JPS63257716A - Polygon mirror - Google Patents

Polygon mirror

Info

Publication number
JPS63257716A
JPS63257716A JP9097287A JP9097287A JPS63257716A JP S63257716 A JPS63257716 A JP S63257716A JP 9097287 A JP9097287 A JP 9097287A JP 9097287 A JP9097287 A JP 9097287A JP S63257716 A JPS63257716 A JP S63257716A
Authority
JP
Japan
Prior art keywords
rotor
rotating body
dynamic pressure
polygon
polygon mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9097287A
Other languages
Japanese (ja)
Other versions
JPH0677107B2 (en
Inventor
Shotaro Mizobuchi
庄太郎 溝渕
Hideomi Harada
原田 英臣
Noriyuki Osada
長田 憲幸
Yasushi Kube
久部 泰史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP9097287A priority Critical patent/JPH0677107B2/en
Publication of JPS63257716A publication Critical patent/JPS63257716A/en
Publication of JPH0677107B2 publication Critical patent/JPH0677107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors

Abstract

PURPOSE:To make the assembly and arrangement durable, and to facilitate the balance adjustment by inserting and holding a rotor by a thrust receiving member from both its sides, and providing a groove for generating dynamic pressure, on the sliding surface opposed to the receiving member of this rotor. CONSTITUTION:In the outside periphery of a fixed axis 5 provided on a supporting body 4 by passing through a through-hole 1 of a plate-like rotor 3 having plural specular surfaces 2, in which the through-hole 1 is formed in the center, and whose outside peripheral edges are a regular polygon, a polygon rotor is provided so as to be freely rotatable on a bush 51 which forms a dynamic pressure generating groove 111 on the outside peripheral surface, a stator coil 6 which is separated in the axial direction from the plate-like rotor 3 and fixed to the supporting body 4, and rotates the polygon rotor is provided on the supporting body 4 or a cover body 12, and by a permanent magnet provided on the rotor 3 or a magnet of a secondary conductor, and the stator coil 6, the rotor 3 is rotated. A motor unit is constituted, the dynamic pressure generating groove 11, namely, a spiral groove is formed on both sides of the rotor 3, a thrust receiving member 10 is interposed and arranged so as to be opposed to sad groove and pressed, and inserted and held by both ends of the bush 51, and a thrust dynamic pressure bearing is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザプリンタ、バーコードリーダやレーザ
複写機などに用いられているレーザ走査光学系において
レーザ光を反射させて感光体表面に照射するためのポリ
ゴンミラーに関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a laser scanning optical system used in laser printers, barcode readers, laser copying machines, etc., in which laser light is reflected and irradiated onto the surface of a photoreceptor. This relates to a polygon mirror for

〔従来の技術〕[Conventional technology]

従来のポリゴンミラーは第7図に示すように、高鮮明な
画像処理に適した密閉構造の例について知られているレ
ーザプリンタでは半導体レーザやガスレーザなどからな
るレーザユニットからのレーザ光を回転するポリゴンロ
ータaのミラーbによって反射させて、感光体表面に照
射するものであり、ポリゴンロータaは駆動モータCに
よって固定軸d上にスリーブeを介して回転されるよう
に構成されている。
As shown in Figure 7, a conventional polygon mirror is a known example of a sealed structure suitable for high-definition image processing.In a laser printer, a polygon mirror is rotated by laser light from a laser unit consisting of a semiconductor laser, gas laser, etc. The light is reflected by a mirror b of the rotor a and irradiated onto the surface of the photoreceptor, and the polygon rotor a is configured to be rotated by a drive motor C on a fixed shaft d via a sleeve e.

