 22n, integrated, and output as g (t) in equation (1). Coefficient a i
(t) is a function only of time t of output data.

ROMなどに格納しておきtをアドレスとして読み出す
ことで実現される。第3図に補間の概念を示す。補間値
g (t)はn+1個の入力データf (OT)、 f
 (T)、 ・= f (n T)を補間する関数g(
t)の時刻tの値として計算される。tは入力データの
周期Tと無関係な値であるが、出力時刻と入力データの
入力時間は明確に関連づけておく必要がある。標本化周
波数を変換する装置では入力標本化周波数と出力標本化
周波数を何らかの手段で関連づけておくのが普通である
6通常、位相同期ループ(PLL)を用いてこれを行な
う。本発明はPLLによって、上記補間時刻tを得る方
法を提供するものである。
This is achieved by storing it in a ROM or the like and reading it out using t as an address. Figure 3 shows the concept of interpolation. The interpolated value g (t) is calculated using n+1 input data f (OT), f
(T), ・= f (n T), the function g(
t) is calculated as the value at time t. Although t is a value unrelated to the period T of the input data, it is necessary to clearly relate the output time and the input time of the input data. In devices that convert sampling frequencies, it is common to associate the input sampling frequency with the output sampling frequency by some means.6 This is usually done using a phase-locked loop (PLL). The present invention provides a method for obtaining the above interpolated time t using a PLL.

〔作用〕[Effect]

入出力標本化周波数がWMmな有理数比になるときには
二つの周波数を同期化するのに分周器を用いたPLLが
用いられる1周波数比が簡単な有理、数比にならない場
合にはさらに別の発振器が用いられる。以上の関係を第
4図に示す。((す図で、1は位相比較器、2は電圧制
御発振器(VCO)、3.4はそれぞれ分周比N、Mの
分周器である。
When the input/output sampling frequency becomes a ratio of rational numbers such as WMm, a PLL using a frequency divider is used to synchronize the two frequencies.1 If the frequency ratio is not a simple rational ratio, then another method is used. An oscillator is used. The above relationship is shown in FIG. (In the figure, 1 is a phase comparator, 2 is a voltage controlled oscillator (VCO), and 3.4 is a frequency divider with frequency division ratios N and M, respectively.

4a)ではVCOの発振周波数fcは入力、出力周波数
fSsr fSzとfc =Nfsx、=Mfs1の関
係があるのでfsx  fsxとなる。4’(b)図で
41は低域通過フィルタ(LPF)、42は混合器、4
3は周波数foの固定周波数発振器である。4rb)で
は波数比が簡単な値でなくともfoを選ぶことによりf
sxからfsxを合成することができる。
In 4a), the oscillation frequency fc of the VCO is fsx fsx since there is a relationship between the input frequency fSsr fSz and fc =Nfsx, =Mfs1. In figure 4'(b), 41 is a low pass filter (LPF), 42 is a mixer, and 4
3 is a fixed frequency oscillator with frequency fo. 4rb), even if the wave number ratio is not a simple value, f
fsx can be synthesized from sx.

さて、本発明は標本化周波数変換に用いる補間装置の補
間時間設定に、入出力標本化周波数の同期化を図るPL
Lに含まれる分周器を使って構成を簡単化するものであ
る。
Now, the present invention provides a PL that synchronizes the input and output sampling frequencies in the interpolation time setting of the interpolation device used for sampling frequency conversion.
The configuration is simplified by using a frequency divider included in L.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

