JP4728050B2 - Hot water equipment - Google Patents

Hot water equipment Download PDF

Info

Publication number
JP4728050B2
JP4728050B2 JP2005172695A JP2005172695A JP4728050B2 JP 4728050 B2 JP4728050 B2 JP 4728050B2 JP 2005172695 A JP2005172695 A JP 2005172695A JP 2005172695 A JP2005172695 A JP 2005172695A JP 4728050 B2 JP4728050 B2 JP 4728050B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
combustion exhaust
tube
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005172695A
Other languages
Japanese (ja)
Other versions
JP2006349212A (en
Inventor
信義 横山
友久 石黒
Original Assignee
株式会社パロマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パロマ filed Critical 株式会社パロマ
Priority to JP2005172695A priority Critical patent/JP4728050B2/en
Publication of JP2006349212A publication Critical patent/JP2006349212A/en
Application granted granted Critical
Publication of JP4728050B2 publication Critical patent/JP4728050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バーナの燃焼排気から顕熱と潜熱とを回収して通水を加熱する2つの熱交換器を備えた給湯器等の温水機器に関する。   The present invention relates to a hot water apparatus such as a water heater provided with two heat exchangers for recovering sensible heat and latent heat from combustion exhaust of a burner and heating water flow.

例えば給湯器には、バーナの燃焼排気流路の上流側に、主に顕熱回収を目的とした主熱交換器を、下流側に、主に潜熱回収を目的とした副熱交換器を夫々設けて高い熱効率を得ようとするものがある。副熱交換器は、水が通過する伝熱管の外周に、吸熱部となるフィンを直交状に、伝熱管に沿って所定間隔で設けたものである。また、主熱交換器と副熱交換器との間には、副熱交換器で発生したドレンを受けるドレン受部が設けられて、発生した酸性のドレンを中和処理して外部へ排出させるようにしている(例えば特許文献1参照)。
一方、熱交換器においては、内管と外管とからなる二重管構造として、内管と外管との間に、外管の内側流路を螺旋状に仕切る伝熱促進体を設けた二重管式熱交換器も知られている(特許文献2参照)。
For example, in a water heater, a main heat exchanger mainly for the purpose of sensible heat recovery is provided upstream of the combustion exhaust passage of the burner, and a sub heat exchanger mainly for the purpose of latent heat recovery is provided on the downstream side. Some are intended to provide high thermal efficiency. The auxiliary heat exchanger is configured such that fins serving as heat absorbing portions are orthogonally arranged at predetermined intervals along the heat transfer tube on the outer periphery of the heat transfer tube through which water passes. In addition, a drain receiving portion that receives drain generated in the auxiliary heat exchanger is provided between the main heat exchanger and the auxiliary heat exchanger, and the generated acidic drain is neutralized and discharged to the outside. (For example, refer to Patent Document 1).
On the other hand, in the heat exchanger, as a double tube structure consisting of an inner tube and an outer tube, a heat transfer facilitator that spirally partitions the inner flow path of the outer tube is provided between the inner tube and the outer tube. A double-pipe heat exchanger is also known (see Patent Document 2).

特開2004−198065号公報JP 2004-198065 A 特開2001−201275号公報JP 2001-201275 A

副熱交換器において、伝熱管に対して燃焼排気を交差状に通過させると、燃焼排気が伝熱管によって遮られて伝熱管の下流側まで回り込まず、吸熱効率が悪くなることから、特許文献2のような二重管構造として、燃焼排気を伝熱管の周囲で万遍なく通過させるのが望ましい。
しかし、伝熱管やフィンの表面に発生したドレンがフィンの表面や内側流路に停留して燃焼排気との熱交換を阻害するため、燃焼排気を伝熱管に沿って流しても吸熱効率の充分な向上には至っていなかった。
In the auxiliary heat exchanger, if the combustion exhaust gas is passed through the heat transfer tube in an intersecting manner, the combustion exhaust gas is blocked by the heat transfer tube and does not flow down to the downstream side of the heat transfer tube, resulting in poor heat absorption efficiency. It is desirable to pass the combustion exhaust gas uniformly around the heat transfer tube as a double tube structure as described above.
However, since the drain generated on the surface of the heat transfer tubes and fins stays on the surface of the fins and the inner flow path and inhibits heat exchange with the combustion exhaust, sufficient heat absorption efficiency is achieved even if the combustion exhaust flows along the heat transfer tubes. The improvement was not reached.

