JPS63260820A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPS63260820A
JPS63260820A JP62095212A JP9521287A JPS63260820A JP S63260820 A JPS63260820 A JP S63260820A JP 62095212 A JP62095212 A JP 62095212A JP 9521287 A JP9521287 A JP 9521287A JP S63260820 A JPS63260820 A JP S63260820A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
critical temperature
firing
blend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62095212A
Other languages
Japanese (ja)
Other versions
JPH0579607B2 (en
Inventor
Hideo Ihara
英雄 伊原
Takeshi Morimoto
剛 森本
Yasuhiro Sanada
恭宏 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
AGC Inc
Original Assignee
Agency of Industrial Science and Technology
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Asahi Glass Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP62095212A priority Critical patent/JPS63260820A/en
Publication of JPS63260820A publication Critical patent/JPS63260820A/en
Publication of JPH0579607B2 publication Critical patent/JPH0579607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide

Abstract

PURPOSE:To obtain a superconductor, consisting of a compound containing an element of La series except La, La, Cu and O2, having a high critical temperature and magnetic field and useful as superconducting devices, etc. CONSTITUTION:A superconductor, produced by blending respective oxide or carbonate powders, etc., so as to provide a desired molar ratio of an element (A) of La series except La (e.g. Pr and/or Gd) with La, Cu and O, temporarily firing the resultant blend, forming the fired blend and firing the formed blend at 800-950 deg.C in an atmosphere under regulated O2 partial pressure and consisting of a composition formula expressed by the formula [A is the element (A); 0<x<2; 0<=y<=2].

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導体に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to superconductors.

[従来の技術] 従来、検討された超電導体は主として金属、合金系であ
り、Sn、AI等多くの金属元素、又、Nb−Ti、W
b−Ge、Wb−9n等の合金が知られている。
[Prior art] Superconductors that have been studied so far are mainly metal and alloy-based, including many metal elements such as Sn and AI, as well as Nb-Ti and W.
Alloys such as b-Ge and Wb-9n are known.

しかしこれらの材料の臨界温度は最高でも20に付近で
ありこのためデバイス化した際高価な液体ヘリウムで冷
却しなければ使用出来ないという欠点があった。また最
近の報告にBa−La−Cu−0系の超電導性に関する
ものがあるが(Z、Phy+、B: J、G、Badn
ory and K、A、)Iuller、84.18
9,1986)この物質系に於いても臨界温度は35に
であり、又臨界磁界はθOTでありその超電導特性は実
用的観点からみると充分満足し得るものではなかった・ [発明が解決しようとする問題点] 本発明の目的は従来の超電導体が有していた前述の欠点
を解消しようとするものであり、液体ヘリウム以上の高
温で充分使用可能な超電導体を新規に提供しようとする
ものである。
However, the critical temperature of these materials is around 20°C at most, so when they are made into devices, they have the disadvantage that they cannot be used unless they are cooled with expensive liquid helium. In addition, there are recent reports regarding the superconductivity of the Ba-La-Cu-0 system (Z, Phy+, B: J, G, Badn
ory and K.A.) Iuller, 84.18
9, 1986) Even in this material system, the critical temperature is 35, and the critical magnetic field is θOT, so its superconducting properties are not fully satisfactory from a practical standpoint. The purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional superconductors, and to provide a new superconductor that can be used satisfactorily at temperatures higher than liquid helium. It is something.

[問題点を解決するための手段] すなわち本発明はランタンを除くランタン系列元素(A
)、ランタン(La)、銅(Cu)、酸素(0)を含む
化合物よりなることを特徴とする超電導体を提供するも
のである。
[Means for Solving the Problems] That is, the present invention uses lanthanum series elements (A
), lanthanum (La), copper (Cu), and oxygen (0).

以下に本発明における超電導体に関して説明する。本発
明における超電導体はランタンを除くランタン系列元素
(A)、ランタン(La)、銅(Cu)、酸素(0)を
含む化合物であることが必要であり、好ましい組成式と
しては AHLa2−gCuL−y (0< x < 2 + 
0≦y≦2)、或いはAlILat−xcu03−y(
0< x < 1 、0≦y≦1.5)が挙げられる。
The superconductor in the present invention will be explained below. The superconductor in the present invention needs to be a compound containing a lanthanum series element (A) excluding lanthanum, lanthanum (La), copper (Cu), and oxygen (0), and a preferable composition formula is AHLa2-gCuL- y (0< x < 2 +
0≦y≦2), or AlILat-xcu03-y(
0<x<1, 0≦y≦1.5).

