JPS6326189B2 - - Google Patents

Info

Publication number
JPS6326189B2
JPS6326189B2 JP55101777A JP10177780A JPS6326189B2 JP S6326189 B2 JPS6326189 B2 JP S6326189B2 JP 55101777 A JP55101777 A JP 55101777A JP 10177780 A JP10177780 A JP 10177780A JP S6326189 B2 JPS6326189 B2 JP S6326189B2
Authority
JP
Japan
Prior art keywords
cbn
sintered body
less
powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55101777A
Other languages
Japanese (ja)
Other versions
JPS5726137A (en
Inventor
Tetsuo Nakai
Shuji Yatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10177780A priority Critical patent/JPS5726137A/en
Publication of JPS5726137A publication Critical patent/JPS5726137A/en
Publication of JPS6326189B2 publication Critical patent/JPS6326189B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 立方晶型窒化硼素(CBN)はダイヤモンドに
次いで硬く、熱伝導率も大で、且つ高温での化学
的安定性にも優れているため、金属加工用耐摩物
質として注目され研削用砥粒や切削工具として使
用されている。
[Detailed description of the invention] Cubic boron nitride (CBN) is second in hardness to diamond, has high thermal conductivity, and has excellent chemical stability at high temperatures, so it is attracting attention as a wear-resistant material for metal processing. It is used as grinding abrasive grains and cutting tools.

発明者らもこのCBNに注目し、各種のCBN焼
結体を試作研究した結果、このCBNの優れた特
徴を最大限に発揮し得る工具用焼結体を発明し特
許出願した。(特願昭53−77811) この発明は周期律表a、a、a族遷移金
属の炭化物、窒化物、硼化物、珪化物もしくはこ
れの相互固溶体化合物が連続相をなしてCBN結
晶を結合しているというものであり、耐熱性、耐
摩耗性に富むと共に高温でも高い熱伝導率を維持
し、特に熱衝撃特性に富む高硬度工具用焼結体を
提供したものである。
The inventors also paid attention to this CBN, and as a result of prototyping and researching various CBN sintered bodies, they invented a sintered body for tools that can maximize the excellent characteristics of CBN, and filed a patent application. (Japanese Patent Application No. 53-77811) This invention combines CBN crystals by forming a continuous phase of carbides, nitrides, borides, silicides, or mutual solid solution compounds of transition metals of groups A, A, and A of the periodic table. The present invention provides a sintered body for high-hardness tools that is rich in heat resistance and abrasion resistance, maintains high thermal conductivity even at high temperatures, and is particularly rich in thermal shock properties.

発明者らは更にこれらの焼結体を用いて各種の
切削試験を行つたところ、CBNは高速度鋼が用
いられるような低速切削に於ても、その優れた耐
溶着性の故に極めて秀でた物質であることを発見
した。
The inventors further conducted various cutting tests using these sintered bodies, and found that CBN is extremely effective even in low-speed cutting, where high-speed steel is used, due to its excellent welding resistance. discovered that it is a substance that

そこで、高速度鋼や炭化タングステンを微粒に
した超微粒超硬合金が使用されている小物精密部
品の、いわゆる自動盤作業に前記発明焼結体の一
種である窒化チタンを結合材にしたCBN焼結体
をテストしたところ、耐溶着性が優れることから
光沢のある美しい仕上面が得られたが、一方、寸
法精度があまり良くないとか、面と面とのつなぎ
目でR形状になつてはいけない部分がR形状にな
つてしまうといつたことが原因で、通常使用工具
に比して特に優れた性能を示すには至らなかつ
た。
Therefore, CBN sintering using titanium nitride, a type of the invented sintered body, as a binder is used for so-called automatic lathe work of small precision parts that use high-speed steel or ultrafine-grained cemented carbide made of fine tungsten carbide. When we tested the final product, we found that it had excellent welding resistance, resulting in a beautiful glossy finished surface, but on the other hand, the dimensional accuracy was not very good, and the joints between the surfaces should not form an R shape. Because the part was said to have an R-shape, it was not possible to show particularly superior performance compared to the normally used tool.

この原因を明らかにするため種々の調査を行つ
た結果、このような用途で使用される工具に特に
必要な特性である刃立性(鋭い切刃が得られるこ
と)に難点があることがわかつた。
As a result of conducting various investigations to clarify the cause of this, it was discovered that there was a problem with sharpness (obtaining a sharp cutting edge), which is a particularly necessary characteristic for tools used in such applications. Ta.

すなわちCBN焼結体の研削仕上げされた切刃
を拡大して観察した結果、テスト焼結体は刃こぼ
れが多く、超微粒超硬合金とは明らかに差があつ
た。従つて前記の寸法精度などの問題点はこの刃
立性に原因があると思われた。
In other words, as a result of enlarging and observing the ground cutting edge of the CBN sintered body, the test sintered body had a lot of edge loss, and there was a clear difference from the ultrafine-grained cemented carbide. Therefore, it was thought that the problems such as the above-mentioned dimensional accuracy were caused by the sharpness of the edge.