そこで、本発明は、二重管構造による利点を維持しつつ、ドレンの停留もなくして吸熱効率の好適な向上が図られる温水機器を提供することを目的としたものである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hot water device that maintains the advantages of a double tube structure and that can suitably improve the endothermic efficiency without drain retention.

上記目的を達成するために、請求項1に記載の発明は、副熱交換器の伝熱管のフィンを、当該伝熱管に直接形成したスパイラル状の突条とし、副熱交換器に、フィンごと伝熱管の周囲を覆うガイド管を設けて、そのガイド管と伝熱管との間に燃焼排気通路を形成し、燃焼排気を燃焼排気通路内で伝熱管に沿って通過させるようにする一方、副熱交換器に、燃焼排気通路における燃焼排気の通過方向に向かって低くなる下り勾配を付与したことを特徴とするものである。 In order to achieve the above-mentioned object, the invention described in claim 1 is characterized in that the fin of the heat transfer tube of the sub heat exchanger is a spiral ridge formed directly on the heat transfer tube, and the fin is included in the sub heat exchanger. A guide tube covering the periphery of the heat transfer tube is provided, a combustion exhaust passage is formed between the guide tube and the heat transfer tube, and the combustion exhaust is passed along the heat transfer tube in the combustion exhaust passage. The heat exchanger is provided with a downward gradient that decreases toward the passage direction of the combustion exhaust gas in the combustion exhaust passage.

請求項1に記載の発明によれば、燃焼排気を伝熱管の周囲で万遍なく通過させて吸熱効率を向上させることができる。而も、副熱交換器の傾斜によってドレンが迅速に排出されるため、停留したドレンが吸熱の妨げになることがなく、好適な吸熱効率を獲得可能となる。
特に、スパイラル状のフィンとしたことで、伝熱距離が長くなってより吸熱効率が良くなる。また、燃焼排気がスパイラル状にガイドされることで排気抵抗も低減される。
According to the first aspect of the present invention, it is possible to improve the heat absorption efficiency by allowing the combustion exhaust gas to pass through the heat transfer tube evenly. In addition, since the drain is quickly discharged by the inclination of the auxiliary heat exchanger, the retained drain does not interfere with the heat absorption, and a suitable heat absorption efficiency can be obtained.
In particular , by using a spiral fin, the heat transfer distance becomes longer and the heat absorption efficiency is improved. Further, the exhaust resistance is reduced by guiding the combustion exhaust in a spiral shape.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、温水機器の一例である給湯器の概略構成図で、給湯器1は、器具本体2内に、下方に給気ファン4を、上方に排気口5を夫々備えた燃焼室3を形成して、燃焼室3の内部に、燃料ガスと給気ファン4からの一次空気との混合ガスを燃焼させるバーナ6を備えると共に、バーナ6からの燃焼排気中の顕熱を主に回収するフィンチューブ式の主熱交換器7と、主に潜熱を回収する同じくフィンチューブ式の副熱交換器8とを内設している。ここでは、器具内へ導かれる給水管9を副熱交換器8の入水部12に接続して副熱交換器8を主熱交換器7の上流側に配置し、副熱交換器8の出水部13を主熱交換器7の入水側に接続して、出湯管10を主熱交換器7の出水側に接続している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a water heater that is an example of a hot water device. The water heater 1 includes a combustion chamber 3 having an air supply fan 4 on the lower side and an exhaust port 5 on the upper side in the appliance body 2. The burner 6 is formed inside the combustion chamber 3 to burn the mixed gas of the fuel gas and the primary air from the air supply fan 4, and the sensible heat in the combustion exhaust from the burner 6 is mainly recovered. A fin tube type main heat exchanger 7 and a fin tube type sub heat exchanger 8 that mainly recovers latent heat are provided internally. Here, the water supply pipe 9 led into the appliance is connected to the water inlet 12 of the auxiliary heat exchanger 8, the auxiliary heat exchanger 8 is arranged upstream of the main heat exchanger 7, and the water discharged from the auxiliary heat exchanger 8 is discharged. The part 13 is connected to the water inlet side of the main heat exchanger 7, and the hot water discharge pipe 10 is connected to the water outlet side of the main heat exchanger 7.