第1図において、1は位相比較器、2は電圧制御発振器
(VCO)、3,4は分周比がそれぞれN、=Mの分周
器、5はラッチ、6〜8は遅延素子、9〜12はメモリ
、13〜15は加算器である。第1図は4次の近似式を
用いて補間し、標本化周波数をfsxからfszに変換
する装置に適用した実施例である。入力種本化信号([
波数fst)を位相比較器1に入力し、分周器4の出力
と位相比較して、出力をVCO2に入力する。vCOの
中心発振周波数はfcでfslおよび出力標本化周波数
fszの最小公倍数になっている。すなわちfc=N 
f sz= M f sz(M 、 Nは互に素な整数
)、VCO出力は分周器4でM分周されてfslとなり
位相比較器1で入力と位相比較され、周波数同期が行な
われる。VCO2の出力は分周器3にも入力されN分周
されてfszとなる。こうして入出力標本化周波数の同
期化が行なわれる。ここで、分周器4はfcをMカウン
トするカウンタであるから、カウント値はfslの周期
Tで0〜M−1の値をとる。
In FIG. 1, 1 is a phase comparator, 2 is a voltage controlled oscillator (VCO), 3 and 4 are frequency dividers with frequency division ratios of N and M, respectively, 5 is a latch, 6 to 8 are delay elements, and 9 -12 are memories, and 13-15 are adders. FIG. 1 shows an example in which the interpolation method is applied to a device that converts the sampling frequency from fsx to fsz by using a fourth-order approximation formula. Input type conversion signal ([
The wave number fst) is input to the phase comparator 1, the phase is compared with the output of the frequency divider 4, and the output is input to the VCO 2. The center oscillation frequency of vCO is fc, which is the least common multiple of fsl and output sampling frequency fsz. That is, fc=N
f sz=M f sz (M, N are mutually prime integers), the VCO output is frequency-divided by M in the frequency divider 4 to become fsl, which is phase-compared with the input in the phase comparator 1, and frequency synchronization is performed. The output of the VCO 2 is also input to the frequency divider 3 and divided by N to become fsz. In this way, the input and output sampling frequencies are synchronized. Here, since the frequency divider 4 is a counter that counts fc by M, the count value takes a value from 0 to M-1 in the period T of fsl.

カウント値をラッチ5でラッチすると、ラッチクロック
の時刻をfsrの周期Tで計った値τになることがわか
る。そこで、ラッチングクロックとしてfszを用いれ
ば、すなわち補間時刻τの値がfszごとに得られるこ
とがわかる。そこでラッチ5の値を補間時刻τとして時
変係数ai(τ)を読み出し、入力データfiに掛けれ
ば補間が行なえる。入力データf(nT)は遅延素子6
〜8よりなる遅延器に入力され、入力データ1o=fs
を得る。入力データfo=fsは各々補間時刻τと共に
メモリ9〜12に入力される。メモリ9〜12にはデー
タfiと係数ai(τ)の積a i(τ)fiを書き込
んでおく。すなわちメモリで掛算を実行する。積結果は
加算器13〜15によって加算され、補間データg(τ
)として出力される。以上述べたように本実施例では、
入出力標本化周波数が同期化されているので補間時刻の
ゆらぎがなく精度の高い補間が実行できる。また係数掛
算器にメモリを用いているので画像信号のような高速デ
ータでも高次の補間を実現できる。
It can be seen that when the count value is latched by the latch 5, it becomes a value τ obtained by measuring the time of the latch clock with the period T of fsr. Therefore, it can be seen that if fsz is used as the latching clock, that is, the value of interpolation time τ can be obtained for each fsz. Therefore, interpolation can be performed by reading out the time-varying coefficient ai(τ) using the value of the latch 5 as the interpolation time τ and multiplying it by the input data fi. Input data f(nT) is input to delay element 6
Input data 1o=fs is input to a delay device consisting of ~8
get. The input data fo=fs is input to the memories 9 to 12, respectively, together with the interpolation time τ. The product ai(τ)fi of data fi and coefficient ai(τ) is written in memories 9-12. That is, multiplication is performed in memory. The product results are added by adders 13 to 15, and interpolated data g(τ
) is output as As mentioned above, in this example,
Since the input and output sampling frequencies are synchronized, there is no fluctuation in interpolation time and highly accurate interpolation can be performed. Furthermore, since memory is used in the coefficient multiplier, high-order interpolation can be achieved even with high-speed data such as image signals.