そこで、焼結体中のCBN粒子の粒度を極めて
微細にすることによつて、これらの問題点が克服
されると考え、このような焼結体を試作してみ
た。さてCBN焼結体の製造法として、例えば特
公昭52−43846号に示されているようなCBN粉末
とCBN合成の触媒になるAlとCo、Ni、Fe等を
粉末で混合するか、あるいはこれら金属板を
CBN粉末と接するように配置してCBNが安定な
高温、高圧条件下でホツトプレスする方法があ
る。
Therefore, we thought that these problems could be overcome by making the CBN particles in the sintered body extremely fine, so we tried making a prototype of such a sintered body. Now, as a method for producing a CBN sintered body, for example, as shown in Japanese Patent Publication No. 52-43846, it is possible to mix CBN powder with Al, Co, Ni, Fe, etc., which becomes a catalyst for CBN synthesis, or to mix these powders together. metal plate
There is a method of hot pressing under high temperature and high pressure conditions where CBN is stabilized by placing it in contact with CBN powder.

しかしこの方法では、これら金属の液相の存在
下で焼結を行うため、原料CBN粉末が1μm以下
のものであると表面エネルギーが大であり、焼結
中にCBN粒子の粒成長が生じ、目的とした微粒
の焼結体が得られないことと、焼結体の結合材で
あるこれらの金属相と被削材との親和性が大で
CBNの耐溶着性に優れるという特性を阻害する
ものであるので好ましくない。
However, in this method, sintering is performed in the presence of a liquid phase of these metals, so if the raw CBN powder is 1 μm or less, the surface energy is large, and grain growth of CBN particles occurs during sintering. One problem is that the desired fine-grained sintered body cannot be obtained, and the other is that these metal phases, which are the binder of the sintered body, have a high affinity with the work material.
This is not preferable because it inhibits the excellent welding resistance of CBN.

CBN焼結体を製造する他の方法として、先に
述べたが発明者らの出願による、セラミツク物質
よりなる粉末とCBN粉末を混合したものをCBN
が安定な高温、高圧下でホツトプレスする方法が
ある。
As another method for producing a CBN sintered body, as mentioned above, the CBN sintered body is prepared by mixing a powder made of a ceramic material and a CBN powder, which was applied by the inventors.
There is a method of hot pressing under high temperature and high pressure that is stable.

この方法によれば、焼結体中のCBN粒子の粒
成長もおこらず、均一で微細な焼結体が得られる
上、結合材として用いたセラミツクも一般的に被
削材との親和性が乏しく、耐溶着性に優れた
CBNの特性を生かした焼結体となると考えられ
る。そこで実際に原料として粒度1μm以下の
CBN粒子と各種のセラミツク粉末を混合して高
温、高圧下で焼結したところ、殆どの場合1μm
以下のCBN粒子が均一に分散した微細組織の緻
密な焼結体を得ることができた。得られた各種の
セラミツク結合の焼結体を用いて、あらためて前
記した自動盤作業によるテストを行つたところ、
WCを主成分とする炭化物にAlとCuを含有した
ものあるいはこれに鉄族金属を含有した結合材を
用いた場合に最も優れた性能を示すことを発見し
た。結合材としてWCを主体として用いたものが
最も優れた性能を示した原因は次のように考えら
れる。
According to this method, grain growth of CBN particles in the sintered body does not occur, and a uniform and fine sintered body can be obtained, and the ceramic used as a binder generally has a good affinity with the work material. Poor, excellent welding resistance
It is thought that this will be a sintered body that takes advantage of the characteristics of CBN. Therefore, we actually use particles with a particle size of 1 μm or less as raw materials.
When CBN particles and various ceramic powders were mixed and sintered under high temperature and pressure, most of the particles were 1μm in size.
We were able to obtain a dense sintered body with a fine microstructure in which the following CBN particles were uniformly dispersed. Using the various ceramic bonded sintered bodies obtained, we again conducted tests using the automatic lathe operation described above.
It was discovered that the best performance was obtained when using a carbide mainly composed of WC containing Al and Cu, or a binder containing an iron group metal. The reason why the one using WC as the main binder showed the best performance is thought to be as follows.

一般に小物部品の自動盤作業では、加工物が直
径数mm〜30mm程度のものであり、加工物の回転数
も機械的な制約があるため切削速度を自由に選定
することができず、多くの場合数10m/min以下
の低速で切削せざるを得ない。この為、切削時の
工具刃先の温度は低く、従つて工具の摩耗は機械
的なこすりとり作用によるものが主で、化学的な
反応によるものはごく僅かである。更にやはり機
械的な制約から、加工物1回転当りの工具送り量
も小さく、通常超硬工具による切削では0.1〜0.5
mm/revといつた送り量が一般的であるのに対し、
自動盤の場合は0.01mm/rev以下が普通である。
このような微小送りの場合にも機械的こすりとり
摩耗が主となることはよく知られている。これら
のことから、自動盤作業の如き用途に使用される
工具材としては化学的な安定性よりもむしろ、硬
度が高く且つ強度、靭性の優れた物質が適してい
ると云える。WCは種々のセラミツク材料の中で
硬度も高く、且つ強度、靭性の優れた材料として
よく知られており、このような理由でWCを結合
材としたものが優れた性能を示したのであろう。
In general, in automatic lathe work for small parts, the workpiece is a few mm to 30mm in diameter, and there are mechanical restrictions on the rotation speed of the workpiece, so the cutting speed cannot be freely selected, and many In some cases, it is necessary to cut at a low speed of less than 10 m/min. For this reason, the temperature of the cutting edge of the tool during cutting is low, and therefore tool wear is mainly due to mechanical scraping action, with very little wear due to chemical reactions. Furthermore, due to mechanical constraints, the amount of tool feed per revolution of the workpiece is also small, typically 0.1 to 0.5 when cutting with a carbide tool.
While the feed rate is generally mm/rev,
For automatic lathes, 0.01mm/rev or less is normal.
It is well known that even in the case of such minute feed, mechanical scraping wear is the main cause. For these reasons, it can be said that materials with high hardness, excellent strength, and toughness, rather than chemical stability, are suitable for tool materials used in applications such as automatic lathe work. WC has the highest hardness among various ceramic materials, and is well known as a material with excellent strength and toughness, and this is probably why products using WC as a binder showed excellent performance. .