ここで、副熱交換器8は、図2,3にも示すように、入水部12と出水部13との間で互いに平行に配設された複数(ここでは4本)の伝熱管11,11・・と、各伝熱管11の外周でスパイラル状に立設される板状のフィン14と、全ての伝熱管11をフィン14ごと覆う横長のガイド管15とからなる。ガイド管15内で伝熱管11,11間には、両者間を仕切る仕切壁16,16・・が介在されており、フィン14の外周端は、ガイド管15及び仕切壁16と非接触となっている。
よって、ガイド管15内には、各伝熱管11をスパイラル状に巻回する燃焼排気通路17,17・・が夫々独立形成されることになる。18は、ガイド管15における各伝熱管11の下面側で軸方向に沿って突設された突条で、この突条18によって各伝熱管11の下方には、フィン14の外側で軸方向へ連通する案内溝19が形成される。
Here, as shown in FIGS. 2 and 3, the auxiliary heat exchanger 8 includes a plurality of (here, four) heat transfer tubes 11 disposed in parallel between the water inlet 12 and the water outlet 13. 11.., A plate-like fin 14 standing in a spiral shape on the outer periphery of each heat transfer tube 11, and a horizontally long guide tube 15 covering all the heat transfer tubes 11 together with the fins 14. In the guide tube 15, partition walls 16, 16... Are partitioned between the heat transfer tubes 11, 11, and the outer peripheral end of the fin 14 is not in contact with the guide tube 15 and the partition wall 16. ing.
Therefore, combustion exhaust passages 17, 17,... For winding the heat transfer tubes 11 in a spiral shape are formed independently in the guide tube 15, respectively. Reference numeral 18 denotes a ridge projecting along the axial direction on the lower surface side of each heat transfer tube 11 in the guide tube 15. The projecting ridge 18 extends below the heat transfer tube 11 in the axial direction outside the fins 14. A communicating groove 19 is formed.

また、ガイド管15における出水部13側の端部は、出水部13と接続されずに燃焼室3内上方に向けて開口した入口20となり、入水部12側の端部は、上面に開口した出口21が排気口5と連結されている。よって、主熱交換器7を通過した燃焼排気は、全て入口20からガイド管15内に進入し、各燃焼排気通路17を通過した後、出口21を介して排気口5から排出されることになる。
そして、副熱交換器8全体は、入水部12が出水部13よりも低くなるように、すなわち燃焼排気の通過方向へ向けて下り勾配となるように傾斜状態で設置されている。
なお、ガイド管15の各案内溝19は、最下位置となる入水部12際で下方に開口しており、その下方には、受皿22が設けられて、受皿22は、中和器23を備えたドレン排出管24に接続されている。
Further, the end of the guide pipe 15 on the side of the water discharge portion 13 becomes an inlet 20 that is not connected to the water discharge portion 13 and opens upward in the combustion chamber 3, and the end of the water intake portion 12 side opens on the upper surface. The outlet 21 is connected to the exhaust port 5. Therefore, all the combustion exhaust gas that has passed through the main heat exchanger 7 enters the guide pipe 15 from the inlet 20, passes through each combustion exhaust passage 17, and is then discharged from the exhaust port 5 through the outlet 21. Become.
And the sub heat exchanger 8 whole is installed in the inclination state so that the inflow part 12 may become lower than the outflow part 13, ie, it may become a downward slope toward the passage direction of combustion exhaust.
Each guide groove 19 of the guide tube 15 is opened downward at the bottom of the water inlet 12, and a receiving tray 22 is provided below the receiving portion 12. The receiving tray 22 has a neutralizer 23. It is connected to the drain discharge pipe 24 provided.