そして、前記固定軸dの外周面には多数の動圧発生用溝
部が形成され、回転スリーブeの回転によってスラスト
荷重及びラジアル荷重を支えるための動圧が発生する様
になっている。即ち、この動圧発生用の溝部は、機能的
にはへリングボーン状の下部溝部f、及びヘリングボー
ン形状を形成する中部溝部「2と上部溝部f3とによっ
て動圧を発生させてラジアル荷重を支え、且つ、中部溝
部f2によって固定軸d上面に空気を送り込み、以て固
定軸dの上端にあるスラスト軸受gとの間の空気圧を高
めてスラスト荷重を支えるようになっている。
A large number of grooves for generating dynamic pressure are formed on the outer peripheral surface of the fixed shaft d, so that dynamic pressure for supporting thrust loads and radial loads is generated by rotation of the rotating sleeve e. That is, this groove for generating dynamic pressure is functionally configured to generate dynamic pressure by the lower groove f having a herringbone shape, the middle groove ``2'' forming the herringbone shape, and the upper groove f3 to apply a radial load. Air is sent to the upper surface of the fixed shaft d through the support and central groove f2, thereby increasing the air pressure between the fixed shaft d and the thrust bearing g at the upper end to support the thrust load.

回転スリーブeの上部にはポリゴンロータaがねし止め
され、また下部にはロータマグネットC1が固定され、
かつロータマグネットc、を駆動するためのステータコ
イルC2がロータマグネットc1の周囲を囲むように固
定されて駆動モーフCとなっていると共に、外部からポ
リゴンロータaのミラーbへ照射されるレーザ光、及び
所望の露光面へ反射されるレーザ光を透過させるレーザ
人出窓部りが外筒iの上部周面の一部に形成されたもの
から成っ・ていて、駆動モータCで高速回転するポリゴ
ンロータは回転精度が高く維持される必要があるばかり
でなく、反射面の面振れを小さくしなければならないた
めに固定軸と回転スリーブとの間隙は極めて狭いものと
している。
A polygon rotor a is screwed to the upper part of the rotating sleeve e, and a rotor magnet C1 is fixed to the lower part.
A stator coil C2 for driving the rotor magnet c is fixed so as to surround the rotor magnet c1 to form a drive morph C, and a laser beam is irradiated from the outside onto the mirror b of the polygon rotor a. and a polygon rotor which is formed on a part of the upper circumferential surface of the outer tube i, and is rotated at high speed by a drive motor C. Not only is it necessary to maintain high rotational accuracy, but also the surface runout of the reflecting surface must be reduced, so the gap between the fixed shaft and the rotating sleeve is extremely narrow.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このようなレーザプリンタは鮮明な文字や画
像を高速度で再生するものであるから、ポリゴンミラー
は高速度で、しかも反射面の倒れが少ない状態で回転さ
れねばならないために、ポリゴンミラーは切削が容易で
、高反射率のアルミ合金の平板をダイヤモンドで切削す
ることで製造されているが、形状を維持するために、そ
の厚みは10鰭以上にもなっていた。しかしポリゴンミ
ラーが高速回転している時の負荷は、大半がポリゴンの
外周縁の空気抵抗であり、レーザ光を反射する領域が1
鶴以下でも十分である狭い幅であることを考慮すればポ
リゴンミラーが周囲の空気を乱すことによる動力損失は
極めて大きなものとなる。
However, since such laser printers reproduce clear characters and images at high speed, the polygon mirror must be rotated at high speed and with minimal tilting of the reflective surface. It is manufactured by diamond-cutting a flat plate of aluminum alloy, which is easy to cut and has a high reflectivity, but in order to maintain its shape, it was over 10 fins thick. However, when a polygon mirror rotates at high speed, most of the load is due to air resistance at the outer edge of the polygon, and the area that reflects the laser beam is
Considering that the polygon mirror is narrow enough to be smaller than a crane, the power loss caused by the disturbance of the surrounding air by the polygon mirror becomes extremely large.

これらのことから、固定軸と回転スリーブとの摺動部は
極めて精密に加工されて、空気による動圧が効果的に発
生するようにし、かつ回転スリーブ、ポリゴンロータ、
ミラ一部、ロータマグネット等の回転部分は精密に加工
され、同時に好適にマスバランスが調整されていなけれ
ばならない。
For these reasons, the sliding part between the fixed shaft and the rotating sleeve is machined with extreme precision to effectively generate dynamic pressure from the air, and the rotating sleeve, polygon rotor,
Rotating parts such as the mirror and rotor magnets must be precisely machined, and at the same time the mass balance must be suitably adjusted.

