JPS63259387A - Heat exchanging section of double-wall structured heat exchanger - Google Patents

Heat exchanging section of double-wall structured heat exchanger

Info

Publication number
JPS63259387A
JPS63259387A JP8973887A JP8973887A JPS63259387A JP S63259387 A JPS63259387 A JP S63259387A JP 8973887 A JP8973887 A JP 8973887A JP 8973887 A JP8973887 A JP 8973887A JP S63259387 A JPS63259387 A JP S63259387A
Authority
JP
Japan
Prior art keywords
inner tube
tube
spiral
pipe
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8973887A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP8973887A priority Critical patent/JPS63259387A/en
Publication of JPS63259387A publication Critical patent/JPS63259387A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a compact, light-weight and high-performance heat exchanger by forming a spiral flow passage for fluid by disposing a spiral fin having a suitable pitch which tightly contact the inner surface of an outer pipe and the outer surface of an inner pipe and extends axially along side walls. CONSTITUTION:By a combination of an outer pipe 1, an inner pipe 2 and a spiral fin, a spiral passage 4 is formed between the inner pipe 2 and the outer pipe 1. By causing the outer thermal medium 9 and inner medium 10 to flow, heat is exchanged through the pipe wall of the inner pipe 2 by making one of them to be a high- temperature fluid and the outer a low-temperature fluid. This way, the section area of the flow passage between the outer pipe 1 and the inner pipe 2 is made more than ten times smaller, and the flow speed is made more than ten times faster. The smaller the spiral pitch, the larger the heating surface of the flow passage. When the flow speed becomes faster, turbulence is caused in the flow to improve the heat transfer performance, and so, it is generally expected that there will be about ten times more improvement. The heat exchanging section by the double-walled pipe can be economically manufactured, and the device can be made compact with a high performance.

Description

【発明の詳細な説明】 40発明の目的 〔産業上の利用分野〕 本発明は熱交換器の熱交換部の構造に関するものであり
特に円筒形2重管構造熱交喚器における熱交換部の構造
に関する。
Detailed Description of the Invention 40 Object of the Invention [Field of Industrial Application] The present invention relates to the structure of a heat exchange section of a heat exchanger, and particularly relates to the structure of a heat exchange section of a cylindrical double tube structure heat exchanger. Regarding structure.

〔従来の技術〕[Conventional technology]

二重管構造熱交換器の熱交換部は内外管の間隙と内管内
に夫々温度の異なる流体が貫流し、内管の管壁を介して
流体相互間に熱交換が行なわれる構造のものであり、流
体は一般に液体であり、液体と内壁面間の熱伝達率は極
めて良好である点と2液間の距離は内管の管壁の厚さで
ありこれは一般に極めて小さいものである点と浴流液体
は向流液体を完全に被覆した状態であるから熱交換上の
損失が少ない点の3点から極めて効率の良い熱交換手段
として多用されている。
The heat exchange section of a double-tube heat exchanger has a structure in which fluids with different temperatures flow through the gap between the outer and outer tubes and into the inner tube, and heat is exchanged between the fluids through the wall of the inner tube. The fluid is generally a liquid, and the heat transfer coefficient between the liquid and the inner wall surface is extremely good, and the distance between the two liquids is the thickness of the inner tube wall, which is generally extremely small. The bath liquid is often used as an extremely efficient heat exchange means because it completely covers the countercurrent liquid and causes little loss during heat exchange.

第5図に従来構造の熱交換部の断面図を示しである。外
管1、と内管2の間隙には内管2、を外管1、の中に同
心的に保持せしめる支持体を兼ねて昇流路フィン11、
が介在されてある。核外流路フィンは図の如く内管2、
と一体に押出成形されることが多いが、単に乱流発生手
段と内管支持体として所定の複数箇所に圧入される場合
もある。
FIG. 5 shows a cross-sectional view of a heat exchange section with a conventional structure. In the gap between the outer tube 1 and the inner tube 2, there are riser fins 11 which also serve as supports for holding the inner tube 2 concentrically within the outer tube 1.
is mediated. As shown in the figure, the extranuclear channel fins are the inner tube 2,
Although it is often extruded integrally with the tube, it is sometimes simply press-fitted into a plurality of predetermined locations as a turbulence generating means and an inner tube support.