一方、バーナ6へのガス管には、主電磁弁25及びガス比例弁26が、給水管9には水量センサ27が夫々設けられてコントローラ28に電気的接続されている。このコントローラ28には、給気ファン4を駆動させるモータや出湯管10に設けられた温度センサ29も電気的接続されている。   On the other hand, a main electromagnetic valve 25 and a gas proportional valve 26 are provided in the gas pipe to the burner 6, and a water amount sensor 27 is provided in the water supply pipe 9 and electrically connected to the controller 28. The controller 28 is also electrically connected to a motor for driving the air supply fan 4 and a temperature sensor 29 provided in the hot water discharge pipe 10.

以上の如く構成された給湯器1においては、出湯管10の下流側で接続された図示しない給湯栓を開いて器具内に通水させると、コントローラ28は水量センサ27からの検出信号を得て主電磁弁25及びガス比例弁26を開いてバーナ6にガスを供給すると共に、図示しないイグナイタを作動させてバーナ6の点火制御を行う。バーナ6の点火後、コントローラ28は、温度センサ29で検出された出湯温度と、コントローラ28に接続された図示しないリモコンで設定された設定温度との差に応じて、ガス比例弁26の開度を制御してガス量を連続的に変化させ、出湯温度を設定温度に一致させる。また、このガス量の変化に応じて給気ファン4の回転数も変化させて、ガス量と空気量との比率を制御する。   In the water heater 1 configured as described above, when a hot water tap (not shown) connected downstream of the hot water pipe 10 is opened and water is passed through the appliance, the controller 28 obtains a detection signal from the water amount sensor 27. The main electromagnetic valve 25 and the gas proportional valve 26 are opened to supply gas to the burner 6, and an igniter (not shown) is operated to perform ignition control of the burner 6. After ignition of the burner 6, the controller 28 opens the gas proportional valve 26 according to the difference between the hot water temperature detected by the temperature sensor 29 and the set temperature set by a remote controller (not shown) connected to the controller 28. Is controlled to continuously change the gas amount so that the tapping temperature matches the set temperature. Further, the ratio of the gas amount to the air amount is controlled by changing the rotational speed of the air supply fan 4 in accordance with the change in the gas amount.

また、バーナ6の燃焼により、燃焼排気は先に主熱交換器7を通過して、通水される伝熱管との熱交換で顕熱が回収された後、燃焼室3内を上昇して、副熱交換器8のガイド管15の入口20からガイド管15内に進入し、各燃焼排気通路17を通過して出口21から排気口5へ排出される。よって、副熱交換器8では、入水部12から出水部13へ向けて通水される各伝熱管11との熱交換により、主熱交換器7で回収されなかった顕熱が回収される。特に、スパイラル状の燃焼排気通路17により、燃焼排気は主に伝熱管11及びフィン14を図3の点線矢印のように周回して長い距離で接触するため、より効率の良い吸熱が可能となる。さらに、フィン14の外周とガイド管15との間も燃焼排気が通過することで、フィン14全体に亘って燃焼排気が均等に接触できることにもなる。   In addition, combustion of the burner 6 causes the combustion exhaust gas to first pass through the main heat exchanger 7, and after sensible heat is recovered by heat exchange with the heat transfer tubes to be passed, The auxiliary heat exchanger 8 enters the guide tube 15 from the inlet 20 of the guide tube 15, passes through the combustion exhaust passages 17, and is discharged from the outlet 21 to the exhaust port 5. Therefore, in the auxiliary heat exchanger 8, sensible heat that has not been recovered by the main heat exchanger 7 is recovered by heat exchange with each heat transfer tube 11 that flows from the water inlet 12 toward the water outlet 13. In particular, due to the spiral combustion exhaust passage 17, the combustion exhaust mainly circulates around the heat transfer tubes 11 and the fins 14 as shown by dotted arrows in FIG. . Furthermore, since the combustion exhaust gas passes between the outer periphery of the fin 14 and the guide tube 15, the combustion exhaust gas can be evenly contacted over the entire fin 14.