しかし、ポリゴンミラーの反射面での面の倒れを±1.
5μm以下とするには50f1以上の長さの固定軸を精
度よく加工し、回転スリーブとの間隔を3μm以下にし
なければならないので、製品の量産化が困難であり、ま
た更に高速度の画像処理を行う場合には、ポリゴンミラ
ーの回転速度を30、000rpH1以上とすることが
望まれているも、この様な高速回転の場合には固定軸に
対するラジアル荷重が増加し、空気膜による支持は極め
て困難である等と多くの問題があった。
However, the inclination of the reflective surface of the polygon mirror is ±1.
In order to achieve a diameter of 5 μm or less, the fixed shaft with a length of 50 f1 or more must be precisely machined and the distance between it and the rotating sleeve must be 3 μm or less, which makes mass production difficult, and requires even higher speed image processing. When performing this, it is desirable to increase the rotation speed of the polygon mirror to 30,000 rpm or more, but in the case of such high-speed rotation, the radial load on the fixed shaft increases, and support by an air film is extremely difficult. There were many problems such as difficulty.

本発明は、この従来の欠点を適確に排除しようとするも
ので、ポリゴンロータの垂直度、平行度を大幅に向上さ
せ回転時の空気抵抗も少なく、高速回転が可能なコンパ
クトなポリゴンミラーとし、さらに、反射面の倒れが少
な(、正逆回転時のいずれにもスラスト荷重を受けられ
保安上良好で、かつ安定した高速回転も可能で、レーザ
光等を精度よく反射できるポリゴンミラーを構成簡単で
製作容易、安価な形態で提供することを目的とするもの
である。
The present invention aims to accurately eliminate these conventional drawbacks by creating a compact polygon mirror that significantly improves the perpendicularity and parallelism of the polygon rotor, has less air resistance during rotation, and is capable of high-speed rotation. In addition, the reflective surface is less likely to fall (it is safe for safety because it can receive thrust loads in both forward and reverse rotations, and is also capable of stable high-speed rotation, making it a polygon mirror that can accurately reflect laser beams, etc.) The purpose is to provide it in a simple, easy-to-manufacture, and inexpensive form.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、鏡面のある回転体を支持体に備えた固定軸に
回転自在に設けてポリゴンロータとし、前記回転体にマ
グネットを設けると共に、該マグネットに対応してステ
ータコイルを配備したポリゴンミラーにおいて、前記固
定軸に、ブツシュを嵌装配備し、該ブツシュに前記回転
体を回転自在に嵌合すると共に、ブツシュ外周面又はこ
れに対面する回転体側摺動面のいずれかに動圧発生用溝
を形成し、かつ前記回転体をその両側からスラスト受部
材で挟持し、固定部材をもってブツシュと共に固定軸に
嵌着し、この回転体と受部材とが対向する摺動面のいづ
れかの側に動圧発生用溝を設けたことを特徴とするポリ
ゴンミラーである。
The present invention provides a polygon mirror in which a rotating body with a mirror surface is rotatably provided on a fixed shaft provided on a support body to form a polygon rotor, a magnet is provided on the rotating body, and a stator coil is provided corresponding to the magnet. , a bushing is fitted and arranged on the fixed shaft, the rotating body is rotatably fitted to the bushing, and a groove for generating dynamic pressure is provided on either the outer peripheral surface of the bushing or the sliding surface on the rotating body side facing the bushing. The rotating body is held between thrust receiving members on both sides thereof, and the fixing member is fitted together with the bushing onto the fixed shaft, and the rotating body and the receiving member are moved to either side of the opposing sliding surfaces. This is a polygon mirror characterized by being provided with pressure generating grooves.