第6図は本発明の他の実施例の構成を示す図である。同
図において6〜8は入力標本周期Tに等しい遅延時間を
もつ遅延素子、9〜12は補間係数掛算器、13〜15
は加算器、51は切換器である・第5図は4次の補間公
式を用いて補間値g(t)を得、標本化周波数を1/T
から2/Tへ2倍にする標本化周波数変換装置の実施例
である・動作波形図を第6図に示す。入力データf(n
T)は周期Tごとに遅延素子6〜8に入力され、データ
系列1o=f3となる。係数掛算器9〜12によってそ
れぞれ係数が掛けられ加算器13〜15で加算されて補
間出力g(t)を得る。g(t)=αofo+αsfx
+αzf2+αsfaである。ここでαiは時変でない
ので、g(t)は常に入力データ標本点の中間時点での
値しか出力しない。しかし入力データの標本点での出力
値は入力データ系列をそのまま出力すればよいので、出
力としては補間値g(t)と入力データ値f (n T
)を交互に出せばよく、補間用非巡回型フィルタの係数
を時変する必要はない、したがって第5図の切換器51
で以上のことを実行すれば、時変係数にしたのと同様な
効果を得ることができる。これによって時変係数を計算
する回路および、出力時間を設定するカウンタなどを省
略することができる。
FIG. 6 is a diagram showing the configuration of another embodiment of the present invention. In the figure, 6 to 8 are delay elements having a delay time equal to the input sampling period T, 9 to 12 are interpolation coefficient multipliers, and 13 to 15
is an adder, and 51 is a switch. In Figure 5, the interpolated value g(t) is obtained using the fourth-order interpolation formula, and the sampling frequency is set to 1/T.
FIG. 6 shows an operational waveform diagram of an embodiment of a sampling frequency conversion device that doubles the frequency from 2/T to 2/T. Input data f(n
T) is input to the delay elements 6 to 8 every period T, resulting in a data series 1o=f3. The coefficients are multiplied by coefficients by coefficient multipliers 9 to 12, respectively, and added by adders 13 to 15 to obtain an interpolated output g(t). g(t)=αofo+αsfx
+αzf2+αsfa. Here, since αi is not time-varying, g(t) always outputs only the value at the intermediate time point of the input data sample points. However, the output value at the sample point of the input data can be outputted from the input data series as it is, so the output is the interpolated value g(t) and the input data value f (n T
) can be output alternately, and there is no need to time-varying the coefficients of the interpolation acyclic filter. Therefore, the switch 51 in FIG.
By doing the above, you can obtain the same effect as using a time-varying coefficient. This makes it possible to omit a circuit for calculating a time-varying coefficient, a counter for setting an output time, and the like.

第5図における補間係数αiはたとえば補間関数を5i
nx/xとすると(ただしx=π(t  nT)/T)
、ao=as =−0,2122,ao =az=0.
6366  のごとき値となる。しかるに補間α1=α
x = 9 / 16となる。このような簡単な係数の
場合には、係数掛算器をデータビットシフトと加減算で
行なうことができる。第7図にその)−LSB側にずら
した値(ただしMSBは保持す側にずらすことにより得
ることができる。第7図において71.72は各々1ビ
ツト、4ビツトずらしMSBを保持する機能素子、73
は加算器である。係数が2の巾乗の和、差で表わされる
ときには係数掛算器がビットシフタと加減算器のみで構
成でき、構成の複雑な掛算器を省略できる。
The interpolation coefficient αi in FIG. 5 is, for example, the interpolation function 5i
If nx/x (where x=π(t nT)/T)
, ao=as=-0,2122, ao=az=0.
The value will be 6366. However, interpolation α1=α
x = 9/16. In the case of such simple coefficients, the coefficient multiplier can be implemented by data bit shifting and addition/subtraction. Figure 7 shows the value shifted to the -LSB side (However, the MSB can be obtained by shifting it to the retention side. In Figure 7, 71 and 72 are functional elements that shift the MSB by 1 bit and 4 bits, respectively) and retain the MSB. , 73
is an adder. When a coefficient is expressed as a sum or difference of powers of 2, the coefficient multiplier can be constructed of only a bit shifter and an adder/subtractor, and a multiplier with a complicated structure can be omitted.

第8図に本発明の他の実施例を示す1図において、遅延
器6〜8および切換器51は第5図のものと同じである
。第8図は上述したような係数掛算器をビットシフタと
加減算器で構成し、さらに、補間関数が時間対称となる
場合の実施例である。
In FIG. 8 showing another embodiment of the present invention, the delay units 6 to 8 and the switch 51 are the same as those in FIG. FIG. 8 shows an embodiment in which the coefficient multiplier as described above is constituted by a bit shifter and an adder/subtracter, and further, the interpolation function is time symmetric.

標本化周波数を2倍にするときは、補間時点が入力標本
点の中間となるのでこのことが可能になる。
This is possible when doubling the sampling frequency because the interpolation time is halfway between the input sample points.