そして、副熱交換器8では、燃焼排気の温度が露点以下になるとドレンが発生するため、潜熱も回収可能となる。発生したドレンは、フィン14の表面を伝って案内溝19に集められ、さらに副熱交換器8の下り勾配により、入水部12側へ向かって流れて受皿22上に落下し、中和器23で中和処理されて器具外部の下水道等へ排出される。特にここでは、燃焼排気の通過に給気ファン4の風圧が加わっているため、ガイド管15からのドレンの排出は迅速に行える。   In the auxiliary heat exchanger 8, since the drain is generated when the temperature of the combustion exhaust gas becomes the dew point or lower, the latent heat can also be recovered. The generated drain is collected in the guide groove 19 along the surface of the fin 14, and further flows toward the water inlet 12 side due to the downward gradient of the auxiliary heat exchanger 8, and falls on the receiving tray 22, and is neutralized by the neutralizer 23. Is neutralized and discharged to the sewer outside the appliance. In particular, here, since the wind pressure of the air supply fan 4 is applied to the passage of the combustion exhaust gas, drainage from the guide tube 15 can be performed quickly.

このように上記形態の給湯器1によれば、副熱交換器8に、フィン14ごと伝熱管11の周囲を覆うガイド管15を設けて、そのガイド管15と伝熱管11との間に燃焼排気通路17を形成し、燃焼排気を燃焼排気通路17内で伝熱管11に沿って通過させるようにする一方、副熱交換器8に、燃焼排気通路17における燃焼排気の通過方向に向かって低くなる下り勾配を付与したことで、燃焼排気を伝熱管11の周囲で万遍なく通過させて吸熱効率を向上させることができる。而も、副熱交換器8の傾斜によってドレンが迅速に排出されるため、停留したドレンが吸熱の妨げになることがなく、好適な吸熱効率を獲得可能となる。
特に、副熱交換器8の伝熱管11のフィン14をスパイラル状に連続形成したことで、伝熱距離が長くなってより吸熱効率が良くなる。また、燃焼排気がスパイラル状にガイドされることで排気抵抗も低減される。
Thus, according to the hot water heater 1 of the said form, the guide pipe 15 which covers the circumference | surroundings of the heat exchanger tube 11 with the fin 14 is provided in the auxiliary heat exchanger 8, and it burns between the guide tube 15 and the heat exchanger tube 11 An exhaust passage 17 is formed to allow combustion exhaust to pass along the heat transfer pipe 11 in the combustion exhaust passage 17, while lowering the auxiliary heat exchanger 8 toward the passage of combustion exhaust in the combustion exhaust passage 17. By providing the downward gradient, it is possible to improve the heat absorption efficiency by allowing the combustion exhaust gas to pass through the heat transfer tube 11 uniformly. In addition, since the drain is quickly discharged by the inclination of the auxiliary heat exchanger 8, the retained drain does not interfere with the heat absorption, and a suitable heat absorption efficiency can be obtained.
In particular, since the fins 14 of the heat transfer tubes 11 of the auxiliary heat exchanger 8 are continuously formed in a spiral shape, the heat transfer distance is increased and the heat absorption efficiency is further improved. Further, the exhaust resistance is reduced by guiding the combustion exhaust in a spiral shape.