該フィンの伝熱面積拡大率は2倍程度であり一般の対流
熱交換用フィンに比較すれば極めて小さい。
The heat transfer area expansion rate of the fins is about twice, which is extremely small compared to general convection heat exchange fins.

通常内管2、の内部には何も設けられない例が多いが、
乱流発生手段として捻回されたリボンが圧入されてあっ
たり、図の如き内流路フィン12、が圧入される例もあ
る。9.10は夫々外流路(及び昇流熱媒流体)及び内
流路(及び向流熱媒流体)を示す。図示されていないが
大容量熱交換の場合はヘソグーを用いて図の如き二重管
路の多数本を並列使用するか管路長さを長大にする等の
手段が採られる。
Usually, there are many cases where nothing is provided inside the inner tube 2, but
In some cases, a twisted ribbon is press-fitted as a turbulent flow generating means, or internal flow path fins 12 as shown in the figure are press-fitted. 9.10 indicate the outer flow path (and upstream heat transfer fluid) and the inner flow path (and countercurrent heat transfer fluid), respectively. Although not shown in the drawings, in the case of large-capacity heat exchange, measures such as using a hesogou to use a large number of double pipes in parallel as shown in the figure or increasing the length of the pipes are taken.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来構造における該熱交換器の熱交換効率向−ヒの手段
は上述の如く軸流に沿った数枚の昇流路フィンか、流路
に圧入された乱流発生手段でありその熱伝達率の向上及
び伝熱面積拡大率は僅かなものであった。前述以外の手
段としては上述管路の流路に面して凸起を設ける例もあ
るがそれ等を併用しても熱交換熱量を大幅に増大せしめ
ることは困難であり管路の長さを大幅に縮小せしめたり
、並列化本数を大幅に減少せしめた構造のものは実用に
至っていない。これは複雑なフィン構造を二重管内に設
けることは困難であり且つ高価なものとなることによる
。又上述の如き軸流方向のフィン付管は比較的安価且つ
量産性に冨み、保守が容易である等の点によりこれに替
わるフィン構造は容易に実用化されなかったものでもあ
る。
In the conventional structure, the heat exchange efficiency of the heat exchanger is improved by using several riser fins along the axial flow, or by press-fitting a turbulent flow generating means into the flow path, as described above, to increase the heat transfer coefficient. The improvement in the heat transfer area and the heat transfer area expansion rate were slight. As a means other than the above, there is an example in which a protrusion is provided facing the flow path of the above-mentioned pipe, but even if these are used in combination, it is difficult to significantly increase the amount of heat exchanged, and the length of the pipe is limited. Structures that have been significantly reduced in size or in which the number of parallel lines has been significantly reduced have not been put into practical use. This is because it is difficult and expensive to provide a complicated fin structure within the double pipe. Furthermore, the axially finned tube as described above is relatively inexpensive, easy to mass produce, and easy to maintain, so an alternative fin structure has not been easily put into practical use.