〔実施例〕〔Example〕

本発明の実施例を第1〜2図例で説明すると、第1図例
においては中央に貫通孔1が形成され、外周縁を正多角
形とする複数の鏡面2を有する平板状の回転体3を前記
の貫通孔lを貫通して支持体4に備えられた固定軸5の
外周にあって、外周面に動圧発生用p 11 +を形成
したブツシュ5゜に回転自在に設けてポリゴンロータと
し、平板の回転体3と軸方向に離隔して支持体4に固定
され、ポリゴンロータを回転させるステータコイル6を
前記支持体4又はカバ一体12に備え、前記回転体3に
設けられた永久磁石又は二次導体のマグネット7と前記
ステータコイル6とによって回転体3を回転させるモー
クユニソトを構成して、前記回転体3の両側面に動圧発
生用?g1!即ちスパイラル状溝を形成し、これに対設
してスラスト受板となる受部材10を介在配備して前記
ブツシュ5゜の両端へ押圧挟持してスラスト動圧軸受を
形成するようにしである。
Embodiments of the present invention will be described with reference to FIGS. 1 and 2. In the example shown in FIG. 1, a plate-shaped rotating body is formed with a through hole 1 in the center and has a plurality of mirror surfaces 2 whose outer periphery is a regular polygon. 3 is rotatably provided on the bush 5°, which is located on the outer periphery of the fixed shaft 5 provided on the support body 4 through the through hole 1, and has a dynamic pressure generating p 11 + formed on the outer periphery surface. A stator coil 6 is provided on the support body 4 or the cover integral 12, and is fixed to the support body 4 at a distance from the flat rotary body 3 in the axial direction, and rotates the polygon rotor. The magnet 7, which is a permanent magnet or a secondary conductor, and the stator coil 6 constitute a moke unit that rotates the rotating body 3, and generates dynamic pressure on both sides of the rotating body 3. g1! That is, a spiral groove is formed, and a receiving member 10 serving as a thrust receiving plate is interposed and disposed opposite to the spiral groove, and is pressed and clamped to both ends of the bushing 5° to form a thrust dynamic pressure bearing.

前記回転体3は、動圧発生用溝11のある摺動面が受部
材1’Oに対面配備されているもので、対向する面の摺
動面の両方の面に動圧発生用溝11、例えばねじり方向
が逆向きのスパイラル状溝をランド部を残して形成した
硬質のセラミックス材料例えばSiC焼結体、BeOを
含むα−5iC焼結体、又は5iJa焼結体などで構成
したものを用いてスラスト軸受部として形成するのがよ
く、前記受部材10も硬質のセラミックス材料の平板を
用いてスラスト受板としてもよい。前記回転体3とスラ
スト受板の受部材10との間のクリアランスは5〜15
μmとして回転体3が起動時には下部受部材10側に密
着し、回転後動圧が生じて浮上後は上部受部材10側に
接近して運転できるようになっている。
The rotating body 3 has a sliding surface with dynamic pressure generating grooves 11 facing the receiving member 1'O, and has dynamic pressure generating grooves 11 on both surfaces of the sliding surface of the opposing surface. For example, a hard ceramic material in which spiral grooves with opposite twisting directions are formed leaving a land portion, such as a SiC sintered body, an α-5iC sintered body containing BeO, or a 5iJa sintered body, is used. The bearing member 10 may also be formed as a thrust bearing plate by using a flat plate made of a hard ceramic material. The clearance between the rotating body 3 and the receiving member 10 of the thrust receiving plate is 5 to 15
When the rotating body 3 is started, it comes into close contact with the lower support member 10 side, dynamic pressure is generated after rotation, and after floating, it can operate close to the upper support member 10 side.

前記マグネット7は回転体3の挿入孔8に埋込配Mf&
 して、上面を平坦に面合せしてもよいし、挿入孔8に
対してマグネット7を上面より窪み状態或いは突出状態
に配置し、バックアンプ板(図示せず)を当てて保持す
る構成としてもよい。第1図例では、回転体3の両面に
マグネット7.7を保持してパワーを大きくできるよう
に考慮しである。
The magnet 7 is embedded in the insertion hole 8 of the rotating body 3.
Then, the upper surfaces may be flatly aligned, or the magnet 7 may be placed in a recessed or protruding state from the upper surface of the insertion hole 8, and a back amplifier plate (not shown) may be applied to hold it. Good too. In the example shown in FIG. 1, the magnets 7.7 are held on both sides of the rotating body 3 in order to increase the power.