なお、副熱交換器におけるフィンの形状は、上記形態の板状に限らず、図4に示すように、伝熱管11に直接突条を形成することで、スパイラル状のフィン30を得るようにしても良い。また、スパイラル状のフィンとガイド管との間は、上記形態では僅かな隙間を形成しているが、スパイラル状のフィンのピッチの設定等によって排気抵抗が大きくならなければ、フィンの外周をガイド管の内面に当接させるように形成することもできる。さらに、スパイラルは連続形成するものに限らず、断続的に形成することも可能である。   In addition, the shape of the fin in the auxiliary heat exchanger is not limited to the plate shape of the above form, and as shown in FIG. 4, a spiral fin 30 is obtained by directly forming a protrusion on the heat transfer tube 11. May be. In addition, a slight gap is formed between the spiral fin and the guide tube in the above embodiment, but if the exhaust resistance does not increase due to the setting of the pitch of the spiral fin or the like, the outer periphery of the fin is guided. It can also be formed so as to contact the inner surface of the tube. Furthermore, the spiral is not limited to being formed continuously, but can be formed intermittently.

一方、このようなスパイラル状に限らず、図5に示すように、伝熱管11と直交方向の板状のフィン31,31・・を、伝熱管11の軸方向へ所定間隔で複数枚並設する構造でも差し支えない。但し、この場合、フィン31の外周先端とガイド管32の内面との間に隙間が生じるようにして、燃焼排気及びドレンの通過を許容する必要がある。この変更例では、ガイド管32もフィン31の位置に合わせた蛇腹状として隙間の形成を可能としているが、フィンの間隔が大きければフィン位置に合わせた突条を断続的に設けても良い。
このように、ガイド管における各フィンの位置に、フィンの周縁に沿って外周側へ突出する突条(蛇腹状も含む)をフィンと非接触で設ければ、フィン全体へ均等に燃焼排気が接触できる上、フィンの外周を通過する燃焼排気が突条部分で乱流となってフィンや伝熱管との接触時間も長くなり、吸熱効率の一層の向上が期待できる。なお、この場合も図6に示すように、伝熱管11に直接突設した突条によって蛇腹状のフィン33を形成しても差し支えない。
On the other hand, not limited to such a spiral shape, as shown in FIG. 5, a plurality of plate-shaped fins 31, 31... Orthogonal to the heat transfer tube 11 are arranged in parallel in the axial direction of the heat transfer tube 11. It does not matter even if it is a structure. However, in this case, it is necessary to allow passage of combustion exhaust gas and drain so that a gap is formed between the outer peripheral tip of the fin 31 and the inner surface of the guide tube 32. In this modified example, the guide tube 32 also has a bellows shape that matches the position of the fin 31 so that a gap can be formed. However, if the gap between the fins is large, a protrusion corresponding to the fin position may be provided intermittently.
In this way, if the protrusions (including the bellows shape) protruding to the outer peripheral side along the peripheral edge of the fin are provided at the position of each fin in the guide tube in a non-contact manner with the fin, the combustion exhaust is evenly distributed to the entire fin. In addition to being able to make contact, the combustion exhaust gas that passes through the outer periphery of the fin becomes a turbulent flow at the protruding portion, and the contact time with the fin and the heat transfer tube becomes longer, and further improvement in heat absorption efficiency can be expected. In this case as well, as shown in FIG. 6, the bellows-like fins 33 may be formed by the protrusions protruding directly on the heat transfer tube 11.