この他にCBNと複合焼結体を作る上で重要な
要素となる熱膨脹係数もWCは殆どCBNに近い値
を有しており、焼結体中に不都合な内部残留応力
を残さない点でも結合材物質として好適である。
In addition, the coefficient of thermal expansion of WC, which is an important factor in making a composite sintered body with CBN, has a value that is almost close to that of CBN, and it is also bonded in that it does not leave any undesirable internal residual stress in the sintered body. It is suitable as a material.

WC以外にこれに類した特性を有するものとし
てWの一部または大部分をMoで置換して得られ
るWCと同一結晶構造を有する(Mo、W)Cが
ある。発明者等の一人は別の研究者と共にこの化
合物を使用した超硬合金について詳細な特性の研
究を行い、例えば(Mo7W3)Cや(Mo5W5)C
で表わされる炭化物の硬度、剛性率、耐摩耗性、
熱伝導率、熱膨脹係数等の特性がWCと殆ど類似
していることを確認した。以下の説明ではWCに
限つて述べるが、本発明ではWCと全く同様にこ
の(Mo、W)C炭化物を用いることができる。
In addition to WC, there is (Mo, W)C, which has the same crystal structure as WC and is obtained by replacing part or most of W with Mo. One of the inventors, along with another researcher, conducted detailed research on the properties of cemented carbide using this compound, and found that, for example, (Mo 7 W 3 )C and (Mo 5 W 5 )C
The hardness, rigidity, and wear resistance of carbide expressed as
It was confirmed that the properties such as thermal conductivity and thermal expansion coefficient are almost similar to WC. In the following explanation, only WC will be described, but in the present invention, this (Mo, W)C carbide can be used in exactly the same way as WC.

本発明の工具用焼結体は1μm以下のCBN粒子
が1μm以下のWCを主成分とする炭化物で結合さ
れた均一な組織を有する焼結体である。硬質成分
であるCBN粒子が極めて微細で均一に分散して
いる為に研削してバイトに仕立てると、その刃先
は極めて鋭い凹凸のないものが得られる。このよ
うに、研削による刃立性の良いものを得るために
は結合材中のWCも1μm以下のものとする必要が
ある。更にCBN及び結合材中のWCの粒度が0.5μ
m以下としたものが最も好ましい。微細な組織と
することにより、刃先が改善されると共に、工具
として重要な靭性、強度が向上するという利点も
ある。
The sintered body for tools of the present invention is a sintered body having a uniform structure in which CBN particles of 1 μm or less are bonded by carbide of 1 μm or less and mainly composed of WC. The hard component, CBN particles, are extremely fine and uniformly dispersed, so when ground into a cutting tool, the cutting edge is extremely sharp and has no irregularities. In this way, in order to obtain good edge sharpness by grinding, the WC in the binder must also be 1 μm or less. Furthermore, the particle size of WC in CBN and binder is 0.5μ
It is most preferable to make it less than m. The fine structure not only improves the cutting edge but also has the advantage of improving toughness and strength, which are important for tools.

又、自動盤作業等に一般的な約10m/minとい
つた切削速度では切削中に刃先に構成刃先が発達
したり、溶着物が滞留するため被削面がむしれた
り、加工物の寸法精度が悪くなつたりするが、
CBNは被削材との親和性が少なく、耐溶着性に
優れているため寸法精度もよく、且つ美麗な仕上
面が得られる。その上、結合材に強度が高く、靭
性のあるWCを用いているため、機械的こすりと
り摩耗に強く、且つ、鋭い刃先角度にしても欠損
が少ない強靭な焼結体となつている。
In addition, at the cutting speed of about 10 m/min, which is common in automatic lathe work, a built-up cutting edge may develop on the cutting edge during cutting, the workpiece surface may be peeled off due to deposits remaining, and the dimensional accuracy of the workpiece may deteriorate. may become worse,
CBN has low affinity with the workpiece material and has excellent adhesion resistance, resulting in good dimensional accuracy and a beautiful finished surface. Furthermore, because WC is used as the binder, which has high strength and toughness, it is resistant to mechanical scraping and wear, and is a strong sintered body with little breakage even when the cutting edge angle is sharp.