口0発明の構成 〔問題点を解決するための手段〕 従来構造の二重管構造の熱交換部における熱交換効率向
上手段は乱流発生に主たる着眼点をおきこれに若干の伝
熱面積拡大手段を附加したものであった。本発明に係る
熱交換部においては「流体の流速を増加せしめると熱伝
達率が増大する」点に着目し「増大した熱伝達率を充分
に吸収せしめる為に流路長さを充分に延長する」点を附
加した新規な構造を提供することにより大幅な熱交換性
能の増大を図ることにある。その為の手段は次の如くで
ある。「外管内壁面と内管外壁面との間の所定の部分に
、両壁面に密若して介在せしめられてあり、且つ両壁面
に沿って軸方向に所定のピッチの螺旋状フィンが設けら
れてあり、これにより内外管の間隙に流体の螺旋状流路
が形成されてある構造。」を基本とし、更に大幅な熱交
換性能の増大を図る為に「上記螺旋状流路部分に対応す
る内管内壁の所定の部分にも上記本構造と同様な螺旋状
フィンを設けこれにより内管内壁面にも流体の螺旋状流
路が設けられてある構造。」が併設されてあることを問
題点解決の手段とする。第1図は上述の本発明に係る熱
交換部の基本構造を示す一部断面図である。1は外管、
2は内管、3は螺旋状フィン、4はこれ等の組み合わせ
により内管と外管の間隙に形成された螺旋状流路である
。9゜10は夫々昇流熱媒流体及び向流熱媒流体であっ
て、何れか一方が高温流体、他方が低温流体であって内
管2の管壁を介して相互に熱交換される。
Structure of the Invention [Means for Solving the Problems] The heat exchange efficiency improvement means in the heat exchange section of the conventional double-tube structure focuses mainly on the generation of turbulence, and slightly expands the heat transfer area. It was an additional means. In the heat exchange section according to the present invention, focusing on the point that "increasing the flow velocity of the fluid increases the heat transfer coefficient", "the length of the flow path is sufficiently extended in order to sufficiently absorb the increased heat transfer coefficient". The purpose of this invention is to significantly increase heat exchange performance by providing a new structure with additional points. The means for this purpose are as follows. "A spiral fin is provided at a predetermined portion between the inner wall surface of the outer tube and the outer wall surface of the inner tube, closely interposed between both wall surfaces, and at a predetermined pitch in the axial direction along both wall surfaces. This structure forms a spiral flow path for fluid in the gap between the inner and outer tubes.''In order to further increase heat exchange performance, we developed a structure that corresponds to the spiral flow path portion described above. A structure in which spiral fins similar to the above-mentioned present structure are provided at a predetermined portion of the inner wall of the inner tube, thereby providing a spiral flow path for fluid also on the inner wall surface of the inner tube. Use it as a means of solution. FIG. 1 is a partial sectional view showing the basic structure of the heat exchange section according to the present invention described above. 1 is the outer tube,
2 is an inner tube, 3 is a spiral fin, and 4 is a spiral flow path formed in the gap between the inner tube and the outer tube by a combination of these. Reference numerals 9 and 10 denote an ascending heat medium fluid and a countercurrent heat medium fluid, one of which is a high temperature fluid and the other a low temperature fluid, and heat is exchanged with each other through the pipe wall of the inner tube 2.

外管1と内管2の間隙を貫流する昇流熱媒流体9は熱交
換部の螺旋状流路4に至って、流路断面積が数分の−か
ら十数分の−に縮小されるので流速は数倍〜士数倍に増
速される。この場合の増速の割合は螺旋状フィン3の螺
旋ピッチと肉厚とによって定まる。又螺旋状流路の長さ
は螺旋ピッチが小さい程長くなり、伝熱面積の拡大率は
螺旋状梳路の長さによって決まる。
The ascending heat medium fluid 9 flowing through the gap between the outer tube 1 and the inner tube 2 reaches the spiral flow path 4 of the heat exchange section, and the cross-sectional area of the flow path is reduced from a few minutes to more than ten minutes. Therefore, the flow velocity is increased several times to several times. The rate of speed increase in this case is determined by the helical pitch and wall thickness of the helical fins 3. The length of the helical channel becomes longer as the helical pitch becomes smaller, and the rate of expansion of the heat transfer area is determined by the length of the helical comb.

第1図の基本構造は外法熱媒流体9と内管2の外表面と
の間の熱伝達性能向上の為の構造である。
The basic structure shown in FIG. 1 is a structure for improving heat transfer performance between the external heat transfer fluid 9 and the outer surface of the inner tube 2.

第2図は第1図の構造に加えて、全く同じ着眼点からな
る構造を内管内にも適用し、向流熱媒流体10と内管2
の内壁面との間の熱伝達性能をも向上せしめて、熱交換
部全体としての性能を大幅に向上せしめんとするもので
ある。図において5は内管内に配設されてある第2の内
管(又は丸棒)であって、同様に内管2の内壁面と密接
して配設されてある第2の螺旋状フィン6の内周に密接
してこれを支持すると共に、内管内に第2の螺旋状流路
を形成する役目がある。第1図法本構造の場合と同様に
向流熱媒流体10ば第2の螺旋状流路6に至って大幅に
流路断面積が縮小され、数倍〜十数倍に増速される。第
2の螺旋状フィン6は第1の螺旋状フィン3より直径が
小さいので伝熱面積を増大せしめる為の螺旋ピッチは後
者より小さく形成されてあることが望ましい。その為に
圧力損失が過大になる場合には第2の内管5内にも向流
熱媒流体10を並流せしめると良い。8は第2の内管5
の封止部であるが、この封止部は省略される場合もあり
又第2の内管5が流路である場合は流量調整手段である
場合もある。
In addition to the structure shown in Fig. 1, Fig. 2 also applies a structure based on the same points of view to the inside of the inner pipe, with countercurrent heat transfer fluid 10 and inner pipe 2.
The purpose is to improve the heat transfer performance between the heat exchanger and the inner wall surface of the heat exchanger, thereby significantly improving the performance of the heat exchanger as a whole. In the figure, reference numeral 5 denotes a second inner tube (or round bar) disposed within the inner tube, and second spiral fins 6 similarly disposed in close contact with the inner wall surface of the inner tube 2. It has the role of closely supporting the inner periphery of the tube and forming a second spiral flow path within the inner tube. As in the case of the present structure shown in FIG. 1, the countercurrent heat transfer fluid 10 reaches the second spiral flow path 6, where the flow path cross-sectional area is significantly reduced and the speed is increased several times to more than ten times. Since the second helical fin 6 has a smaller diameter than the first helical fin 3, it is desirable that the helical pitch is smaller than the latter in order to increase the heat transfer area. If the pressure loss becomes excessive for this reason, it is advisable to cause the countercurrent heat transfer fluid 10 to flow in the second inner pipe 5 as well. 8 is the second inner pipe 5
However, this sealing part may be omitted, or if the second inner tube 5 is a flow path, it may be a flow rate adjusting means.