その他、ガイド管の構成も、上記形態のように全ての伝熱管をまとめて覆う筒状に限らず、各伝熱管ごとに独立して外装させる構造としても良い。この場合、燃焼排気が各ガイド管へ確実に導かれるように、ガイド管同士を接触させたり、全ガイド管の外側をさらに別の筒体で覆ったりする必要がある。
また、副熱交換器の傾斜は、傾斜角度が大きい程ドレンの排出は迅速になるが、燃焼排気の入口と出口との高低差が大きくなりすぎると排気抵抗の増大に繋がることから、両者のバランスを考慮して、5〜15°程度で設定するのが望ましい。
In addition, the configuration of the guide tube is not limited to the cylindrical shape that covers all the heat transfer tubes together as in the above-described form, and may be configured to be externally provided for each heat transfer tube. In this case, it is necessary to bring the guide tubes into contact with each other or to cover the outside of all the guide tubes with another cylinder so that the combustion exhaust gas is reliably guided to the respective guide tubes.
As for the inclination of the auxiliary heat exchanger, the larger the inclination angle, the faster the drain is discharged, but if the height difference between the inlet and outlet of the combustion exhaust becomes too large, the exhaust resistance will increase. In consideration of balance, it is desirable to set at about 5 to 15 °.

給湯器の概略構成図である。It is a schematic block diagram of a water heater. 副熱交換器の横断面図である。It is a cross-sectional view of a sub heat exchanger. 副熱交換器における伝熱管部分の説明図である。It is explanatory drawing of the heat exchanger tube part in a subheat exchanger. フィンの変更例を示す伝熱管部分の説明図である。It is explanatory drawing of the heat exchanger tube part which shows the example of a change of a fin. フィンの変更例を示す伝熱管部分の説明図である。It is explanatory drawing of the heat exchanger tube part which shows the example of a change of a fin. フィンの変更例を示す伝熱管部分の説明図である。It is explanatory drawing of the heat exchanger tube part which shows the example of a change of a fin.

符号の説明Explanation of symbols

1・・給湯器、2・・器具本体、3・・燃焼室、6・・バーナ、7・・主熱交換器、8・・副熱交換器、9・・給水管、10・・出湯管、11・・伝熱管、12・・入水部、13・・出水部、14,31,33・・フィン、15,32・・ガイド管、17・・燃焼排気通路、19・・案内溝、20・・入口、21・・出口、28・・コントローラ。
1 .... Hot water heater, 2 .... Main body, 3 .... Combustion chamber, 6 .... Burner, 7 .... Main heat exchanger, 8 .... Sub heat exchanger, 9 .... Water supply pipe, 10 .... Hot water pipe , 11 .. Heat transfer pipe, 12 .. Water inlet, 13 .. Water outlet, 14, 31, 33 .. Fin, 15, 32 .. Guide pipe, 17 .. Combustion exhaust passage, 19 .. Guide groove, 20 ..Inlet, 21 ... Exit, 28 ... Controller.

Claims (1)

バーナと、そのバーナの燃焼排気から顕熱を回収してフィンを備えた伝熱管内の通水を加熱する主熱交換器と、その主熱交換器を通過した燃焼排気から潜熱を回収してフィンを備えた伝熱管内の通水を加熱する副熱交換器とを備えた温水機器であって、
前記副熱交換器の伝熱管のフィンを、当該伝熱管に直接形成したスパイラル状の突条とし、前記副熱交換器に、前記フィンごと伝熱管の周囲を覆うガイド管を設けて、そのガイド管と伝熱管との間に燃焼排気通路を形成し、燃焼排気を前記燃焼排気通路内で前記伝熱管に沿って通過させるようにする一方、前記副熱交換器に、前記燃焼排気通路における燃焼排気の通過方向に向かって低くなる下り勾配を付与したことを特徴とする温水機器。
The main heat exchanger that recovers sensible heat from the combustion exhaust of the burner and heats the water in the heat transfer tube with fins, and the latent heat is recovered from the combustion exhaust that has passed through the main heat exchanger. A hot water device comprising a sub-heat exchanger for heating water flow in a heat transfer tube having fins,
The fin of the heat transfer tube of the auxiliary heat exchanger is a spiral ridge formed directly on the heat transfer tube, and a guide tube that covers the periphery of the heat transfer tube together with the fin is provided in the auxiliary heat exchanger, and the guide A combustion exhaust passage is formed between the pipe and the heat transfer pipe so that the combustion exhaust is allowed to pass along the heat transfer pipe in the combustion exhaust passage, while the auxiliary heat exchanger has a combustion in the combustion exhaust passage. A hot water device characterized by being provided with a downward slope that becomes lower in the exhaust passage direction.
JP2005172695A 2005-06-13 2005-06-13 Hot water equipment Active JP4728050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172695A JP4728050B2 (en) 2005-06-13 2005-06-13 Hot water equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172695A JP4728050B2 (en) 2005-06-13 2005-06-13 Hot water equipment