本発明の焼結体中のCBN含有量は容量で80〜
20%であり、用途に応じて変え得る。特に強靭性
が必要とされ、耐摩耗性を多少犠性にしてもよい
断続切削加工用の工具では結合材量の多い方を選
択する。CBN含有量が20%未満では本発明の焼
結体の如く超高圧装置を用いて製造する工具の価
格と寿命の点からメリツトは少ないようである。
The CBN content in the sintered body of the present invention is 80~80 in terms of capacity.
It is 20% and can be changed depending on the application. In particular, for tools for interrupted cutting that require toughness and may sacrifice wear resistance to some extent, a tool with a large amount of bonding material is selected. When the CBN content is less than 20%, there seems to be little merit in terms of cost and life of tools manufactured using ultra-high pressure equipment, such as the sintered body of the present invention.

さて、本発明の組成の焼結体で何故1μm以下
の超微粒のCBN粒子からなる均一な組織を有し、
更には工具性能の優れた焼結体を得ることができ
たのかは次の如く推定される。
Now, why does the sintered body having the composition of the present invention have a uniform structure consisting of ultrafine CBN particles of 1 μm or less?
Furthermore, whether a sintered body with excellent tool performance could be obtained is estimated as follows.

CBN粒子は極めて高硬度で変形し難い。従つ
て超高圧下で圧縮してもCBN粒子のみでは粒子
間に空隙が残る。CBN粒子が微粒である程空隙
率は増加するが、本発明の焼結体では前述した如
く、CBNの体積含有量で80〜20%であるため
CBN粒子間には必ず微粒なWCが存在し、これを
超高圧下で焼結することによつてWCが変形して
完全に緻密で均一な焼結体を得ることができたの
であろう。また本発明の焼結体ではCBN粒子の
回わりには必ずWCなどの結合材が存在しており
CBN同志の接触がないため、AlやCuの合金の液
相が発生してもCBNの粒成長は起らず1μm以下
の微粒の焼結体を得ることができたものと考えら
れる。
CBN particles have extremely high hardness and are difficult to deform. Therefore, even if CBN particles are compressed under ultra-high pressure, voids remain between the particles. The finer the CBN particles, the higher the porosity, but in the sintered body of the present invention, as mentioned above, the CBN volume content is 80 to 20%.
There are always fine grains of WC between the CBN particles, and by sintering these under ultra-high pressure, the WC deforms and it is possible to obtain a completely dense and uniform sintered body. In addition, in the sintered body of the present invention, a binder such as WC is always present around the CBN particles.
It is thought that because there is no contact between CBN, CBN grain growth does not occur even if a liquid phase of Al or Cu alloy is generated, and a sintered body with fine grains of 1 μm or less can be obtained.

さらに本発明の焼結体はCuとAlを含有するこ
とにより、その焼結性や工具性能が改善されるが
この理由について考察する。
Furthermore, the sintered body of the present invention improves its sinterability and tool performance by containing Cu and Al, and the reason for this will be discussed.

CBN粒子が結合材に強固に付着するにはCBN
粒子と結合材との間で反応しなければならない
が、本発明の焼結体においては、CBN粒子は結
合材であるWCや鉄族金属Mと反応してMxWyBz
が形成され、CBN粒子は結合材に強く付着する。
しかしCBN粒子の界面でこのMxWyBzの相が厚
くなりすぎると、このボライドは非常に脆いた
め、ボライド中にクラツクが発生し、CBN粒子
は脱落しやすくなり工具性能は悪くなる。特に本
発明焼結体の如く1μm以下の超微粒のCBN粒子
から成る場合、CBNの表面積は多くボライドが
形成されやすいため、焼結条件などでボライドの
形成を制御することは困難である。Cuあるいは
この化合物はこれらのボライドの生成を抑制する
が、結合材中にCuあるいはこの化合物を含有さ
せることにより、最適な厚みのボライド層が形成
され、CBNと結合材の接着強度が増したものと
考えられる。ボライドの発生が抑制される理由は
明確ではないが、CuまたはCuを含有する鉄族金
属に対して、WCやCBNの溶解度が小さいことが
一つの理由であろう。Fe族金属は結合相中で1
%未満ではボライド形成量が少なすぎ、また10%
を越えるとボライド形成量が増加して、CBN粒
子が脱落しやすくなる。
In order for CBN particles to firmly adhere to the binder, CBN
A reaction must occur between the particles and the binder, but in the sintered body of the present invention, the CBN particles react with the binder WC and iron group metal M to form M x W y B z
is formed, and the CBN particles strongly adhere to the binder.
However, if this M x W y B z phase becomes too thick at the interface of CBN particles, the boride is extremely brittle, and cracks will occur in the boride, making the CBN particles easy to fall off and resulting in poor tool performance. In particular, when the sintered body of the present invention is made of ultrafine CBN particles of 1 μm or less, the surface area of CBN is large and boride is likely to be formed, so it is difficult to control the formation of boride by adjusting the sintering conditions. Cu or this compound suppresses the formation of these borides, but by including Cu or this compound in the binder, a boride layer with an optimal thickness is formed, increasing the adhesive strength between CBN and the binder. it is conceivable that. The reason why boride generation is suppressed is not clear, but one reason may be that WC and CBN have low solubility in Cu or iron group metals containing Cu. Fe group metal is 1 in the binder phase.
If it is less than 10%, the amount of boride formed is too small.
If it exceeds the amount, the amount of boride formed increases, and CBN particles tend to fall off.