すなわちg(t)=aofo+a1f1+azfx+α
8fδにおいてα0=α8.α1=α2であるからgc
t)=aoCfo +f3)+axCf1+fx )と
することができ、係数掛算を半減することができる。第
8図で加算器81はfo +fsを計算し、加算器82
はfx +fzを計算する。各々に第7図で述べた方法
により係数掛算を行なう、すなわちビットシフタ85は
4ビツトシフタで1/16を実行し、ビットシフタ86
.87と加算器83゜84でαz=9/16の掛算を実
行している。切換器51の動作は第5図と同様である。
That is, g(t)=aofo+a1f1+azfx+α
At 8fδ, α0=α8. Since α1=α2, gc
t)=aoCfo+f3)+axCf1+fx), and the coefficient multiplication can be halved. In FIG. 8, the adder 81 calculates fo +fs, and the adder 82
calculates fx +fz. Each coefficient is multiplied by the method described in FIG.
.. 87 and adders 83 and 84 execute multiplication of αz=9/16. The operation of the switch 51 is similar to that shown in FIG.

以上の説明かられかるように本実施例によれば、係数掛
算器を半減し、さらにビットシフタを加算器で構成する
ので、標本化周波数変換装置の構成を大巾に簡単化でき
る。
As can be seen from the above description, according to this embodiment, the number of coefficient multipliers is halved and the bit shifters are constructed with adders, so that the configuration of the sampling frequency conversion device can be greatly simplified.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、入出力標本化周波数の変換を行なう装
置において、入出力周波数の同期化を行なうPLLを用
いて補間時刻τの設定を行なうので、ハードウェアが簡
単化され、τのゆらぎも少ないので補間時間誤差の小さ
い補間装置が実現できる。また時変係数非巡回型フィル
タによる補間方式を用いているので、簡単なハードウェ
アにより高次の補間が可能となり、アナログ方式や他の
ディジタル補間方式に較べ補間誤差の少ない、また、係
数掛算器にROMなどのメモリを用いることができ1画
像信号のような高速データの補間にも十分使用すること
ができる。
According to the present invention, in a device that converts input and output sampling frequencies, the interpolation time τ is set using a PLL that synchronizes the input and output frequencies, so the hardware is simplified and fluctuations in τ are reduced. Since the number of errors is small, an interpolation device with a small interpolation time error can be realized. In addition, since it uses an interpolation method using a time-varying coefficient acyclic filter, high-order interpolation is possible with simple hardware, and there is less interpolation error compared to analog methods or other digital interpolation methods. A memory such as a ROM can be used for the interpolation of high-speed data such as a single image signal.

又標本化周波数を2倍にする実施例では切換器を用いる
ことによって時変係数を実現できるので構成の大巾な簡
単化が可能となる。また係数が時間対称となる補間関数
を選ぶことで係数掛算器を半減することができる。さら
にビットシフトと加算器によって係数掛算器を構成する
ことで標本化周波数変換装置の構成をさらに簡単にでき
る。
Further, in the embodiment in which the sampling frequency is doubled, a time-varying coefficient can be realized by using a switch, so that the configuration can be greatly simplified. Furthermore, by selecting an interpolation function whose coefficients are time symmetric, the number of coefficient multipliers can be halved. Further, by configuring a coefficient multiplier using a bit shifter and an adder, the configuration of the sampling frequency conversion device can be further simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明に
用いる時変係数非巡回型フィルタの構成図、第3図は時
間補間の補間方法説明図、第4図は位相同期ループの構
成を示す図、第5図は本発明の一実施例を示す構成図、
第6図は第5図の動作を説明する波形図、第7図はビッ
トシフトと加減算による掛算を説明する図、第8図は本
発明の他の実施例を示す図である。 1・・・位相比較器、2・・・電圧制御発振器、3,4
・・・分周器、5・・・ラッチ、6〜8,201〜20
n・・・遅延素子、9〜12・・・メモリ、13〜15
゜221〜22n、81〜84・・・加算器、211〜
21n、71〜73・・・係数掛算器、41・・・低減
通過フィルタ、42・・・混合器、43・・・固定周波
数発振器。 %  1  図 穿  2  口 第 3 図 第 4 図 (1,α) 第S図 悌 6 図 第  7 図 ン 葉 8 図 33カロ」し才ト
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a configuration diagram of a time-varying coefficient acyclic filter used in the present invention, Fig. 3 is an explanatory diagram of an interpolation method for time interpolation, and Fig. 4 is a phase diagram. A diagram showing the configuration of a synchronous loop, FIG. 5 is a configuration diagram showing an embodiment of the present invention,
FIG. 6 is a waveform diagram for explaining the operation of FIG. 5, FIG. 7 is a diagram for explaining bit shift and multiplication by addition and subtraction, and FIG. 8 is a diagram showing another embodiment of the present invention. 1... Phase comparator, 2... Voltage controlled oscillator, 3, 4
... Frequency divider, 5... Latch, 6-8, 201-20
n...Delay element, 9-12...Memory, 13-15
゜221~22n, 81~84... Adder, 211~
21n, 71-73... Coefficient multiplier, 41... Reduced pass filter, 42... Mixer, 43... Fixed frequency oscillator. % 1 Figure 2 Mouth Figure 3 Figure 4 (1, α) Figure S 6 Figure 7 Figure 8 Figure 33