〔作 用〕[For production]

外管1の内径70璽鳳、内管2の外径52m、螺旋状フ
ィン3の螺旋ピッチ201、フィンの肉厚2龍の場合に
ついて伝熱面積拡大倍率及び流速増大倍率は次の如くで
ある。
In the case where the inner diameter of the outer tube 1 is 70 mm, the outer diameter of the inner tube 2 is 52 m, the helical pitch of the spiral fin 3 is 201, and the fin wall thickness is 2 mm, the heat transfer area expansion magnification and flow velocity increase magnification are as follows. .

伝熱面積拡大倍率  n l =AI/At ”2.9
2倍螺旋状流路の断面積 A3 =142.8龍2流速
増加倍率    n 2 = 12.1  倍実験デー
タによれば熱媒流体が水であり内径50鶴の管内を流れ
る乱流の熱伝達率αは次の如き値に近似的であるとされ
る。
Heat transfer area expansion magnification n l =AI/At ”2.9
Double cross-sectional area of spiral flow path A3 = 142.8 Dragon 2 Flow rate increase magnification n 2 = 12.1 times According to the experimental data, the heat transfer fluid is water and turbulent heat transfer flows in a tube with an inner diameter of 50 mm. The rate α is assumed to be approximately the following value.

流速 0.5 m/secの場合 Ct =2000K
cal/m”h”C1m/sec       α= 
3700Kcal/m”h ”C2m/sec    
   α=6300Kcal/m”h’c3  m/s
ec       α=8700Kcal/m2h’c
即ち近似的に流速が2倍で熱伝達率は1.85倍、流速
が4倍で熱伝達率は3.15倍、流速が6倍で熱伝達率
は4.35倍の如き割合で増加している。従って流速が
12.1倍になった場合熱伝達率は約6〜6.5倍に増
加すると考えて大きな誤差はないと考えられる。従って
前記例の本発明に係る熱交換部の熱伝達性能の向上倍率
は次の如く考えられる。
When the flow rate is 0.5 m/sec, Ct = 2000K
cal/m”h”C1m/sec α=
3700Kcal/m”h”C2m/sec
α=6300Kcal/m"h'c3 m/s
ec α=8700Kcal/m2h'c
That is, approximately, when the flow rate is doubled, the heat transfer coefficient increases by 1.85 times, when the flow rate is 4 times, the heat transfer coefficient is 3.15 times, and when the flow rate is 6 times, the heat transfer coefficient increases by 4.35 times. are doing. Therefore, it is considered that when the flow rate increases by 12.1 times, the heat transfer coefficient increases by about 6 to 6.5 times, and there is no large error. Therefore, the improvement ratio of the heat transfer performance of the heat exchange section according to the present invention in the above example can be considered as follows.

従来の乱流発生手段と軸方向フィン併用の熱交換部の熱
伝達性能向上倍率は2〜3倍であるから前記例の本発明
に係る熱交換部の性能は6倍以上向上すると考えられる
。螺旋ピッチは更に小さくすることも可能であるから一
般的には約10倍の改善が期待出来る。父上記の結果か
ら管内流路の。
Since the heat transfer performance improvement factor of the conventional heat exchange section using turbulence generating means and axial fins is 2 to 3 times, it is thought that the performance of the heat exchange section according to the present invention in the above example is improved by 6 times or more. Since the helical pitch can be made even smaller, an improvement of about 10 times can generally be expected. From the above results, the flow path in the pipe.