次にAlの効果については次の如く考えられる。
例えばWC−Co超硬合金の液相焼結の如く、硬質
粒子の結合相への溶解と再析出現象があれば、結
合相の硬質粒子、または硬質粒子相互の結合強度
の高いものが得られるが、本発明焼結体では結合
材中にAl化合物を存在させることによりWC−
Coの場合と類似の現象が生じCBN粒子と結合材
の付着強度が向上したものと考えられる。
Next, the effect of Al can be considered as follows.
For example, in liquid phase sintering of WC-Co cemented carbide, if there is a phenomenon of dissolution of hard particles into the binder phase and re-precipitation, it is possible to obtain hard particles of the binder phase or a product with high bonding strength between the hard particles. However, in the sintered body of the present invention, WC-
It is thought that a phenomenon similar to that in the case of Co occurred and the adhesion strength between the CBN particles and the binder improved.

本発明焼結体におけるCuの含有量は、結合材
中の重量で1〜30%が望ましい。Cuの含有量が
1%未満の場合は、ボライドの発生を抑制するこ
とができず工具性能は劣る。一方Cuの含有量が
30%を越えると、焼結体の硬度が低下し高強度の
焼結体を得ることができない。またAlの含有量
は結合材中の重量で1〜30%が良い。Alの含有
量が1%未満であるとAl含有量の効果が認めら
れず、30%を越えるとCuの場合と同様硬度が低
下する。
The content of Cu in the sintered body of the present invention is preferably 1 to 30% by weight in the binder. If the Cu content is less than 1%, the generation of boride cannot be suppressed, resulting in poor tool performance. On the other hand, the Cu content
If it exceeds 30%, the hardness of the sintered body decreases, making it impossible to obtain a high-strength sintered body. Further, the content of Al in the binder is preferably 1 to 30% by weight. If the Al content is less than 1%, the effect of the Al content is not recognized, and if it exceeds 30%, the hardness decreases as in the case of Cu.

本発明の実施に当つてこのような1μm以下の
CBN粉末、WC粉末、CuおよびAlとから焼結体
が構成される時には、超硬合金製ボール及び超硬
合金で内張りしたポツトを用いて前者を湿式ボー
ルミル混合することが便利である。又湿式ボール
ミルとほゞ同じ作用をするアトライターや振動ミ
ルを用いても良い。
In carrying out the present invention, such
When a sintered body is composed of CBN powder, WC powder, Cu, and Al, it is convenient to mix the former in a wet ball mill using a cemented carbide ball and a pot lined with cemented carbide. Alternatively, an attritor or vibrating mill may be used, which has almost the same function as a wet ball mill.

CBNは硬いからボールや内張りからかなり多
量の摩耗粉が混入する。これをそのまゝ結合材成
分として利用すれば便利である。特にボールと内
張りを結合材を構成しようとする超硬合金と同じ
組成としておけばより便利である。
Since CBN is hard, a considerable amount of abrasion powder gets mixed in from the balls and lining. It is convenient to use this as it is as a binder component. In particular, it is more convenient if the ball and the inner lining have the same composition as the cemented carbide used to form the bonding material.

また、Cu、Alを混合せずにCBN粉末とWC粉
末のみを前述の如く湿式ボールミル混合し焼結時
に外部よりCuとAlあるいはCuを焼結体中に侵入
させてもよい。
Alternatively, only CBN powder and WC powder may be mixed in a wet ball mill as described above without mixing Cu and Al, and Cu and Al or Cu may be introduced into the sintered body from the outside during sintering.

WCが主成分でなくても良いがWCのもつ強靭
性や熱伝導率が高いといつた優れた特性を利用す
るという立場からWCを用いることが最も好まし
い。
Although WC does not have to be the main component, it is most preferable to use WC from the standpoint of utilizing its excellent properties such as toughness and high thermal conductivity.

WCの一部を置換する他の炭化物としてTiC、
ZrC、HfC、TaC、NbC等が使用できる。
TiC as other carbide to replace part of WC,
ZrC, HfC, TaC, NbC, etc. can be used.

本発明の焼結体の原料CBN粉末として、粒度
1μm以上のものを前記した如く超硬合金製のボ
ール、ポツトを用いて粉砕して使用しても良い。
As the raw material CBN powder for the sintered body of the present invention, the particle size is
A material having a diameter of 1 μm or more may be used by pulverizing it using a cemented carbide ball or pot as described above.

本発明の如く微細な1μm以下のCBN粉末と
WCを均一に混合することが必要な場合は、前述
した如くポールミルによる方法が最も適している
が、この場合は超硬合金製のボール、ポツトを用
いてもその超硬合金に含まれる結合金属が混入す
ることになる。この場合、結合金属の混入量が少
ない場合は問題ないが、多すぎると結合金属と
CBNが低温で反応して、結合金属をMとすると
M−W−B系のボライドを多量に生成するため、
切削中CBN粒子が脱落し工具性能は低下する。
この混入量が多い場合はCBNとWCの紛砕混合
後、これを塩酸溶液中で金属成分を溶解除するこ
とができる。
With fine CBN powder of 1μm or less as in the present invention,
When it is necessary to mix WC uniformly, the method using a pole mill is most suitable as described above, but in this case, even if cemented carbide balls and pots are used, the bonding metal contained in the cemented carbide may be mixed. will be mixed in. In this case, there is no problem if the amount of the bonding metal mixed in is small, but if it is too much, the bonding metal
CBN reacts at low temperatures and produces a large amount of M-W-B boride when the bonding metal is M.
CBN particles fall off during cutting, reducing tool performance.
If the amount of this mixture is large, the metal components can be dissolved in a hydrochloric acid solution after grinding and mixing CBN and WC.