Publications (2)

Publication Number Publication Date
JP2006349212A JP2006349212A (en) 2006-12-28
JP4728050B2 true JP4728050B2 (en) 2011-07-20

Family

ID=37645250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172695A Active JP4728050B2 (en) 2005-06-13 2005-06-13 Hot water equipment

Country Status (1)

Country Link
JP (1) JP4728050B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401055B2 (en) * 2017-03-03 2019-09-03 Trane International Inc. Reduced drag combustion pass in a tubular heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252771U (en) * 1985-09-17 1987-04-02
JPS63259387A (en) * 1987-04-14 1988-10-26 Akutoronikusu Kk Heat exchanging section of double-wall structured heat exchanger
JP2000205658A (en) * 1999-01-05 2000-07-28 Gastar Corp Combustion equipment
JP2001065339A (en) * 1999-08-24 2001-03-13 Kazuta Engine Sekkei Kk Exhaust gas heat exchanger, and engine and air conditioner using it
JP2002372311A (en) * 2001-06-18 2002-12-26 Noritz Corp Latent heat recovery type heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252771A (en) * 1985-08-30 1987-03-07 Toshiba Corp Speed detecting device for magnetic head

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252771U (en) * 1985-09-17 1987-04-02
JPS63259387A (en) * 1987-04-14 1988-10-26 Akutoronikusu Kk Heat exchanging section of double-wall structured heat exchanger
JP2000205658A (en) * 1999-01-05 2000-07-28 Gastar Corp Combustion equipment
JP2001065339A (en) * 1999-08-24 2001-03-13 Kazuta Engine Sekkei Kk Exhaust gas heat exchanger, and engine and air conditioner using it
JP2002372311A (en) * 2001-06-18 2002-12-26 Noritz Corp Latent heat recovery type heat exchanger

Also Published As

Publication number Publication date
JP2006349212A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US10890356B2 (en) Heat exchange device and heat source machine
EP1544555B1 (en) Hot water apparatus
JP5182570B2 (en) Water heater
US7360507B1 (en) Energy saving apparatus
JP2012117736A (en) Combustion equipment
JP4728050B2 (en) Hot water equipment
JP4947704B2 (en) Neutralizer and gas burner
JP2008267673A (en) Hot-water supply apparatus
JP4852980B2 (en) Water heater
JP4728056B2 (en) Hot water equipment
JP5196309B2 (en) Water heater
JP2005180778A (en) Water heating appliance
JP6114142B2 (en) Latent heat exchanger
JP6247031B2 (en) Water heater
JP2002089970A (en) Hot water supply apparatus
JP4716011B2 (en) Hot water equipment
JP7256525B2 (en) Water heater
KR100581589B1 (en) A latent heat exchanger for a condensing boiler
JP5791996B2 (en) Combustion appliances
JP7298877B2 (en) Water heater
JP7144831B2 (en) Heat exchangers and combined water heaters
JP7181095B2 (en) water heater
JP4262897B2 (en) Water heater
JP2006317032A (en) Water heater
JP2023059542A (en) Heat exchanger and water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250