前記挿入孔8は前記回転体3に複数個環状に形成配備し
であるが、円板状のロータコアを形成するようにリング
状に連接配備して固定軸5と直交する平面上に沿って環
状に複数の磁極を着磁しているようにすることもできる
し、さらに前記鏡面2はアルミニウム箔(0,1〜0.
5龍)又は蒸着膜、その他の反射率の高いコーティング
層でミラ一部とするのが便利である。
A plurality of insertion holes 8 are formed and arranged in a ring shape in the rotating body 3, and are arranged in a ring shape so as to form a disc-shaped rotor core, and are arranged in a ring shape along a plane perpendicular to the fixed shaft 5. It is also possible to have a plurality of magnetic poles magnetized, and furthermore, the mirror surface 2 can be made of aluminum foil (0.1 to 0.0.
It is convenient to form part of the mirror with a coating layer with high reflectance, such as a vapor-deposited film or other coating layer with high reflectivity.

図中111はへリングボーン状に形成した動圧発生用溝
で固定軸5に嵌装されるブツシュ51の外周面又はこれ
に対応する回転体側面のいづれかの面に多数設けてラジ
アル軸受を形成している。
In the figure, reference numeral 111 denotes a herringbone-shaped dynamic pressure generating groove, which is provided in large numbers on either the outer peripheral surface of the bushing 51 fitted to the fixed shaft 5 or the corresponding side surface of the rotating body to form a radial bearing. are doing.

12はカバ一体であって、支持体4に嵌着し、レーザプ
リンタなどの密閉構造としたもので、バーコードリーグ
などのように鮮明度を要求されない場合には省略できる
。13は投光用窓部、14は留めナンドで温度膨張経時
によるゆるみを防止するものである。
Reference numeral 12 is an integrated cover, which is fitted onto the support 4 to provide a sealed structure for laser printers, etc., and can be omitted when high clarity is not required, such as for bar code leagues. Reference numeral 13 is a light projection window, and reference numeral 14 is a fastening pad to prevent loosening due to temperature expansion over time.

なお前記動圧発生用溝11はスパイラル状の方向は両面
に設けた場合に逆方向(投影面上同じ向き)に設けてポ
リゴンロータを回転駆動する際に誤って逆方向に回転さ
せても焼損することがないようにし、即ち正逆いずれの
回転時においても動圧効果を生じさせスラスト荷重を受
けて保安上有効にしであるが、必要に応じ同方向(投影
面上逆向き)に設けて一方をクラッチ作用を与えるよう
にしてもよい。この場合、中間部材を介在させて活用す
ることが考慮されるし、さらに回転体3の外周にある鏡
面2もアルミニウム箔でバランス調整をすることができ
る。
Note that when the spiral direction of the dynamic pressure generation groove 11 is provided on both sides, it will not burn out even if it is provided in the opposite direction (same direction on the projection plane) and accidentally rotated in the opposite direction when rotating the polygon rotor. In other words, the dynamic pressure effect is generated during both forward and reverse rotation, and the thrust load is received to be effective for safety reasons. One of them may be provided with a clutch action. In this case, it is considered that an intermediate member is interposed and utilized, and furthermore, the mirror surface 2 on the outer periphery of the rotating body 3 can also be balanced with aluminum foil.

なお、この具体例では固定軸5として金属製固定軸5上
にヘリングボーン状溝を外周に有するセラミックス材料
のスリーブ状ブツシュ51を備えであるが、前記回転体
3の浮上量を拘束する手段としては回転体3の上方位置
で固定軸5に設けた上部受部材10を座金15及び固定
用ナソ)16著しくはその他のストッパを選んで固着す
る構成としであるが、受部材10にコイルバネ17又は
スプリングワッシャその他弾性部材を付設させたりその
他弾性構造物などを押圧部材として回転体3の上方部の
固定軸5に備えた構成としてもよい。
In this specific example, a sleeve-shaped bushing 51 made of a ceramic material having a herringbone-shaped groove on the outer periphery is provided on the metal fixed shaft 5 as the fixed shaft 5, but as a means for restraining the flying height of the rotating body 3. The upper receiving member 10 provided on the fixed shaft 5 at a position above the rotary body 3 is fixed to the washer 15 and the fixing naso 16, and other stoppers are selected, but the receiving member 10 is fixed with a coil spring 17 or A configuration may also be adopted in which a spring washer or other elastic member is attached, or another elastic structure is provided on the fixed shaft 5 above the rotating body 3 as a pressing member.

