JPS6325801B2 - - Google Patents

Info

Publication number
JPS6325801B2
JPS6325801B2 JP54170564A JP17056479A JPS6325801B2 JP S6325801 B2 JPS6325801 B2 JP S6325801B2 JP 54170564 A JP54170564 A JP 54170564A JP 17056479 A JP17056479 A JP 17056479A JP S6325801 B2 JPS6325801 B2 JP S6325801B2
Authority
JP
Japan
Prior art keywords
steam
condensate
wort
heat
condensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54170564A
Other languages
Japanese (ja)
Other versions
JPS5624001A (en
Inventor
Penzeru Jiikufuriido
Shutorutsuku Uiruherumu
Metsutsu Kaaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMU AA ENU MAS FAB AUGUSUBURUGU NYURUNBERUGU AG
Original Assignee
EMU AA ENU MAS FAB AUGUSUBURUGU NYURUNBERUGU AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMU AA ENU MAS FAB AUGUSUBURUGU NYURUNBERUGU AG filed Critical EMU AA ENU MAS FAB AUGUSUBURUGU NYURUNBERUGU AG
Publication of JPS5624001A publication Critical patent/JPS5624001A/en
Publication of JPS6325801B2 publication Critical patent/JPS6325801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C7/00Preparation of wort
    • C12C7/20Boiling the beerwort
    • C12C7/205Boiling with hops
    • C12C7/22Processes or apparatus specially adapted to save or recover energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/284Special features relating to the compressed vapour
    • B01D1/2856The compressed vapour is used for heating a reboiler or a heat exchanger outside an evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/28Evaporating with vapour compression
    • B01D1/2896Control, regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C13/00Brewing devices, not covered by a single group of C12C1/00 - C12C12/04
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C13/00Brewing devices, not covered by a single group of C12C1/00 - C12C12/04
    • C12C13/02Brew kettles
    • C12C13/025Brew kettles heated with steam
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C7/00Preparation of wort
    • C12C7/04Preparation or treatment of the mash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、食料品工業、殊にビール製造の際、
常圧および熱の供給下に行なわれる液体の濃縮工
程において濃縮工程において蒸発した蒸気を差当
りできるだけ断熱的に圧縮し、次いで等圧冷却に
よつて凝縮させ、凝縮の際に遊離する熱を濃縮工
程に再使用する方法および装置に関する。 醸造所作業においては、一般に100℃以下の温
度レベルで過剰の熱が存在する。これは、第一に
醸造所作業の種々の廃熱源と関連している。この
ような熱源としては次のものが存在する: −麦汁冷却のためのプレート装置の予備冷却室 −マイシエおよび麦汁を煮沸する際の蒸気凝縮装
置 −蒸気供給作業の際の凝縮液経済における後蒸発
蒸気 −直接加熱の煮沸機械における予熱器 これらすべての廃熱源は、従来専ら温水製造の
ために利用される。 約80℃の温醸造水の供給は、現在ではほとんど
専ら麦汁冷却のためのプレート装置の予備冷却室
から回収される温水によつて行なわれる。この温
水は量ならびに温度では極めて良好に適合し、発
芽麦汁1hlにつき80℃の温水1.1hlである。これに
反し、その他の作業(樽洗浄設備、衛生装置、滅
菌用水等)における温水の需要は広い範囲内で変
動し、すべての作業の多数においては販売ビール
1hlあたり約0.5hlである。しかしながら、1つの
蒸気凝縮設備だけで、販売ビール1hlあたり温水
約0.8hlを回収することができるので、これによ
り1つの廃熱源が既に過剰に存在する。この事実
は、連邦環境保護法によればマイシエおよび麦汁
煮沸の際に、蒸発する蒸気は、悪臭発散を伴なう
ので無臭化しなければならず、他面では35℃以上
の温度を有する温水の排出も廃水立法によれば許
されないために問題になる。 蒸発した蒸気は吸収冷凍設備の煮沸器用にも使
用することができる。このための費用は非常に大
きいので、経済性は達成することができない。 熱ポンプ設備の使用は、要求される温度水準が
140℃の大きさであり、これに対してはこれまで
適当な冷媒が利用できないので、これまで除外さ
れてきた。 従つて、本発明の課題は、マイシエ煮沸およ
び/または麦汁煮沸の際に蒸発する蒸気を、該蒸
気のエネルギ含量を醸造工程に再び供給するため
に利用することのできる他の方法を見出すことで
ある。 この課題は本発明によれば、該方法をビール醸
造所におけるマイシエ煮沸および/または麦汁煮
沸において使用する場合、圧縮された蒸気を外部
煮沸器に通し、この中で麦汁を遊離する凝縮熱に
より加熱し、凝縮液を外部煮沸器に供給される生
蒸気を発生させるために使用することによつて解
決された。 この方法は、マイシエ煮沸および/または麦汁
煮沸の際に一次エネルギ需要のかなりな低下が得
られ、さらにこれまでマイシエ煮沸および/また
は麦汁煮沸の際に生じる悪臭発散が完全に阻止さ
れるという利点を有する。 圧縮のために必要な仕事は、有利に内燃機関を
用いて行なわれ、その廃熱を温水製造のために使
用し、これによつて一次エネルギ需要をさらに低
下させることができる。同じ目的のために、凝縮
液に含まれている熱を温水製造のために使用する
こともできる。内燃機関の代りに、温水需要が僅
かで、これにより内燃機関の廃熱を利用すること
ができない場合には、エネルギ需要が少ないとい
う理由から電動モータを使用することができる。 さらに、蒸発した蒸気中に含まれているエネル
ギの最適利用の方向で、凝縮液を圧縮した蒸気に
混合して、該蒸気を過熱状態から飽和蒸気温度に
冷却するのが有利である。しかしながら、効率的
には、蒸気に圧縮の際直ちに凝縮液を混和するの
が有利である。 本発明方法を実施するための装置は、麦汁釜お
よび自己蒸気用圧縮ポンプからなり、該圧縮ポン
プがスクリユ圧縮機であり、麦汁釜が外部煮沸器
を備え、該煮沸器にスクリユ圧縮機が前接されか
つ凝縮液集液槽が後接され、凝縮液は生蒸気発生
のために利用でき、その際この生蒸気は外部煮沸
器に供給しうることを特徴とする。 この装置を用いると、蒸気に多量の空気が混和
されているかもしくは異物によつて不純化される
場合に生じうる難点が回避される。その理由は一
面では外部煮沸器は円蓋マンホールの閉じた状態
で麦汁を煮沸できるので、蒸気中にははじめから
少量の空気しか存在せず、他面ではスクリユ圧縮
機は、ホツプから由来する蒸気中の僅かな不純物
を片付けることができるからである。外部煮沸器
は、必要な場合に容易に掃除することができると
いう利点をも有する。 有利に、スクリユ圧縮機の駆動のためには、そ
の効率が非常に高く、従つてガスエンジンおよび
ガスタービンよりもはるかにすぐれているのでデ
イーゼルエンジンが設けられる。 温水製造のためには凝縮液中に含まれている熱
ならびにデイーゼルエンジンの廃熱を使用するこ
とができる。従つて、有利に外部煮沸器に熱交換
器が後接されていて、この中で凝縮液から熱が取
出され、工業用水に供給される。付加的にもしく
は別法として、デイーゼルエンジンが熱交換器と