場合伝熱面積の拡大よりは流速増大による方が熱伝達率
向上に対する寄与率が大きいものであることが分かる。
In this case, it can be seen that increasing the flow velocity has a larger contribution to improving the heat transfer coefficient than increasing the heat transfer area.

更に流速倍率が12.1倍に対して熱伝達率増加倍率を
6.5倍と低く見ているのは内圧増加によるものである
から大口径管流路の場合は内圧増加が少ないので更に改
善倍率は上昇すると考えられる。
Furthermore, the reason why the heat transfer coefficient increase factor is considered low at 6.5 times compared to the flow rate factor of 12.1 times is due to the increase in internal pressure, so in the case of large diameter pipe channels, the increase in internal pressure is small, so it can be further improved. It is thought that the multiplier will increase.

〔実施例〕〔Example〕

第1実施例 本発明に係る二重管構造熱交換器の熱交換部の実施に当
ってはその熱交換性能の優秀さだけでな(、現在量も多
用されている軸流方向のフィン付内管を圧入した構造の
ものに対して少く共トータルコスト的に充分に安価であ
り且つ保守が容易である必要がある。第3図はその様な
安価且つ保守性の良好な実施例を示す。第3図における
外法熱媒流体9に対する熱交換部構造には内管2の外周
壁面に熱伝導性の良好な材料からなる金属線3aが所定
の螺旋ピッチで螺旋状に巻回されたものが外管1の中に
圧入して形成されてある。又向流熱媒流体10に対する
熱交換部構造には内管2の内部に配設された第2の内管
5の外周壁面に熱伝導性の良好な材料からなる金属管6
aが所定のピッチで螺旋状に巻回されたものが内管2の
内部に圧入して形成されてある。金属線や金属管は極め
て安価に市場で入手することが可能であり、これ等は又
極めて容易に螺旋状に巻回することが可能であり、管内
に容易に圧入したり抜去することが可能で保守性も良好
である。従って1・−タルコストとして従来構造の熱交
換部より安価且つ容易に構成することが可能となる。図
において第2の螺旋状フィン6aは金属線であっても良
く又螺旋状フィン3aも金属管であっても良い。金属線
及び金属管は円形断面のものに限定されるものではなく
、楕円形であっても角形であっても良い。
First Embodiment When implementing the heat exchange section of the double-tube structure heat exchanger according to the present invention, it is important not only to have excellent heat exchange performance. It needs to be sufficiently inexpensive in terms of total cost and easy to maintain compared to the structure in which the inner tube is press-fitted. Fig. 3 shows an example of such an inexpensive and easy-to-maintain embodiment. In the heat exchanger structure for the external heat transfer fluid 9 in FIG. 3, a metal wire 3a made of a material with good thermal conductivity is spirally wound around the outer peripheral wall surface of the inner tube 2 at a predetermined helical pitch. The heat exchanger structure for the countercurrent heat transfer fluid 10 includes a material that is press-fitted into the outer tube 1.The heat exchanger structure for the countercurrent heat transfer fluid 10 includes Metal tube 6 made of material with good thermal conductivity
The inner tube 2 is formed by being press-fitted into the inner tube 2 by spirally winding a at a predetermined pitch. Metal wires and tubes are available on the market at very low prices, and they can also be wound into spirals very easily, making them easy to press into and remove from tubes. The maintainability is also good. Therefore, it is possible to construct the heat exchange section at a lower cost and easier than the conventional heat exchange section in terms of cost of 1. In the figure, the second spiral fin 6a may be a metal wire, and the spiral fin 3a may also be a metal tube. The metal wire and metal tube are not limited to those having a circular cross section, but may be oval or square.