本発明の使用原料粉末は極めて微細であるため
吸着ガス量が多い。従つて、通常300℃以上の温
度で真空中で加熱脱ガス后焼結する必要がある。
Since the raw material powder used in the present invention is extremely fine, it has a large amount of adsorbed gas. Therefore, it is usually necessary to heat, degas, and sinter in a vacuum at a temperature of 300° C. or higher.

300℃未満の温度で脱ガスする場合は長時間を
必要とするため実用的でない。
Degassing at a temperature below 300°C is not practical as it requires a long time.

以下実施例を述べる。 Examples will be described below.

実施例 1 粒度1μm以下の超微粒のCBN粉末を用い、
WC−7%Co超硬合金製のボールと同一組成の超
硬合金で内張されたポツトを使用してアセトンを
溶媒にして粉砕した。CBNの投入量は5gであ
つたが100時間粉砕したところ重量は9.3gに増加
していた。この増加分がポツトとボールより混入
した超硬合金の微細な粉末である。これよりこの
粉末の組成を推定すると体積で70%のCBNを含
んでいる。この粉末を走査型電子顕微鏡を用いて
観察したところ、全部が1μm以下の極めて微細
な粉末からなることが判つた。この混合粉末を外
径14mm、内径10mmのMo製の容器にWC−6%Co
組成の超硬合金を置いた後0.65g充填した。この
上に厚さ30μmのAl−Cu合金(重量比Al:Cu=
1:2)を置きMo製の栓をしてこの容器全体を
ダイヤモンド合成に用いる超高圧装置に入れた。
圧力50kbに加圧し、次いで温度1250℃まで加熱
し20分間保持した。得られた焼結体をダイヤモン
ドペーストを用いて研磨して組織を調べたとこ
ろ、0.5μm以下のCBN粒子からなる極めて微細
な粒子の焼結体であつた。またこの焼結体をX線
マイクロアナライザにより調査した結果、焼結体
中にはAlとCuが均一に含有されており、その含
有量は結合材中の重量に換算してそれぞれ3%と
6%であつた。次にこの焼結体の組成をX線回折
で調べたところ、CBN、WCの他に少量のCoxWy
Bz、AlB2、AlNのピークが観察された。
Example 1 Using ultrafine CBN powder with a particle size of 1 μm or less,
Grinding was carried out using acetone as a solvent using a WC-7%Co cemented carbide ball and a pot lined with a cemented carbide having the same composition. The amount of CBN added was 5 g, but after pulverizing for 100 hours, the weight increased to 9.3 g. This increased amount is the fine cemented carbide powder mixed in from the pots and balls. From this, the composition of this powder is estimated to contain 70% CBN by volume. When this powder was observed using a scanning electron microscope, it was found that it was entirely composed of extremely fine powder of 1 μm or less. This mixed powder was placed in a Mo container with an outer diameter of 14 mm and an inner diameter of 10 mm.
After placing the cemented carbide of the composition, 0.65g was filled. On top of this, a 30 μm thick Al-Cu alloy (weight ratio Al:Cu=
1:2) was placed, a stopper made of Mo was placed, and the entire container was placed in an ultra-high pressure device used for diamond synthesis.
The pressure was increased to 50 kb, then heated to a temperature of 1250°C and held for 20 minutes. When the obtained sintered body was polished using diamond paste and its structure was examined, it was found to be a sintered body with extremely fine particles consisting of CBN particles of 0.5 μm or less. Furthermore, as a result of examining this sintered body using an X-ray microanalyzer, it was found that Al and Cu were uniformly contained in the sintered body, and the content was 3% and 6%, respectively, in terms of the weight of the binder. It was %. Next, the composition of this sintered body was investigated by X-ray diffraction, and it was found that in addition to CBN and WC, a small amount of Co x W y
Peaks of B z , AlB 2 , and AlN were observed.

比較のため前述した組成でCuを含有しない焼
結体も試作し、X線回折で調査したところ、
CBN、WCの他の多量のCoxWyBz、AlB2と少量
のAlNが検出された。次に上記2種類の焼結体
とWC基の超微粒超硬合金のバイトを作成し、鉛
快削鋼を切削速度50m/min、切込み0.3mm、送
り0.01mm/revで不水溶性切削油を用いて切削テ
ストした。その結果、超微粒超硬合金では切削時
間15分ですくい面方向よりみた刃先直角コーナー
部の丸みが15μmに達したのに対し、本発明焼結
体では同じ状態に達するまでに300分切削可能で
あつた。またCuを含有しない焼結体は20分切削
可能であつた。
For comparison, we also prototyped a sintered body with the above-mentioned composition that did not contain Cu, and investigated it by X-ray diffraction.
Besides CBN, WC, large amounts of Co x W y B z , AlB 2 and small amounts of AlN were detected. Next, a cutting tool made of the two types of sintered bodies and WC-based ultrafine cemented carbide was prepared, and lead free-cutting steel was cut at a cutting speed of 50 m/min, depth of cut of 0.3 mm, and feed rate of 0.01 mm/rev using water-insoluble cutting oil. A cutting test was conducted using As a result, with the ultra-fine grained cemented carbide, the roundness of the right-angled corner of the cutting edge when viewed from the rake face direction reached 15 μm after 15 minutes of cutting time, whereas with the sintered body of the present invention, it took 300 minutes of cutting to reach the same state. It was hot. Furthermore, the sintered body containing no Cu could be cut for 20 minutes.