連結されていて、該熱交換器中でデイーゼルエン
ジンの廃熱を温水製造のために使用する。温水製
造のため双方のシステムを使用する場合には、有
利に最初に挙げた熱交換器は2番目に挙げた熱交
換器と直列に接続されているので、工業用水は凝
縮液に含まれている熱で予熱され、デイーゼルエ
ンジンの廃熱で最終温度にもたらされる。 スクリユ圧縮機の駆動は電動モータを用いて行
なうこともできる。 外部煮沸器には有利に蒸気冷却器が前接されて
いて、これに外部煮沸器からの凝縮液が圧縮され
た蒸気中に噴射するために供給できる。 蒸気冷却器に対する別法として、スクリユ圧縮
機は、それに外部煮沸器からの凝縮液が圧縮の際
に蒸気中に噴射するために供給できるように構成
されていてもよい。 本発明方法および該方法を実施するための装置
の適用は、ビールの製造に限定されず、一般的に
食料品工業における全濃縮工程において行なうこ
とができる。すぐれた適用範囲は、ビール製造と
ともに酪農にも存在する。 麦汁Wは麦汁釜1から矢印方向に外部煮沸器2
に導かれ、ここから外部煮沸器2を通過した後、
再び麦汁釜1に戻される。はじめに、外部煮沸器
2中の麦汁は、図示されてない蒸気ボイラから供
給される生蒸気Fを用いて煮沸温度に加熱され
る。麦汁釜1中で十分な自己蒸気BDが生じたら
直ちに、この蒸気はスクリユ圧縮機3中で断熱的
に圧縮され、蒸気冷却器4を経て外部煮沸器2に
供給され、ここで熱を麦汁Wに与えて凝縮する。
外部煮沸器2中での麦汁Wの加熱は完全に凝縮熱
の供給により行なわれ、もはや生蒸気FDによつ
て行なわれない。 スクリユ圧縮機3はデイーゼルエンジン5によ
り駆動され、その冷却水および煙道ガスRGから
の廃熱は熱交換器6中で工業用水BWを加熱する
のに使用される。 外部煮沸器2中で生じる凝縮液Kは、熱交換器
7および/または凝縮液集液槽8に供給される。
熱交換器7中で、凝縮液中に含まれている熱は工
業用水BWを予熱するために使用され、工業用水
はその後熱交換器6に供給され、ここで最終温度
に加熱される。凝縮液集液槽8から必要な場合に
は凝縮液が蒸気冷却器に供給され、該冷却器中で
凝縮液は圧縮された蒸気を飽和温度に冷却するた
めに該蒸気中に噴射される。凝縮液集液槽8およ
び熱交換器7に供給される凝縮液量は液量調整器
9によつて制御される。蒸気冷却器に入る凝縮液
量は温度制御された弁10により制御される。 蒸気冷却器の代りに、スクリユ圧縮機は、それ
に凝縮液集液槽8からの凝縮液が、凝縮液集液槽
8から圧縮機3への鎖線によつて表わされている
ように、圧縮の際に蒸気中へ噴射するために供給
できるように構成されていてもよい。 さらに、なんらかの理由から外部煮沸器2に生
蒸気FDを付加的に供給しなければならない場合
には、凝縮液を生蒸気製造のためにも利用するこ
とができる(二重破線)。 計算例 1 麦汁煮沸の際の毎時消費熱量(凝縮熱) 外部煮沸器の濃縮仕事率 11% 発芽麦汁量 100hl/hr 1013ミリバールにおける蒸発熱:2255.5KJ/
Kg 100℃における水の密度:0.958Kg/ 加熱面効率 0.87〜0.93(絶縁材の品質による) 麦汁煮沸の際の毎時消費熱量(凝縮熱)、これ
らの値に基づき次のように計算される: 11hl/h.100/hl・2255.5KJ/Kg・0.958Kg//
0.87(0.93)=2732(2556)MJ/h 相当758.9(709.9)KW 2 蒸気ボイラを用いる麦汁煮沸の際の毎時燃料
消費量 ボイラの効率 82% 超軽質燃料油の密度=0.83Kg/ 超軽質燃料油の低値発熱量 42.7MJ/Kg 毎時燃料消費量は次のように計算される: 2732(2556)MJ/h/42.7MJ/Kg・0.83Kg/・0.
82=94.00(87.95・1/100hl) 3 蒸気圧縮のための仕事率需要 スクリユ圧縮機の軸に対する仕事率需要は、
種々の加熱蒸気圧に依存して計算される。既に
煮沸器は2.5バールの加熱蒸気圧で使用され、
外部にある加熱面では2バールの圧力で十分で
あるが、それにも拘らず完全のため4バールま
での加熱蒸気圧も算入される。計算の基礎は第
2図に示したスクリユ圧縮機の図表であり、該
図表においては65%の現実の全効率(=品質の
等級×機械的効率)が考慮されている。この図
表において、熱ポンプの仕事率εWp〔KJ/KJ〕
が種々の圧力差(温度差として)に依存してプ
ロツトされている。種々の加熱蒸気圧に対する
仕事率は次のように推定される:
The present invention is useful in the food industry, especially in beer production.
In a liquid condensation process carried out under normal pressure and heat supply, the vapor evaporated in the condensation process is initially compressed as adiabatically as possible and then condensed by isobaric cooling, condensing the heat liberated during condensation. This invention relates to a method and apparatus for reusing the process. In brewery operations, excess heat is generally present at temperature levels below 100°C. This is primarily associated with the various waste heat sources of brewery operations. Such heat sources include: - pre-cooling chambers of plate units for wort cooling; - steam condensers when boiling maicier and wort; - in condensate economy during steam feeding operations. Post-evaporation steam - preheaters in direct heating boiling machines All these waste heat sources are conventionally used exclusively for hot water production. The supply of hot brewing water at approximately 80° C. is currently carried out almost exclusively by hot water withdrawn from the precooling chamber of the plate device for cooling the wort. This hot water has a very good match in terms of volume and temperature: 1.1 hl of 80°C hot water per 1 hl of germinated wort. On the other hand, the demand for hot water in other operations (keg washing equipment, sanitary equipment, water for sterilization, etc.) varies within a wide range, and the majority of all operations have
Approximately 0.5hl per 1hl. However, with only one steam condensing installation, approximately 0.8 hl of hot water can be recovered per hl of beer sold, so this already leaves one waste heat source in excess. This fact means that according to the Federal Environmental Protection Law, during boiling and wort boiling, the evaporated steam is accompanied by the release of a bad odor, so it must be made odorless, and on the other hand, hot water with a temperature of 35°C or higher must be made odorless. The discharge of wastewater is also a problem because it is not allowed according to wastewater legislation. The evaporated steam can also be used for boilers in absorption refrigeration equipment. The costs for this are so great that no economy can be achieved. The use of heat pump equipment is dependent on the required temperature level.