Claims (1)

【特許請求の範囲】 1、第1の標本化周期で標本化された連続するn点の標
本値を入力データとするn次非巡回型フィルタの系数を
第2の標本化周期ごとに決まる前記n点の時間内の補間
時刻の関数として与える時変係数非巡回型フィルタによ
つて前記n点の標本値の前記補間時刻の値を補間し、前
記第2の標本化周期で標本化した出力データ列を得る補
間装置において、前記第1の標本化周期の逆数fs_1
と前記第2の標本化周期の逆数fs_2の最小公倍数の
周波数fcを発振周波数可変範囲内にもつ電圧制御発振
器と、fc/fs_1の分周比をもつ第1の分周器と位
相比較器とによつて構成した位相同期ループと、fc/
fs_2の分周比をもつ第2の分周器とによつて、前記
第1の標本化周波数fs_1と前記第2の標本化周波数
fs_2の同期化を図り、前記第1の分周器の分周数を
記憶保持するラッチを設け、該ラッチのラッチ動作を前
記第2の分周器の出力に同期したクロックによつて実行
し、該ラッチ出力を前記補間時刻として用いることを特
徴とする標本化周波数変換装置。 2、連続するn点の標本値を入力データとするn次非巡
回型フィルタの係数を出力標本化周期ごとに決まる前記
n点の時間内の補間時刻の関数として与える時変係数非
巡回型フィルタによつて前記入力データの前記補間時刻
での値を補間し、前記出力標本化周期で標本化した出力
データ列を得る標本化周波数変換装置において、前記出
力標本化周期を入力標本化周期の1/2とし、出力デー
タ切換器を設け、データ出力時点がデータ入力時点と一
致したときは、入力データをそのまま出力し、出力時点
が入力時点の中間のときには前記時変係数非巡回型フィ
ルタによる補間値を出力することにより、データの標本
化周波数を2倍にすることを特徴とする標本化周波数変
換装置。 3、特許請求の範囲第2項記載の標本化周波数変換装置
において、前記時変係数非巡回型フィルタの係数掛算を
データのビットシフトおよび加減算を組合せて実現した
ことを特徴とする標本化周波数変換装置。 4、特許請求の範囲第2項記載の標本化周波数変換装置
において、補間次数、および出力時点を選択して前記補
間係数が時間対称となるようにし、前記時変係数非巡回
型フィルタの入力データ遅延素子列で同じ値の補間係数
をもつ遅延素子出力同士の加算を行なつてから補間係数
掛算を行なうことにより、掛算回数をほぼ半分に減らし
たことを特徴とする標本化周波数変換装置。
[Claims] 1. The system of the n-th order acyclic filter whose input data is the sampled values of n consecutive points sampled in the first sampling period is determined for each second sampling period. An output obtained by interpolating the value at the interpolation time of the sample value at the n point using a time-varying coefficient acyclic filter given as a function of the interpolation time within the time at the n point, and sampling at the second sampling period. In an interpolation device that obtains a data string, the reciprocal of the first sampling period fs_1
and a voltage controlled oscillator having a frequency fc that is the least common multiple of the reciprocal fs_2 of the second sampling period within a variable oscillation frequency range, and a first frequency divider and a phase comparator having a frequency division ratio of fc/fs_1. A phase-locked loop configured by fc/
The first sampling frequency fs_1 and the second sampling frequency fs_2 are synchronized by a second frequency divider having a frequency division ratio of fs_2, and the first frequency divider has a frequency division ratio of fs_2. A sample characterized in that a latch is provided to store and hold the frequency, the latch operation of the latch is executed by a clock synchronized with the output of the second frequency divider, and the latch output is used as the interpolation time. frequency conversion device. 2. A time-varying coefficient non-recursive filter that gives the coefficients of an n-th order non-recursive filter whose input data are sampled values of n consecutive points as a function of the interpolation time within the time of the n points, which is determined for each output sampling period. In a sampling frequency conversion device that interpolates the value of the input data at the interpolation time and obtains an output data string sampled at the output sampling period, the output sampling period is set to 1 of the input sampling period. /2, and an output data switch is provided, and when the data output time coincides with the data input time, the input data is output as is, and when the output time is in the middle of the input time, interpolation is performed by the time-varying coefficient acyclic filter. A sampling frequency conversion device characterized by doubling the sampling frequency of data by outputting a value. 3. The sampling frequency conversion device according to claim 2, wherein the coefficient multiplication of the time-varying coefficient acyclic filter is realized by a combination of data bit shifting and addition/subtraction. Device. 4. In the sampling frequency conversion device according to claim 2, the interpolation order and the output time are selected so that the interpolation coefficients are time symmetric, and the input data of the time-varying coefficient acyclic filter is A sampling frequency conversion device characterized in that the number of times of multiplication is reduced by almost half by adding delay element outputs having the same value of interpolation coefficient in a delay element array and then performing interpolation coefficient multiplication.
JP9511787A 1987-04-20 1987-04-20 Sampling frequency converter Pending JPS63261912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9511787A JPS63261912A (en) 1987-04-20 1987-04-20 Sampling frequency converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9511787A JPS63261912A (en) 1987-04-20 1987-04-20 Sampling frequency converter