製法としては種々考えられるが代表的なものとして固相
での焼結法が挙げられる。すなわちA、La、Cuか所
定のモル比となる様に各々の酸化物或いは炭酸塩粉末ま
たは前2者の混合物を焼成する。焼成温度は800−9
50℃好ましくは850−900℃が適当である。
Various manufacturing methods can be considered, but a typical example is a solid phase sintering method. That is, each oxide or carbonate powder or a mixture of the former two is fired so that a predetermined molar ratio of A, La, and Cu is achieved. Firing temperature is 800-9
A temperature of 50°C, preferably 850-900°C is suitable.

焼成に際しては本焼成の前に粉末を仮焼成した後、成型
して本焼成する等の方法も使用し得る。焼成雰囲気とし
ては空気中でも可能であるが酸素含有量を調整する為に
、酸素分圧の異なるガスを適宜使用することか出来る。
For firing, a method may also be used in which the powder is temporarily fired before the main firing, and then the powder is shaped and then the main firing is performed. The firing atmosphere can be in air, but in order to adjust the oxygen content, gases with different oxygen partial pressures can be used as appropriate.

また他の製法としては前述の方法以外に共沈法も使用し
得る。すなわちA、La、Cuが所定のモル比となる様
に各々の硝酸塩を定量して水に溶かす、この水溶液にシ
ュウ酸を加え、アンモニア水等でpHな調整して生成し
た沈殿を濾過乾燥する。
Further, as another production method, a coprecipitation method may be used in addition to the above-mentioned method. That is, each nitrate is determined and dissolved in water so that A, La, and Cu have a predetermined molar ratio, oxalic acid is added to this aqueous solution, the pH is adjusted with aqueous ammonia, etc., and the resulting precipitate is filtered and dried. .

焼成は前述の方法と同様に行い得るゆ 以上の化学的方法に加えて従来の半導体製造のドライプ
ロセスに使用されてきた種々の方法すなわちスパッタリ
ング、CVD 、真空蒸着等の方法も採用可能である。
In addition to the above-mentioned chemical methods that can be used for baking, it is also possible to employ various methods that have been used in conventional dry processes for semiconductor manufacturing, such as sputtering, CVD, and vacuum evaporation.

これらの方法は特に薄膜作製時に有効である。These methods are particularly effective when producing thin films.

本発明において、Aとしてはプラセオジム(P「)及び
/又はガドリニウム(Gd)が特に好ましい。
In the present invention, A is particularly preferably praseodymium (P'') and/or gadolinium (Gd).

[作 用] 本発明において得られる物質の超電−導機構は必ずしも
明確ではないが、新規な組成を有しているために高臨界
温度、高臨界磁界を達成し得るものと考えられる。
[Function] Although the superconducting mechanism of the substance obtained in the present invention is not necessarily clear, it is thought that it can achieve a high critical temperature and a high critical magnetic field because it has a novel composition.

[実施例] 実施例1゜ Pr、La、Cuの硝酸塩を各々Pr:La:Cu−0
,6:0.4:1.0(モル比:以下同じ)となる様に
秤量し、攪拌しながら純水に溶解させる。この溶液にあ
らかじめ調整したPr、La、Cuの硝酸塩のモル数の
総和と同じモル濃度のシュウ酸溶液を滴下し、更にアン
モニア水でpHを6程度に調整し沈殿を生成させる。こ
の沈殿を濾過し乾燥する。乾燥させた沈殿物を空気中9
00℃で1h仮焼する。
[Example] Example 1゜Nitrates of Pr, La, and Cu were respectively Pr:La:Cu-0
, 6:0.4:1.0 (molar ratio: the same hereinafter), and dissolved in pure water with stirring. An oxalic acid solution having the same molar concentration as the total number of moles of Pr, La, and Cu nitrates prepared in advance is added dropwise to this solution, and the pH is further adjusted to about 6 with aqueous ammonia to form a precipitate. This precipitate is filtered and dried. 9. Dried precipitate in air
Calcinate at 00°C for 1 hour.

仮焼した沈殿物を粉末状に砕き、プレスで成型した後空
気中900℃で1h焼成する。
The calcined precipitate is crushed into powder, molded using a press, and then calcined in air at 900°C for 1 hour.

この様にして作製した物質の組成式は P r□、 aLao、 4CuOt、 rでその臨界
温度は57K、臨界磁界は75Tであった。
The composition of the material thus produced was P r□, aLao, 4CuOt, r, and its critical temperature was 57K and critical magnetic field was 75T.