140°C, for which it has hitherto been excluded because no suitable refrigerant is available. It is therefore an object of the invention to find another way in which the steam that evaporates during maisher boiling and/or wort boiling can be utilized in order to feed the energy content of this steam back into the brewing process. It is. This problem is solved according to the invention when the method is used in Maisier boiling and/or wort boiling in a brewery, in which the compressed steam is passed through an external boiler in which the wort is liberated by the condensation heat. The solution was to use the condensate to generate live steam which was then fed to an external boiler. This method results in a considerable reduction in the primary energy demand during maisher boiling and/or wort boiling, and furthermore, the odor emission that previously occurred during maisher boiling and/or wort boiling is completely prevented. has advantages. The work required for compression is advantageously carried out using an internal combustion engine, the waste heat of which can be used for hot water production, thereby further reducing the primary energy demand. For the same purpose, the heat contained in the condensate can also be used for hot water production. Instead of an internal combustion engine, an electric motor can be used because of its low energy demand if the demand for hot water is low and therefore the waste heat of the internal combustion engine cannot be utilized. Furthermore, in order to optimize the use of the energy contained in the evaporated steam, it is advantageous to mix condensate with the compressed steam to cool it from a superheated state to the saturated steam temperature. However, in terms of efficiency, it is advantageous to mix the vapor with condensate immediately upon compression. The apparatus for carrying out the method of the invention consists of a wort kettle and a compression pump for self-steaming, the compression pump being a screw compressor, the wort kettle being equipped with an external boiler, and the boiler being equipped with a screw compressor. is upstream and a condensate collection tank is downstream, the condensate being available for the generation of live steam, which live steam can then be fed to an external boiler. With this device, difficulties that can arise if the steam is admixed with large amounts of air or contaminated by foreign matter are avoided. This is because, on the one hand, external boilers can boil the wort with the dome manhole closed, so there is only a small amount of air in the steam to begin with, and on the other hand, the screw compressor allows boiling the wort with the manhole closed, so there is only a small amount of air in the steam to begin with. This is because small amounts of impurities in the steam can be removed. External boilers also have the advantage that they can be easily cleaned if necessary. A diesel engine is advantageously provided for driving the screw compressor, since its efficiency is very high and is therefore much superior to gas engines and gas turbines. The heat contained in the condensate as well as the waste heat of the diesel engine can be used to produce hot water. Therefore, the external boiler is preferably followed by a heat exchanger, in which heat is extracted from the condensate and fed to the industrial water. Additionally or alternatively, the diesel engine is connected to a heat exchanger in which the waste heat of the diesel engine is used for hot water production. If both systems are used for the production of hot water, the first heat exchanger is advantageously connected in series with the second heat exchanger, so that the industrial water is not contained in the condensate. It is preheated with heat from the diesel engine and brought to its final temperature with waste heat from the diesel engine. The screw compressor can also be driven using an electric motor. The external boiler is preferably adjoined by a steam cooler, to which condensate from the external boiler can be fed for injection into the compressed steam. As an alternative to the steam cooler, the screw compressor may be configured such that condensate from an external boiler can be supplied to it for injection into the steam during compression. The application of the method of the invention and the device for carrying out the method is not limited to the production of beer, but can generally be carried out in all concentration steps in the foodstuff industry. Excellent scope of application exists in dairy farming as well as beer production. The wort W is transferred from the wort pot 1 to the external boiler 2 in the direction of the arrow.