また前記支持体4はアルミニウム材から構成されるもの
であって、前記摺動部材の廻り止めとして用いられるも
のであるが、前記固定軸5及び支持体4もSiCを主体
とするセラミックス材料で構成することも選んでできる
し、さらに前記支持体4は磁性体で構成してマグネット
7との間で常時吸引力を働かせて回転体3を墜落させな
いようにし、かつこの吸引力で安定な回転を得るように
考慮してもよい。さらに固定軸5は軸端面間の平行度及
びヘリングボーン状溝面との垂直度を精密加工したスリ
ーブ状のブツシュ5.を嵌着配備してブツシュ5.を段
付軸として各部材に対応させてもよい。また前記回転体
3に設けたマグネット7に対して平板状のステータコイ
ル6を支持体4及びカバ一体12にそれぞれ設けてモー
タとしてポリゴンロータの回転体3を回転させるように
しである。
Further, the support body 4 is made of an aluminum material and is used to prevent the sliding member from rotating, but the fixed shaft 5 and the support body 4 are also made of a ceramic material mainly composed of SiC. Furthermore, the support body 4 is made of a magnetic material so that an attractive force is always exerted between it and the magnet 7 to prevent the rotating body 3 from falling, and this attractive force allows for stable rotation. You may consider obtaining it. Furthermore, the fixed shaft 5 is a sleeve-shaped bushing 5. which is precisely machined to ensure parallelism between the shaft end surfaces and perpendicularity to the herringbone groove surface. 5. Fit and deploy the bushings. may be used as a stepped shaft to correspond to each member. In addition, a flat stator coil 6 is provided on the support body 4 and the cover unit 12, respectively, in response to the magnet 7 provided on the rotating body 3, and serves as a motor to rotate the rotating body 3 of the polygon rotor.

しかして鏡面2のある回転体3は支持体4にある固定軸
5のスリーブ状のブツシュ51上にマスバランス、流体
バランス及び磁気バランスが良好に維持されて円滑に回
転され、回転時の空気抵抗も小さく運転できるものであ
る。
Therefore, the rotating body 3 with the mirror surface 2 is smoothly rotated with good mass balance, fluid balance, and magnetic balance on the sleeve-shaped bushing 51 of the fixed shaft 5 on the support 4, and the air resistance during rotation is It is also small and easy to drive.

この場合、前記支持体4と回転体3との間に介在された
受部材10の対応面に動圧発生用溝11があり、その対
面側は平滑な平面としてスラスト軸受部とするものであ
り、また、ラジアル軸受部は固定軸5上のスリーブ状の
ブツシュ5Iの外周面、又は貫通孔lの円筒面のいずれ
か一方の面にヘリングボーン状の動圧発生用溝111を
形成し、他方の面を平滑な円筒面として構成するもので
あり、この実施例においては、スラスト荷重を支えるた
めの動圧発生用a11、ラジアル荷重を支えるための動
圧発生用fR11+ は各々3〜50μm程度の溝深さ
である。またこの動圧発生用溝11は回転体3の両面に
溝加工を施してバランスをよくし、変形をなくすように
するのもよい。
In this case, a dynamic pressure generating groove 11 is provided on the corresponding surface of the receiving member 10 interposed between the supporting body 4 and the rotary body 3, and the opposite side thereof is a smooth flat surface that serves as a thrust bearing portion. In addition, the radial bearing part has a herringbone-shaped dynamic pressure generating groove 111 formed on either the outer circumferential surface of the sleeve-shaped bushing 5I on the fixed shaft 5 or the cylindrical surface of the through hole l, and In this embodiment, a11 for generating dynamic pressure to support the thrust load and fR11+ for generating the dynamic pressure to support the radial load each have a diameter of about 3 to 50 μm. This is the groove depth. The dynamic pressure generating grooves 11 may be formed on both sides of the rotating body 3 to improve balance and eliminate deformation.