Publications (1)

Publication Number Publication Date
JPS63261912A true JPS63261912A (en) 1988-10-28

Family

ID=14128897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9511787A Pending JPS63261912A (en) 1987-04-20 1987-04-20 Sampling frequency converter

Country Status (1)

Country Link
JP (1) JPS63261912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372710A (en) * 1989-08-11 1991-03-27 Yamaha Corp Digital signal processing circuit
EP0450817A2 (en) * 1990-04-03 1991-10-09 Sony United Kingdom Limited Digital phase detector arrangements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372710A (en) * 1989-08-11 1991-03-27 Yamaha Corp Digital signal processing circuit
EP0450817A2 (en) * 1990-04-03 1991-10-09 Sony United Kingdom Limited Digital phase detector arrangements
US5214676A (en) * 1990-04-03 1993-05-25 Sony Broadcast & Communications Ltd. Digital phase detector arrangements

Similar Documents

Publication Publication Date Title
US5471411A (en) Interpolation filter with reduced set of filter coefficients
JP2926615B2 (en) SSB signal generator
US7719446B2 (en) Method and apparatus for computing interpolation factors in sample rate conversion systems
KR930001296B1 (en) Filtering device
US4584659A (en) Decimation filter arrangement
US7408485B1 (en) Asynchronous sampling rate converter and method for audio DAC
JPH0439811B2 (en)
US20060179095A1 (en) Sample rate converter
JPS5930308A (en) Phase/amplitude converter
JPH0350224B2 (en)
JPH11506884A (en) Digitally controlled oscillator for phase locked loop
JP3179527B2 (en) Digital signal synthesis method and apparatus
JPH05206732A (en) Frequency synthesizer
JPS63261912A (en) Sampling frequency converter
WO2000079686A1 (en) Digital-analog converter and method, and data interpolation device and method
US5726609A (en) Pulse amplitude modulator using direct digital synthesizer
TWI606697B (en) High-accurate sample rate calculation circuit and audio re-sampling circuit using the same
US6894966B1 (en) Interpolation circuit
JPH01144818A (en) Numerical value control type oscillation circuit
EP1681766B1 (en) Sample rate converter
JPS63185105A (en) Generating circuit for high frequency optional signal
KR0142119B1 (en) Sine wave type interpolation circuit suitable for accumulation
JPS5934017B2 (en) digital phase locked loop
JPS62202638A (en) Digital quadruple phase modulator
Adams et al. A monolithic asynchronous sample-rate converter for digital audio