After passing through the external boiler 2,
It is returned to wort pot 1 again. First, the wort in the external boiler 2 is heated to boiling temperature using live steam F supplied from a steam boiler (not shown). As soon as sufficient self-steam BD has been generated in the wort kettle 1, this steam is compressed adiabatically in a screw compressor 3 and fed via a steam cooler 4 to an external boiler 2, where it transfers heat to the wort. Add to juice W and condense.
The heating of the wort W in the external boiler 2 takes place entirely by supplying the heat of condensation and no longer by live steam FD. The screw compressor 3 is driven by a diesel engine 5, whose cooling water and waste heat from the flue gas RG are used in a heat exchanger 6 to heat industrial water BW. The condensate K produced in the external boiler 2 is fed to a heat exchanger 7 and/or a condensate collection tank 8 .
In the heat exchanger 7, the heat contained in the condensate is used to preheat the industrial water BW, which is then fed to the heat exchanger 6, where it is heated to the final temperature. If necessary, condensate from the condensate collection tank 8 is fed to a steam cooler in which it is injected into the compressed steam in order to cool it to saturation temperature. The amount of condensed liquid supplied to the condensed liquid collection tank 8 and the heat exchanger 7 is controlled by a liquid amount regulator 9. The amount of condensate entering the steam cooler is controlled by a temperature controlled valve 10. Instead of a steam cooler, a screw compressor is provided in which the condensate from the condensate collection tank 8 is compressed, as represented by the dashed line from the condensate collection tank 8 to the compressor 3. It may be configured such that it can be supplied for injection into steam during a process. Furthermore, if for some reason the external boiler 2 has to be additionally supplied with live steam FD, the condensate can also be used for live steam production (double dashed line). Calculation example 1 Heat consumed per hour during wort boiling (heat of condensation) Concentration power of external boiler 11% Germinated wort volume 100hl/hr Heat of evaporation at 1013 mbar: 2255.5KJ/
Kg Density of water at 100℃: 0.958Kg / Heating surface efficiency 0.87-0.93 (depending on the quality of the insulation material) Hourly heat consumption (heat of condensation) during wort boiling, calculated as follows based on these values: : 11hl/h.100/hl・2255.5KJ/Kg・0.958Kg//
0.87 (0.93) = 2732 (2556) MJ/h Equivalent to 758.9 (709.9) KW 2 Hourly fuel consumption when boiling wort using a steam boiler Boiler efficiency 82% Density of ultra-light fuel oil = 0.83 Kg/ ultra-light Low value calorific value of fuel oil 42.7MJ/Kg Hourly fuel consumption is calculated as follows: 2732 (2556) MJ/h/42.7MJ/Kg・0.83Kg/・0.
82=94.00 (87.95・1/100hl) 3 Power demand for vapor compression The power demand for the screw compressor shaft is:
Calculated depending on various heating vapor pressures. Already boilers are used with a heating steam pressure of 2.5 bar,
For external heating surfaces, a pressure of 2 bar is sufficient, but for completeness a heating steam pressure of up to 4 bar is nevertheless included. The basis of the calculation is the diagram of the screw compressor shown in Figure 2, in which a real total efficiency of 65% (=quality class x mechanical efficiency) is taken into account. In this diagram, the power of the heat pump ε Wp [KJ/KJ]
is plotted as a function of various pressure differences (as temperature differences). The power for various heating vapor pressures is estimated as follows:

【表】 加熱面における凝縮熱が709.9〜758.9KWで
あることを知つた後、蒸気圧縮の仕事率需要は
次のように計算される:
[Table] After knowing that the heat of condensation at the heating surface is 709.9~758.9KW, the power demand for vapor compression is calculated as follows:

【表】 4 平衡状態における加熱蒸気圧の計算 麦汁煮沸の際に蒸発した蒸気は加熱底におけ
る凝縮熱量と直接に関連しているので、確める
べき特定の加熱蒸気圧において、供給された図
示圧縮機仕事率が熱損失をカバーするのに丁度
十分である平衡状態が生じる。毎時11hlが蒸発
し、その結果2255.5KJ/Kg(1013ミリバール
において)の蒸発熱および0.958Kg/(100℃
において)の水の密度における毎時の蒸発熱が
計算されることから出発する: 11hl/h・100/hl・2255.5KJ/Kg・0.958Kg/=23
76846KJ/h=660.23KW スクリユの機械的効率は、部分負荷挙動を考
慮して90%とみなされる。これで、図示圧縮機
仕事率ならびに凝縮仕事率(実際値および目標
値)が計算される。
[Table] 4 Calculation of heating vapor pressure in equilibrium state The vapor evaporated during wort boiling is directly related to the amount of heat of condensation at the heating bottom, so at the specific heating vapor pressure to be confirmed, An equilibrium condition occurs where the indicated compressor power is just sufficient to cover the heat losses. 11hl evaporates per hour, resulting in a heat of vaporization of 2255.5KJ/Kg (at 1013 mbar) and 0.958Kg/(100℃)
Starting from the hourly heat of vaporization at the density of water at ) is calculated: 11hl/h・100/hl・2255.5KJ/Kg・0.958Kg/=23
76846KJ/h=660.23KW The mechanical efficiency of the screw is considered to be 90% considering the partial load behavior. The indicated compressor power and condensing power (actual and target) are now calculated.