前記回転体3及び/又は受部材10は全面のうねりが0
.3μm以下で最大面粗度が0.1μmの平滑な平面で
あるランド面とした上で、ショツトブラストによって3
〜50μmの深さのスパイラル状溝加工をしたものを用
いるのがよい。
The rotating body 3 and/or the receiving member 10 have zero waviness over the entire surface.
.. After making the land surface a smooth plane with a surface roughness of 3 μm or less and a maximum surface roughness of 0.1 μm, it was
It is preferable to use a material with a spiral groove machined to a depth of ~50 μm.

なお、動圧効果を利用したラジアル軸受を製作する場合
も同様に、上述のショツトブラストによる溝加工をする
ことができる。いずれにしても軸受部には高い精度で前
記動圧発生用?fl 11 、 iLを加工することが
でき、かつ、その動圧発生に適した摺動部の形状が動圧
が発生した状態においても維持され、しかも、起動、停
止の際に生じる固体摺擦に対しても、ある程度の負荷で
あれば耐久性を持って有効に用いられる。
Note that when manufacturing a radial bearing that utilizes the hydrodynamic effect, the above-mentioned shot blasting can be used to form grooves. In any case, is the bearing part used to generate the dynamic pressure with high precision? It is possible to process fl 11 and iL, and the shape of the sliding part suitable for generating dynamic pressure is maintained even when dynamic pressure is generated, and moreover, it is resistant to solid sliding that occurs when starting and stopping. However, if the load is to a certain extent, it is durable and can be used effectively.

第2図例では前記ブツシュ5Iを受部材10゜10間に
挟持して固定軸5に設けた固定ナツト16とコイルバネ
17とで保持したものでステータコイル6をカバ一体1
2に設けである。なお前記回転体3と支持体4との間の
受部材10を支持体4で兼用させてもよく、この場合支
持体4をセラミック材料で形成するのもよい。
In the example shown in FIG. 2, the bush 5I is held between the receiving members 10 and 10 by a fixing nut 16 provided on the fixed shaft 5 and a coil spring 17, and the stator coil 6 is attached to the cover 1.
It is provided in 2. Note that the support member 4 may also serve as the receiving member 10 between the rotating body 3 and the support member 4, and in this case, the support member 4 may be formed of a ceramic material.

第3〜5図の実施例では、支持体4へねじ込まれた固定
ボルトを固定軸5として用い、ブノンユ5、の両端面に
上部受部材10及び下部受部材10が挟持され、組立容
易な構成としである。
In the embodiment shown in FIGS. 3 to 5, a fixing bolt screwed into the support body 4 is used as the fixing shaft 5, and an upper support member 10 and a lower support member 10 are sandwiched between the end faces of the bunonyu 5, which facilitates assembly. It's Toshide.

また、この実施例ではブツシュ5.と回転体3との間の
動圧軸受部分に対して受部材10に形成された貫通孔2
0から容易に外気が流れるようにしである。そしてリン
グ状の鉄片のバックアンプリング18は、マグネット7
の磁気回路を良好にするためと、マスバランスをとるた
めのものであって、セラミックスからなる回転体3の強
度をそこなうことなくバランスを修正することができる
In addition, in this embodiment, the bushing 5. A through hole 2 is formed in the receiving member 10 for the dynamic pressure bearing portion between the rotating body 3 and the rotating body 3.
This is so that outside air can easily flow from 0. The back amplifier ring 18, which is a ring-shaped piece of iron, is attached to the magnet 7.
This is to improve the magnetic circuit and to maintain mass balance, and the balance can be corrected without damaging the strength of the rotating body 3 made of ceramics.