第2実施例 第4図は本発明に係る熱交換部の他の実施例である。本
実施例においては第1図における基本構成の内管2及び
螺旋状フィン3に替わり、金属管と対流熱交換用螺旋状
フィンが一体となって転造成型された螺旋状フィン付金
属管が外管1の内部に圧入されて構成されてある。この
様な金属管は各種の金属材料、各種の螺旋ピッチ、各種
の管径、フィン外径のものが市販されている。軸方向フ
ィン付金属管と比較すればやや高価ではあるが熱伝達性
能が飛躍的に向上するのでトータルコストとしては従来
構造のものより大幅に価格低減することが可能となる。
Second Embodiment FIG. 4 shows another embodiment of the heat exchange section according to the present invention. In this embodiment, instead of the inner tube 2 and spiral fins 3 of the basic structure shown in FIG. 1, a metal tube with spiral fins is used, in which a metal tube and spiral fins for convection heat exchange are integrally rolled and molded. It is configured to be press-fitted into the inside of the outer tube 1. Such metal tubes are commercially available in various metal materials, various helical pitches, various tube diameters, and fin outer diameters. Although it is slightly more expensive than an axially finned metal tube, the heat transfer performance is dramatically improved, so the total cost can be significantly reduced compared to conventional structures.

ハ0発明の効果 本発明に係る二重管構造熱交換器の熱交換部はその基本
的構成及び実施例から分かる様に極めて簡易安価に製作
することが出来ると同時に熱交換性能を10倍以上に高
性能化することが出来る。
Effects of the Invention As can be seen from its basic structure and examples, the heat exchange section of the double tube structure heat exchanger according to the present invention can be manufactured extremely simply and inexpensively, and at the same time has a heat exchange performance of 10 times or more. It is possible to improve the performance.