【表】 これらの表から、加熱蒸気圧2〜3バールに
おいて 凝縮仕事率 蒸発仕事率 図示圧縮機仕事率 の間の平衡状態が生じることが明らかである。
この圧力範囲内で、熱ポンプの熱収支が満足さ
れている。しかしながら、僅か87%の加熱面効
率(下限値)は実際に絶縁されてない加熱面に
おいてのみ出現するので、実際に2.0〜2.5バー
ルの加熱蒸気圧が調節される。 5 スクリユを駆動するためのデイーゼル用燃料
消費量 スクリユを駆動するためのデイーゼルの効率
は39%と記載される。部分負荷挙動を考慮し
て、次の計算においては平均35%の効率から出
発すべきである。
[Tables] It is clear from these tables that at a heating vapor pressure of 2 to 3 bar an equilibrium situation occurs between condensing power, evaporation power and indicated compressor power.
Within this pressure range, the heat balance of the heat pump is satisfied. However, a heating surface efficiency of only 87% (lower limit value) occurs only in practically uninsulated heating surfaces, so that in practice heating steam pressures of 2.0 to 2.5 bar are set. 5 Fuel consumption for diesel to drive the screw The efficiency of the diesel to drive the screw is stated to be 39%. Considering the part load behavior, an average efficiency of 35% should be used as a starting point for the following calculations.

【表】【table】

【表】 6 水蒸気圧縮装置の経済 加熱蒸気圧は必然的に2.0〜2.5バールであ
り、この蒸気圧は外部にある煮沸器の場合確実
に工学的に必要な濃縮仕事率に十分であるの
で、このような水蒸気圧縮装置によつて麦汁煮
沸の際73%〜80%の節約が得られる。 さらに、このような装置によつて同時に連邦
環境保護法の100%の満足が可能となり、湯気
も嗅気物質ももはや環境に放出されないことを
考慮しなければならない。 7 廃熱利用 マイシエおよび麦汁煮沸の際に蒸発した蒸気
で、醸造所におけるいわゆる釜湯気凝縮装置を
用いてしばしば温工業用水の需要がカバーされ
る。この需要は、すべての醸造所の多くにおい
てビール1hlあたり0.3〜0.5hlの間で変動する。 ところで、デイーゼルエンジンの廃熱ならび
に排水管内を流れる沸騰凝縮液も温かい工業用
水の製造のために利用される。 熱交換器7は凝縮液を60℃に冷却できる(hk
=250.91KJ/Kg)。 デイーゼル廃ガスは50%温水製造のために利
用することができる。次表は廃熱利用に関する
説明を示す。
[Table] 6 Economy of steam compression equipment The heating vapor pressure is necessarily 2.0 to 2.5 bar, and this vapor pressure is certainly sufficient for the engineeringly necessary concentration power in the case of an external boiler, so With such a steam compression device, savings of 73% to 80% can be obtained during wort boiling. Furthermore, it must be taken into account that such a device simultaneously makes it possible to comply with 100% of the Federal Environmental Protection Laws and that neither steam nor odorants are released into the environment. 7 Waste heat utilization The steam evaporated during boiling and wort boiling often covers the demand for hot industrial water in breweries using so-called kettle steam condensers. This demand varies between 0.3 and 0.5 hl per hl of beer for most of all breweries. Incidentally, the waste heat of the diesel engine as well as the boiling condensate flowing in the drain pipes are also utilized for the production of hot industrial water. Heat exchanger 7 can cool the condensate to 60℃ (h k
=250.91KJ/Kg). Diesel waste gas can be utilized for 50% hot water production. The following table provides an explanation of waste heat utilization.

【表】 10℃の冷水から80℃の温水1hlをつくるため
には29269MJが必要である。麦汁の煮沸時間は
90分であり、麦汁(AW)から市販ビール
(VB)に到るまでの損失は10%である。 従つて、廃熱から次の量の温水をつくること
ができる:
[Table] 29269 MJ is required to make 1 liter of 80°C hot water from 10°C cold water. Boiling time of wort
It takes 90 minutes, and the loss from wort (AW) to commercial beer (VB) is 10%. Therefore, the following amount of hot water can be produced from waste heat:

【表】 表から明らかなように、醸造所作業の温水需
要は(ほとんど)すべての場合に100%カバー
することができるので、デイーゼル運転の蒸気
圧装置の使用によつて麦汁煮沸工程において一
次エネルギ需要を約73〜80%低下される。従つ
て、かかる装置の使用によつて理想的な熱収支
が達成できる。もつと有利な熱の利用はほとん
ど考えられない。
[Table] As is clear from the table, the hot water demands of brewery operations can be covered (almost) 100% in all cases, so that by using diesel-operated steam pressure equipment the primary water supply in the wort boiling process is Energy demand will be reduced by approximately 73-80%. Therefore, by using such a device an ideal heat balance can be achieved. It is almost impossible to think of any advantageous use of heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はビール製造のための本発明の1実施例
を示す系統図、第2図は計算例において使用され
るスクリユ圧縮機に関する水熱ポンプの凝縮温度
と蒸発温度との温度差/仕事率曲線図である。 1……麦汁釜、2……外部煮沸器、3……スク
リユ圧縮機、4……蒸気冷却器、5……デイーゼ
ルエンジン、6,7……熱交換器、8……凝縮液
集液槽、B……麦汁、BW……工業用水、FD…
…生蒸気。
Figure 1 is a system diagram showing one embodiment of the present invention for beer production, and Figure 2 is the temperature difference/power between the condensing temperature and evaporation temperature of the hydrothermal pump for the screw compressor used in the calculation example. It is a curve diagram. 1...wort pot, 2...external boiler, 3...screw compressor, 4...steam cooler, 5...diesel engine, 6, 7...heat exchanger, 8...condensate collection liquid Tank, B...wort, BW...industrial water, FD...
...live steam.