実施例2 Pr、La、Cuの硝酸塩をPr:La:Cu−0,6
:0.4:1.0となる様に秤量した以外は実施例1と
同様に行った。
Example 2 Pr, La, Cu nitrates Pr:La:Cu-0,6
The same procedure as in Example 1 was carried out except that the weight ratio was 0.4:1.0.

得られた物質の組成式Pro、 5Lao、 4Cub
a、 oでその臨界温度は53に、w4界磁界は71T
でありだ。
Composition formula of the obtained substance Pro, 5Lao, 4Cub
At a, o, its critical temperature is 53, and the w4 field is 71T.
It's true.

実施例3 Pr、La、Cuの酸化物を各々Pr:La:Cum0
.6:0.4:1.0となる様に秤量しボールミル中で
混合した。
Example 3 Oxides of Pr, La, and Cu were each Pr:La:Cum0
.. They were weighed and mixed in a ball mill so that the ratio was 6:0.4:1.0.

以下混合物の焼成は実施例1と同様に行った。得られた
物質の組成式はPro、 gLao、 Ju02.7で
その臨界温度は53K、臨界磁界は71Tであった。
The mixture was then fired in the same manner as in Example 1. The compositional formula of the obtained substance was Pro, gLao, Ju02.7, its critical temperature was 53K, and its critical magnetic field was 71T.

実施例4 Pr、La、C:uの硝酸塩をPr:La:Cu−0,
6:1.4:1.0となるように秤量した以外は実施例
1と同様に行った。得られた物質の組成式は Pro、 sLa、 4CLI03.3であった。この
物質の臨界温度は52K、臨界磁界は70Tであった。
Example 4 Nitrate of Pr, La, C:u was converted into Pr:La:Cu-0,
The same procedure as in Example 1 was carried out except that the weight ratio was 6:1.4:1.0. The compositional formula of the obtained substance was Pro, sLa, 4CLI03.3. The critical temperature of this material was 52K and the critical magnetic field was 70T.

実施例5 Gd、La、Cuの硝酸塩を各々Gd:La:Cu−0
,6:0.4=1.0となる様に秤量し、攪拌しながら
純水に溶解させる。この溶液にあらかじめ調整したGd
Example 5 Nitrates of Gd, La, and Cu were each converted into Gd:La:Cu-0
, 6:0.4=1.0, and dissolved in pure water with stirring. Gd prepared in advance in this solution
.

La、Cuの硝酸塩のモル数の総和と同じモル濃度のシ
ュウ酸溶液を滴下し、更にアンモニア水でpHな6程度
に調整し沈殿を生成させる。この沈殿を濾過し乾燥する
。乾燥させた沈殿物を空気中900°C1h仮焼する。
An oxalic acid solution having the same molar concentration as the total number of moles of La and Cu nitrates is added dropwise, and the pH is further adjusted to about 6 with aqueous ammonia to form a precipitate. This precipitate is filtered and dried. The dried precipitate is calcined in air at 900°C for 1 hour.

仮焼し゛た沈殿物を粉末状に砕き、プレスで成型した後
空気中900℃でlh焼成する。
The calcined precipitate is crushed into powder, molded using a press, and then fired in air at 900°C for 1 hour.

この様にして作製した物質の組成式は Gdo、 aLao、 4Cult、 tでその臨界温
度は55K、臨界磁界は72Tであった。
The compositional formula of the material thus produced was Gdo, aLao, 4Cult, t, its critical temperature was 55K, and its critical magnetic field was 72T.

実施例6 Gd、La、Cuの硝酸塩を各々Gd:La:Cu=0
.6:1.4:1となる様に秤量した以外は実施例5と
同様に行った。
Example 6 Nitrate of Gd, La, and Cu respectively Gd:La:Cu=0
.. The same procedure as in Example 5 was carried out except that the weight ratio was 6:1.4:1.

得られた物質の組成式はGdo、 5La1.4Cu0
3. Iでその臨界温度は52K、臨界磁界は71Tで
あった。
The composition formula of the obtained substance is Gdo, 5La1.4Cu0
3. The critical temperature was 52K and the critical magnetic field was 71T.

実施例7 Gd、La、Cuの酸化物を各々Gd:La:CuJ、
6:0.4:1.0となる様に秤量しボールミル中で混
合した。以下混合物の焼成は実施例5と同様に行った。
Example 7 Oxides of Gd, La, and Cu were prepared as Gd:La:CuJ, respectively.
They were weighed and mixed in a ball mill so that the ratio was 6:0.4:1.0. The mixture was then fired in the same manner as in Example 5.