従って熱交換用二重管の長さを大幅に短かくすることを
可能とし、又多管式熱交換部の場合は二重管の本数を大
幅に削減せしめることが出来る。これは熱交換器全体を
小型化、軽量化せしめ且つ高性能化、熱応答性の改善等
を可能にするものであり、更に熱交換器のコストを引下
げることも可能となる。本発明に係る二重管構造熱交換
器の熱交換部の構成は液相流体間の温度差熱交換のみに
適用されるのみでなく気相気相間、気相法相聞の熱交換
にも適用することが出来る。又単純な顕熱のみの熱交換
部、だけでなく気相法相聞の相変換による潜熱利用型の
熱交換部にも適用して効果を発揮せしめることが出来る
。又ヒー斗パイプの蒸気発生部(受熱部)、凝縮部(放
熱部)として構成して効果を挙げることも出来る。
Therefore, it is possible to significantly shorten the length of the double tube for heat exchange, and in the case of a multi-tube heat exchange section, the number of double tubes can be significantly reduced. This makes it possible to reduce the size and weight of the entire heat exchanger, improve performance, and improve thermal response, and furthermore, it becomes possible to reduce the cost of the heat exchanger. The configuration of the heat exchange section of the double tube structure heat exchanger according to the present invention is applicable not only to temperature difference heat exchange between liquid phase fluids, but also to heat exchange between gas phases and between gas phases. You can. Moreover, it can be applied not only to a heat exchange section that uses only simple sensible heat, but also to a heat exchange section that utilizes latent heat through phase conversion in a vapor phase process. It is also possible to obtain an effect by configuring it as a steam generating part (heat receiving part) and a condensing part (heat radiating part) of a heat pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明に係る二重管構造熱交換器の
熱交換部の基本的な構成を示す一部断面図及び縦断面図
である。 第3図及び第4図は第1、第2図の応用実施例を示す断
面略図である。 第5図は従来構造の二重管構造熱交換器の熱交換部の横
断面図である。 1・・・外管、2・・・内管、3・・・螺旋状フィン、
4・・・螺旋状流路、5・・・第2の内管、6・・・第
2の螺旋状フィン、7・・・第2の螺旋状流路、8・・
・封止部、9・・・外波熱媒流体、10・・・向流熱媒
流体、11・・・昇流路フィン(又は乱流発生手段)、
12・・・向流路フィン(又は乱流発生手段)。 第1図 第2図 第4図 第5図
1 and 2 are a partial cross-sectional view and a vertical cross-sectional view showing the basic structure of a heat exchange section of a double-tube heat exchanger according to the present invention. FIGS. 3 and 4 are schematic cross-sectional views showing applied embodiments of FIGS. 1 and 2. FIG. FIG. 5 is a cross-sectional view of a heat exchange section of a conventional double-tube heat exchanger. 1... Outer tube, 2... Inner tube, 3... Spiral fin,
4... Spiral channel, 5... Second inner tube, 6... Second spiral fin, 7... Second spiral channel, 8...
- Sealing part, 9... external wave heat transfer fluid, 10... countercurrent heat transfer fluid, 11... rising flow path fin (or turbulence generating means),
12...Counterflow path fin (or turbulence generating means). Figure 1 Figure 2 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)二重管の内外管の間隙と内管内との夫々に温度の
異なる流体が貫流し、流体相互間に熱交換が行なわれる
熱交換器の熱交換部であって、外管内壁面と内管外壁面
の間の所定の部分に、両壁面に密着して介在せしめられ
てあり、且つ両壁面に沿って軸方向に所定のピッチの螺
旋状フィンが設けられてあり、これにより内外管の間隙
に流体の螺旋状流路が形成されてあることを特徴とする
二重管構造熱交換器の熱交換部。
(1) A heat exchange part of a heat exchanger in which fluids with different temperatures flow through the gap between the outer and outer pipes and the inside of the inner pipe of a double pipe, and heat exchange is performed between the fluids, and the inner wall surface of the outer pipe and Spiral fins are provided at a predetermined portion between the outer wall surfaces of the inner tube, interposed in close contact with both wall surfaces, and at a predetermined pitch in the axial direction along both wall surfaces. A heat exchange section of a double tube heat exchanger, characterized in that a spiral flow path for fluid is formed in a gap.
(2)熱交換部における内管を第1の内管とした場合、
第1の内管の螺旋状フィンが設けられてある部分の内部
に第2の内管(又は丸棒)が挿入配設されてあり、第1
の内管の内壁面と第2の内管(又は丸棒)の外壁面との
間にも両壁面に密着して介在せしめられてあり、且つ両
壁面に沿って軸方向に所定のピッチの螺旋状フィンが設
けられてあり、更に第2の内管の内部貫通孔は封止され
てあるか、又は第2の内管内の流量調整手段が設けられ
てあることを特徴とする特許請求の範囲第(1)項に記
載の二重管構造熱交換器の熱交換部。
(2) When the inner tube in the heat exchange section is the first inner tube,
A second inner tube (or round rod) is inserted into a portion of the first inner tube where the spiral fins are provided, and
The second inner tube (or round bar) is also interposed between the inner wall surface of the inner tube and the outer wall surface of the second inner tube (or round bar) in close contact with both wall surfaces, and has a predetermined pitch in the axial direction along both wall surfaces. A spiral fin is provided, and the internal through-hole of the second inner tube is sealed or a flow rate adjustment means is provided in the second inner tube. A heat exchange section of a double tube structure heat exchanger according to scope item (1).
(3)螺旋状フィンは熱伝導性の良好な材料で形成され
てある金属線か又は金属管で形成されてあるものである
ことを特徴とする特許請求の範囲第(1)項に記載の二
重管構造熱交換器の熱交換部。
(3) The spiral fin is made of a metal wire or metal tube made of a material with good thermal conductivity, as set forth in claim (1). Heat exchange part of double tube structure heat exchanger.
(4)内管及び螺旋状フィンとして金属管に螺旋状フィ
ンが一体化して転造成型されてある螺旋状フィン付金属
管が使用されてあることを特徴とする特許請求の範囲第
(1)項に記載の二重管構造熱交換器の熱交換部。
(4) Claim (1) characterized in that a metal tube with spiral fins is used as the inner tube and the spiral fins, and the spiral fins are integrated into a metal tube and roll-molded. The heat exchange part of the double tube structure heat exchanger described in .
JP8973887A 1987-04-14 1987-04-14 Heat exchanging section of double-wall structured heat exchanger Pending JPS63259387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8973887A JPS63259387A (en) 1987-04-14 1987-04-14 Heat exchanging section of double-wall structured heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8973887A JPS63259387A (en) 1987-04-14 1987-04-14 Heat exchanging section of double-wall structured heat exchanger

Publications (1)

Publication Number Publication Date
JPS63259387A true JPS63259387A (en) 1988-10-26

Family

ID=13979105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8973887A Pending JPS63259387A (en) 1987-04-14 1987-04-14 Heat exchanging section of double-wall structured heat exchanger

Country Status (1)