実施例 2 CBN原料粉末5gとAl−Cu合金(重量比で
1:2)粉末1.5gを実施例1で使用した超硬合
金製のポツトとボールを用いて150時間粉砕混合
した。混合後の粉末は20.8gとなつていた。これ
より粉末の組成を推定するとCBNが体積で52%
含有し、残部が重量比で90%のWC−Coと3.3%
Alと6.7%Cuより成るものであつた。この粉末を
外径10mm、厚さ2.0mmに型押後、1000℃1時間脱
ガスした。この型押体を外径14mm、内径10mmの
Mo製の容器に入れた後、この上に外径10mmの
WC−10%Co超硬合金を置き、Moの栓をして実
施例1と同様にして圧力55kb、温度1300℃で10
分間保持した。得られた焼結体の組成をX線回折
により調べたところCBN、WCと少量のCoxWy
Bz、AlN、AlB2が検出された。なお、Cuは純金
属としてピークは見当らず何らかの化合物として
存在しているものと思われる。またこの焼結体の
硬度は3300であつた。この焼結体を実施例1と同
様にしてバイトを作製しS45Cの丸棒を切削加工
した。なお、切削速度10m/min、切込み0.5mm、
送り0.03mm/rev、200分間切削した。比較のため
JIS分類P40の超硬合金と超微粒超硬合金の切削
テストも同時に行つた。その結果本発明焼結体の
逃げ面摩耗巾は0.05mmであつたのに対し、P40超
硬合金と超微粒超硬合金の逃げ面摩耗巾はそれぞ
0.05mmと0.23であつた。
Example 2 5 g of CBN raw powder and 1.5 g of Al--Cu alloy (weight ratio 1:2) powder were pulverized and mixed for 150 hours using the cemented carbide pot and ball used in Example 1. After mixing, the powder weighed 20.8 g. Estimating the composition of the powder from this, CBN accounts for 52% by volume.
Contains WC-Co with the balance being 90% by weight and 3.3%
It consisted of Al and 6.7% Cu. This powder was embossed to have an outer diameter of 10 mm and a thickness of 2.0 mm, and then degassed at 1000°C for 1 hour. This stamped body has an outer diameter of 14 mm and an inner diameter of 10 mm.
After placing it in a Mo container, place a 10mm outer diameter on top of it.
A WC-10% Co cemented carbide was placed, a Mo stopper was placed, and the same procedure as in Example 1 was carried out at a pressure of 55 kb and a temperature of 1300°C for 10 min.
Hold for minutes. The composition of the obtained sintered body was investigated by X-ray diffraction and found that it contained CBN, WC, and a small amount of Co x W y
B z , AlN, and AlB 2 were detected. Note that Cu is a pure metal and no peak is found, so it is thought that it exists as some kind of compound. The hardness of this sintered body was 3300. A cutting tool was prepared from this sintered body in the same manner as in Example 1, and an S45C round bar was cut. In addition, cutting speed 10m/min, depth of cut 0.5mm,
Cutting was performed for 200 minutes at a feed rate of 0.03 mm/rev. for comparison
Cutting tests on JIS classification P40 cemented carbide and ultra-fine grained cemented carbide were also conducted at the same time. As a result, the flank wear width of the sintered body of the present invention was 0.05 mm, whereas the flank wear width of P40 cemented carbide and ultrafine cemented carbide were respectively
They were 0.05mm and 0.23.

実施例 3 (Mo7W3)C−10%Co−5%Ni合金からなる
ボールとポツトを用いてCBN粉末4gを20時間
粉砕した。粉砕後の重量は14gであつた。この粉
末内の金属成分を酸洗除去した。
Example 3 4 g of CBN powder was pulverized for 20 hours using a ball and pot made of ( Mo7W3 )C-10%Co-5%Ni alloy. The weight after crushing was 14g. The metal components in this powder were removed by pickling.