得られた物質の組成式はGdo、 5Lao4Cult
、 oでその臨界温度は51K、臨界磁界は73Tであ
った。
The composition formula of the obtained substance is Gdo, 5Lao4Cult
, o, its critical temperature was 51K, and its critical magnetic field was 73T.

[発明の効果] 以上説明したように本発明の超電導体では、従来の超電
導体において不可能であった臨界温度は50に以上、臨
界磁界は707以上が実現出来る。このことより液体水
素或いは液体ネオンによる超電導デバイスが作製可能と
なる。
[Effects of the Invention] As explained above, the superconductor of the present invention can achieve a critical temperature of 50 or more and a critical magnetic field of 707 or more, which were impossible in conventional superconductors. This makes it possible to fabricate superconducting devices using liquid hydrogen or liquid neon.

Claims (1)

【特許請求の範囲】 1、ランタンを除くランタン系列元素(A)、ランタン
(La)、銅(Cu)及び酸素を含む化合物からなる超
電導体。 2、化合物がA_xLa_2_−_xCuO_4_−_
y(但し、0<x<2、0≦y≦2)の組成式を有する
特許請求の範囲第1項の超電導体。 3、化合物がA_xLa_1_−_xCuO_3_−_
y(但し、0<x<1、0≦y≦1.5)の組成式を有
する特許請求の範囲第1項の超電導体。 4、Aがプラセオジム(Pr)及び/又はガドリニウム
(Gd)である特許請求の範囲第1〜3項いずれかの超
電導体。
[Claims] 1. A superconductor comprising a compound containing a lanthanum series element (A) other than lanthanum, lanthanum (La), copper (Cu), and oxygen. 2. The compound is A_xLa_2_-_xCuO_4_-_
The superconductor according to claim 1, which has a compositional formula of y (0<x<2, 0≦y≦2). 3. The compound is A_xLa_1_-_xCuO_3_-_
The superconductor according to claim 1, which has a compositional formula of y (0<x<1, 0≦y≦1.5). 4. The superconductor according to any one of claims 1 to 3, wherein A is praseodymium (Pr) and/or gadolinium (Gd).
JP62095212A 1987-04-20 1987-04-20 Superconductor Granted JPS63260820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62095212A JPS63260820A (en) 1987-04-20 1987-04-20 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62095212A JPS63260820A (en) 1987-04-20 1987-04-20 Superconductor

Publications (2)

Publication Number Publication Date
JPS63260820A true JPS63260820A (en) 1988-10-27
JPH0579607B2 JPH0579607B2 (en) 1993-11-04

Family

ID=14131442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62095212A Granted JPS63260820A (en) 1987-04-20 1987-04-20 Superconductor

Country Status (1)

Country Link
JP (1) JPS63260820A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643012A (en) * 1987-03-27 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643012A (en) * 1987-03-27 1989-01-06 Sumitomo Electric Ind Ltd Superconducting material and production thereof

Also Published As

Publication number Publication date
JPH0579607B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
JPS63260820A (en) Superconductor
JPH02229716A (en) Superconducting material
JPH02503789A (en) Improved manufacturing method for 90K superconductor
Przybyło et al. Gibbs Free Energy of Formation of Eu1+ yBa2− yCu3O7− xand Related Phases in the Eu2O3–CuO–BaO System
JP2854338B2 (en) Copper oxide superconductor
JPH07106893B2 (en) Manufacturing method of ceramics superconductor
JPH02208225A (en) Oxide superconductor
JPH0292826A (en) Oxide superconductor
JP3151558B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JPH03247550A (en) Production of bismuth-containing superconductor
JPH07257961A (en) Superconductive material
JPH02248321A (en) Oxide superconductor
JPH0397656A (en) Oxide superconductor composition
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPH0264018A (en) Oxide superconducting substance and production thereof
JPH0632612A (en) Oxide superconductor and its production
JPH0333052A (en) Production of oxide superconducting material
JPH02149425A (en) Oxide superconducting material and its production
JPH08225327A (en) Superconductive material
JPH03131521A (en) Oxide superconductor and production thereof
JPH01246135A (en) Production of oxide superconductive material and production of oxide superconductor
JPH0375261A (en) Oxide superconductor and production thereof
JPH03285823A (en) Oxide superconductor
JPH02307827A (en) Oxide superconducting material
JPH02208224A (en) Oxide superconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term