Claims (1)

【特許請求の範囲】 1 大気圧および熱の供給下に行なわれる、食料
品工業における液体の濃縮工程においてエネルギ
を回収するため、濃縮工程において蒸発した蒸気
をまずできるだけ断熱的に圧縮し、次いで等圧冷
却によつて凝縮させ、凝縮の際に遊離する熱を濃
縮工程に再使用する方法において、該方法をビー
ル醸造所におけるマイシエ煮沸および/または麦
汁煮沸において使用する場合、圧縮された蒸気を
外部煮沸器に通し、この中で麦汁Wを遊離する凝
縮熱により加熱し、凝縮液Kを外部煮沸器に供給
される生蒸気FDを発生させるために使用するこ
とを特徴とする大気圧および熱供給下に行なわれ
る、食料品工業における液体の濃縮工程において
エネルギを回収する方法。 2 外部煮沸器に蒸気冷却器を前接し、該冷却器
に外部煮沸器からの凝縮液Kを、圧縮された蒸気
中へ噴射するために供給する特許請求の範囲第1
項記載の方法。 3 外部煮沸器からの凝縮液Kを、圧縮の際蒸気
霧中へ噴霧するために供給する特許請求の範囲第
1項または第2項記載の方法。 4 麦汁釜および自己蒸気用圧縮ポンプからな
り、該圧縮ポンプがスクリユ圧縮機3であり、麦
汁釜1が外部煮沸器2を備え、該煮沸器にはスク
リユ圧縮機3が前接されかつ凝縮液集液槽8が後
接され、凝縮液は生蒸気発生のために利用でき、
その際この生蒸気FDは外部煮沸器2に供給しう
ることを特徴とする大気圧および熱供給下に行な
われる、食料品工業における液体の凝縮工程にお
いてエネルギを回収する装置。
[Claims] 1. In order to recover energy in the liquid condensation process in the food industry, which is carried out under atmospheric pressure and heat supply, the vapor evaporated in the condensation process is first compressed as adiabatically as possible and then is A method in which condensation is carried out by pressure cooling and the heat liberated during condensation is reused in the condensation process, when the method is used in Maisier boiling and/or wort boiling in breweries, the compressed vapor is atmospheric pressure and characterized in that the wort W is heated by the heat of condensation liberated in the external boiler, and the condensate K is used to generate live steam FD which is supplied to the external boiler. A method for recovering energy in a liquid concentration process in the food industry, which is carried out under heat supply. 2. A steam cooler is provided in front of the external boiler, and the condensate K from the external boiler is supplied to the cooler for injection into the compressed steam.
The method described in section. 3. Process according to claim 1 or 2, in which the condensate K from the external boiler is fed for spraying into the steam mist during compression. 4 Consists of a wort pot and a self-steam compression pump, the compression pump is a screw compressor 3, the wort pot 1 is equipped with an external boiler 2, and the boiler is adjacent to the screw compressor 3, and A condensate collection tank 8 is arranged afterwards, and the condensate can be used for live steam generation.
Device for recovering energy in liquid condensation processes in the food industry, which are carried out under atmospheric pressure and heat supply, characterized in that this live steam FD can then be fed to an external boiler 2.
JP17056479A 1979-08-06 1979-12-28 Method and apparatus for recovering energy in concentratng procedure of liquid in food industry carried out under atmospheric pressure and heat supply Granted JPS5624001A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2931854A DE2931854C2 (en) 1979-08-06 1979-08-06 Method and device for energy recovery in the case of thickening processes of liquids in beer production that take place under atmospheric pressure and with the supply of heat

Publications (2)

Publication Number Publication Date
JPS5624001A JPS5624001A (en) 1981-03-07
JPS6325801B2 true JPS6325801B2 (en) 1988-05-26

Family

ID=6077754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17056479A Granted JPS5624001A (en) 1979-08-06 1979-12-28 Method and apparatus for recovering energy in concentratng procedure of liquid in food industry carried out under atmospheric pressure and heat supply

Country Status (6)