この粉末は容量でCBN67%、(Mo7W3)C33%
を含むものである。この粉末を外径14mm、内径
10.0mmのMo容器に外径10mm、厚さ3mmのWC−6
%Coを置いた後0.5g充填した。この上に50μm
の厚みのAl−Cu合金(重量で1:1)板を置き
さらにMo栓をして超高圧装置に入れ、圧力
55kb、温度1500℃で10分間保持した。得られた
焼結体中に含有されるCuおよびAlの量はそれぞ
れ結合材中の重量比で10%と9%であつた。また
焼結体の組織は1μm以下の(Mo7W3)Cからな
る均一な組織の超微粒合金であつた。この焼結体
を用いて実施例1と同様にしてバイトを作製し
SUS303を切削速度50m/min、切込み0.2mm、送
り0.01mm/rev、不水溶性切削油を用いて60分切
削テストした。比較のため超微粒超硬合金も同時
にテストした。その結果本発明焼結体の逃げ面摩
耗巾が0.1mmであつたのに対し、超微粒超硬合金
のそれは0.3mmであつた。
This powder contains 67% CBN and 33% (Mo 7 W 3 )C by volume.
This includes: This powder has an outer diameter of 14 mm and an inner diameter of
WC-6 with an outer diameter of 10 mm and a thickness of 3 mm in a 10.0 mm Mo container.
After placing %Co, 0.5g was filled. 50μm above this
Place an Al-Cu alloy (1:1 by weight) plate with a thickness of
55 kb and held at a temperature of 1500°C for 10 minutes. The amounts of Cu and Al contained in the obtained sintered body were respectively 10% and 9% by weight in the binder. The structure of the sintered body was an ultrafine-grained alloy of (Mo 7 W 3 )C with a uniform structure of 1 μm or less. A cutting tool was made using this sintered body in the same manner as in Example 1.
A cutting test was conducted on SUS303 for 60 minutes using a cutting speed of 50 m/min, depth of cut of 0.2 mm, feed rate of 0.01 mm/rev, and water-insoluble cutting oil. For comparison, ultrafine-grained cemented carbide was also tested at the same time. As a result, the flank wear width of the sintered body of the present invention was 0.1 mm, while that of the ultrafine cemented carbide was 0.3 mm.

Claims (1)

【特許請求の範囲】 1 粒度1μm以下の高圧相型窒化硼素を体積で
80〜20%含有し、残部の結合相が1μm以下の微
粒子より成るWCまたはWCと同一結晶構造を有
する(Mo、W)C、Alの化合物およびCuより成
り、結合相中のAlの含有量が重量で1〜30%、
Cuの含有量が重量で1〜30%であることを特徴
とする精密小物部品微小加工工具用焼結体。 2 粒度1μm以下の高圧相型窒化硼素を体積で
80〜20%含有し、残部の結合相が1μm以下の微
粒子より成るWCまたはWCと同一結晶構造を有
する(Mo、W)C、Alの化合物、Cuおよび鉄族
金属より成り、結合相中のAlの含有量が重量で
1〜30%、Cuの含有量が重量で1〜30%、鉄族
金属の含有量が重量で1〜10%であることを特徴
とする精密小物部品微小加工工具用焼結体。
[Claims] 1 High-pressure phase boron nitride with a particle size of 1 μm or less by volume
The content of Al in the binder phase is 80 to 20%, and the remainder of the binder phase is composed of fine particles of 1 μm or less, or a compound of (Mo, W)C, Al that has the same crystal structure as WC, and Cu. is 1-30% by weight,
A sintered body for small precision parts and micromachining tools, characterized by a Cu content of 1 to 30% by weight. 2 Volume of high-pressure phase boron nitride with a particle size of 1 μm or less
The remaining binder phase is composed of fine particles of 1 μm or less in WC or a compound of (Mo, W)C, Al, Cu, and iron group metals with the same crystal structure as WC. Precision small parts micromachining tool characterized by Al content of 1 to 30% by weight, Cu content of 1 to 30% by weight, and iron group metal content of 1 to 10% by weight. sintered body.
JP10177780A 1980-07-23 1980-07-23 Sintered body for tool for finely working precise small parts and its manufacture Granted JPS5726137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10177780A JPS5726137A (en) 1980-07-23 1980-07-23 Sintered body for tool for finely working precise small parts and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10177780A JPS5726137A (en) 1980-07-23 1980-07-23 Sintered body for tool for finely working precise small parts and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62256043A Division JPS63121631A (en) 1987-10-10 1987-10-10 Production of sintered body for microworking tool for precision small parts

Publications (2)

Publication Number Publication Date
JPS5726137A JPS5726137A (en) 1982-02-12
JPS6326189B2 true JPS6326189B2 (en) 1988-05-28

Family

ID=14309622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10177780A Granted JPS5726137A (en) 1980-07-23 1980-07-23 Sintered body for tool for finely working precise small parts and its manufacture

Country Status (1)

Country Link
JP (1) JPS5726137A (en)

Also Published As

Publication number Publication date
JPS5726137A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
US4343651A (en) Sintered compact for use in a tool
EP1309732B1 (en) Method of producing an abrasive product containing diamond
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
JP5680567B2 (en) Sintered body
KR100502585B1 (en) Sintering body having high hardness for cutting cast iron and The producing method the same
JP3949181B2 (en) Diamond sintered body using hard alloy as binder and method for producing the same
KR20060105012A (en) Cubic boron nitride sintered body and method for making the same
JPS6315982B2 (en)
JP5008789B2 (en) Super hard sintered body
JPS6246510B2 (en)
JPS6326189B2 (en)
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6137221B2 (en)
JPS6310119B2 (en)
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS6251911B2 (en)
JPS6159392B2 (en)
JPS627259B2 (en)
JPS647142B2 (en)
JPS63121631A (en) Production of sintered body for microworking tool for precision small parts
JPS62983B2 (en)
JPS638072B2 (en)
JPH0377151B2 (en)
JPH0357171B2 (en)
JPH0154302B2 (en)