Country Link
JP (1) JPS63259387A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251275A (en) * 1989-03-22 1990-10-09 Yamaha Corp Method for washing wafer
US5689971A (en) * 1995-09-22 1997-11-25 Gas Research Institute Absorption cooling system utilizing helical absorbers
US5729999A (en) * 1995-09-22 1998-03-24 Gas Research Institute Helical absorber construction
US6092590A (en) * 1996-05-03 2000-07-25 Daimlerchrysler Aerospace Airbus Gmbh Method and evaporator device for evaporating a low temperature liquid medium
JP2006349212A (en) * 2005-06-13 2006-12-28 Paloma Ind Ltd Water heating appliance
JP2012107824A (en) * 2010-11-18 2012-06-07 Furukawa Electric Co Ltd:The Double pipe
US20140311709A1 (en) * 2011-08-19 2014-10-23 Allied Castle International Limited Heat exchanger, and energy recovery device and energy recovery system comprising heat exchanger
JP2020012619A (en) * 2018-07-20 2020-01-23 株式会社ヴァレオジャパン Double-pipe heat exchanger
CN113513929A (en) * 2021-05-17 2021-10-19 四川航天中天动力装备有限责任公司 Internal and external spiral fin type temperature control combustion lubricating oil heat exchanger based on compact channel
JP2022113192A (en) * 2021-01-25 2022-08-04 株式会社リネイチャー Heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251275A (en) * 1989-03-22 1990-10-09 Yamaha Corp Method for washing wafer
US5689971A (en) * 1995-09-22 1997-11-25 Gas Research Institute Absorption cooling system utilizing helical absorbers
US5729999A (en) * 1995-09-22 1998-03-24 Gas Research Institute Helical absorber construction
US6092590A (en) * 1996-05-03 2000-07-25 Daimlerchrysler Aerospace Airbus Gmbh Method and evaporator device for evaporating a low temperature liquid medium
US6263678B1 (en) 1996-05-03 2001-07-24 Daimlerchrysler Aerospace Airbus Gmbh Method of evaporating a low temperature liquid medium
JP2006349212A (en) * 2005-06-13 2006-12-28 Paloma Ind Ltd Water heating appliance
JP4728050B2 (en) * 2005-06-13 2011-07-20 株式会社パロマ Hot water equipment
JP2012107824A (en) * 2010-11-18 2012-06-07 Furukawa Electric Co Ltd:The Double pipe
US20140311709A1 (en) * 2011-08-19 2014-10-23 Allied Castle International Limited Heat exchanger, and energy recovery device and energy recovery system comprising heat exchanger
JP2020012619A (en) * 2018-07-20 2020-01-23 株式会社ヴァレオジャパン Double-pipe heat exchanger
JP2022113192A (en) * 2021-01-25 2022-08-04 株式会社リネイチャー Heat exchanger
CN113513929A (en) * 2021-05-17 2021-10-19 四川航天中天动力装备有限责任公司 Internal and external spiral fin type temperature control combustion lubricating oil heat exchanger based on compact channel

Similar Documents

Publication Publication Date Title
US20160018168A1 (en) Angled Tube Fins to Support Shell Side Flow
US3217799A (en) Steam condenser of the water tube type
JPH0444191B2 (en)
JPS63259387A (en) Heat exchanging section of double-wall structured heat exchanger
KR20110083996A (en) Double-piped heat exchanger
US5472047A (en) Mixed finned tube and bare tube heat exchanger tube bundle
JPS61265498A (en) Heat exchanger with large number of parallel tube with rib
JP2005083667A (en) Heat exchanger
FR2115242A1 (en) Double pipe condenser - esp for refrigerant in air conditioning equipment
JPH11183062A (en) Double piped heat exchanger
JPH09229574A (en) Heat exchanger for heating refrigerant
US2529516A (en) Heat exchanger
JPS60232496A (en) Heat exchanger
JPS58182084A (en) Heat exchanger
Reilly An experimental investigation of enhanced heat transfer on horizontal condenser tubes
CN214039654U (en) High-temperature combined heat exchanger
JPS6095464U (en) double tube heat exchanger
CN217541618U (en) Condenser pipe with enhanced external condensation heat transfer effect
RU2822724C1 (en) Shell-and-tube heat exchanger
KR20090016623A (en) Pipe in pipe type heat exchanger with high heat transfer
JPH0468558B2 (en)
SU1726954A1 (en) Tubular spiral exchanger
JP3001393U (en) Cobra-shaped heat pipe heat exchanger
JPH01144659U (en)
JPS5812047Y2 (en) heat exchange equipment