Country Link
JP (1) JPS5624001A (en)
AU (1) AU5158179A (en)
DD (1) DD146075A1 (en)
DE (1) DE2931854C2 (en)
NZ (1) NZ191845A (en)
PH (1) PH19627A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3214647A1 (en) * 1982-04-21 1983-10-27 J.F. Adolff Ag, 7150 Backnang Process and plant for treating dirty water
DE3339711A1 (en) * 1983-11-03 1985-05-15 KTI Kinetics Technology International GmbH, 2000 Hamburg METHOD FOR THE THERMAL TREATMENT OF LIQUIDS OR LIQUID-SOLID MIXTURES FOR CONCENTRATING THE LIQUID INGREDIENTS AND INSTALLATION FOR IMPLEMENTING THE PROCESS
JPH0670540B2 (en) * 1984-11-02 1994-09-07 北越工業株式会社 Waste heat recovery equipment
FR2579992A1 (en) * 1985-04-04 1986-10-10 Kestner App Evaporateurs Installation for cooking brewing wort (mash) with mechanical recompression of vapour
DE3520634A1 (en) * 1985-06-08 1986-12-18 OFRU-Recycling GmbH & Co KG, 6113 Babenhausen Apparatus for recovering solvent from contaminated solvent
JPH07107159B2 (en) * 1986-12-26 1995-11-15 ライオン株式会社 Cleaning composition for bathroom and bath
DE3711251A1 (en) * 1987-04-03 1988-10-13 Steinecker Maschf Anton BREWERY PLANT
ATE517977T1 (en) * 2005-04-22 2011-08-15 Kaspar Schulz Brauereimaschinenfabrik & Appbau Anstalt Kg METHOD AND DEVICE FOR PROVIDING WATER OR WATER VAPOR AS A HEATING MEDIUM IN A PROCESS
DE102009013579A1 (en) * 2009-03-19 2010-09-23 Gea Brewery Systems Gmbh Brewery plant for the production and bottling of beer
DE102013202481B4 (en) * 2013-02-15 2015-08-20 O. Salm & Co. Gmbh DEVICE AND METHOD FOR HEATING A FERMENTABLE OUTPUT TO DRINK BEVERAGE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804108A1 (en) * 1978-01-31 1979-08-02 Wiegand Karlsruhe Gmbh Fluid evaporation plant esp. for milk - utilises cooling water and exhaust from Diesel engine driving vapour compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE344599C (en) * 1911-10-05 1921-11-25
US2589406A (en) * 1946-04-12 1952-03-18 Little Inc A Distillation apparatus and method
JPS5455656U (en) * 1977-09-26 1979-04-17
DD136796A1 (en) * 1978-03-31 1979-08-01 Koch Hans Joachim METHOD FOR COOKING AND COOLING WUERZE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804108A1 (en) * 1978-01-31 1979-08-02 Wiegand Karlsruhe Gmbh Fluid evaporation plant esp. for milk - utilises cooling water and exhaust from Diesel engine driving vapour compressor

Also Published As

Publication number Publication date
PH19627A (en) 1986-06-04
DD146075A1 (en) 1981-01-21
DE2931854A1 (en) 1981-03-26
AU5158179A (en) 1981-02-12
DE2931854C2 (en) 1985-10-17
NZ191845A (en) 1983-12-16
JPS5624001A (en) 1981-03-07

Similar Documents

Publication Publication Date Title
RU2126491C1 (en) Device for cooling gas turbine cooler of gas-and-steam turbine plant
US3215189A (en) Evaporative process using submerged combustion
RU2611499C2 (en) Process and plant for distillation of methanol with heat recuperation
US4379734A (en) Multistage evaporator
EP1908733A1 (en) Method and plant for joint production of electricity, steam and desalinated water
JPS6325801B2 (en)
US20210283525A1 (en) Low energy ejector desalination system
US4909899A (en) Method of concentrating sludges
CN102209873B (en) Integrated air-separating and water-heating apparatus intended for a boiler
AU2005284554A1 (en) Seawater desalination plant
CN210176512U (en) Seawater desalination system utilizing waste heat of gas turbine
NZ206046A (en) Processing chunks of animal matter
CA1130152A (en) Generation of steam from low temperature waste heat
Kronenberg Cogeneration with the LT-MED desalination process
CN113669121B (en) Power plant condensing system and process method
CN114470841A (en) Heat energy recovery equipment for pre-dipping workshop section
US1134269A (en) Refrigerating apparatus.
WO1997043355A1 (en) Method and equipment for fractioning crude oil
CN113072114B (en) System and method for heating domestic water by recovering waste heat of strong brine
SU1638360A1 (en) Power plant for geothermal power station
GB549820A (en)
SU1516466A1 (en) Shipborne distillation unit
US1161678A (en) Absorption refrigeration system.
EP1498166A1 (en) Method and apparatus for the evaporation of liquids under vacuum
GB617339A (en) An improved method of and means for distilling sea water