この場合、固定軸5のボルトは螺孔21に螺合し、座金
15にパツキン19を併用して受部材10゜10の挟持
が前便にできるようになっていて、また前記支持体4に
下部受部材10に設けた貫通孔20に連通ずるガイド用
の通気路22を形成しである。さらに、前記マグネット
7を回転体3の挿入孔8に埋込む際に合成樹脂系コーテ
ィング剤で被覆カバーすることも選んでできる。
In this case, the bolt of the fixed shaft 5 is screwed into the screw hole 21, and the washer 15 and the gasket 19 are used together to enable the holding member 10° 10 to be held in place. A guide air passage 22 communicating with a through hole 20 provided in the lower receiving member 10 is formed. Furthermore, when the magnet 7 is embedded in the insertion hole 8 of the rotating body 3, it can be optionally covered with a synthetic resin coating agent.

さらに、第6図例では前記回転体3が、マグネット7を
固装した円筒状のセラミックスリング3Iと、このセラ
ミックスリング3Iの外周に焼ばめによって固定された
金属製のつば部3□とからなるものであって、そのつば
3□の外周縁は多面鏡2となっている。
Furthermore, in the example shown in FIG. 6, the rotating body 3 is made up of a cylindrical ceramic ring 3I to which a magnet 7 is fixed, and a metal collar 3□ fixed to the outer periphery of the ceramic ring 3I by shrink fit. The outer periphery of the brim 3□ is a polygon mirror 2.

〔発明の効果〕〔Effect of the invention〕

本発明は、回転体に設けたマグネットと、このマグネッ
トに対向され前記回転体を回転させるステークコイルと
を備えたポリゴンミラーにおいて、前記固定軸に嵌装配
備したブツシュに前記回転体を回転自在に嵌合すると共
に、ブツシュ外周面又はこれに対面する回転体側摺動面
のいずれかに動圧発生用溝を形成し、かつ前記回転体を
その両側からスラスト受部材で挟持し、固定部材をもっ
てブツシュと共に固定軸に嵌着し、この回転体の受部材
に対向する摺動面に動圧発生用溝を設けたことによりポ
リゴンロータの垂直度、平行度を大幅に向上できロータ
の芯振れも可及的に小さくできるほか、組立配備が筒易
で堅牢であり、バランス調整も容易で、あって安定した
回転運転が可能となり、ポリゴンロータを回転させるた
めの永久磁石又は二次導体からなるロータコアと、外周
面がミラ一部とされたポリゴンロータの厚みが薄くても
その変形量を小さくすることができ、従来のポリゴンミ
ラーに比べ、ポリゴンミラーを装着した回転軸方向の寸
法が短くなり、著しく薄く小型軽量化することが可能で
あって、その空気抵抗をも著しく減少せしめることがで
きるし、さらに小さな動力で従来と同等の回転速度が得
られることになり、また従来と同程度の電力を投入すれ
ば、より高回転速度を得ることができるポリゴンミラー
となるし、ポリゴンロータに動圧効果を生じさせスラス
ト荷重を良好に受けることから保守・保安がらくで起動
・停止の際の固体接触があっても摩耗することがなく、
また動圧発生時の動圧発生効果は良好に維持されて高負
荷のスラスト荷重を支えることができるので、光線を安
定して走査するポリゴンミラーとしての機能が常時良好
で、かつセラミックス摺動部材の介在で、レーザ光等を
精度よく反射できるポリゴンミラーを構成簡単で製作容
易安価な形態で得られるものである。
The present invention provides a polygon mirror that includes a magnet provided on a rotating body and a stake coil that is opposed to the magnet and rotates the rotating body, in which the rotating body is rotatably mounted on a bushing fitted to the fixed shaft. At the same time, a groove for generating dynamic pressure is formed on either the outer circumferential surface of the bushing or the sliding surface on the rotating body side facing the bushing, and the rotating body is held between thrust receiving members from both sides, and the bushing is held by the fixing member. It is also fitted onto a fixed shaft, and grooves for generating dynamic pressure are provided on the sliding surface facing the receiving member of this rotating body, which greatly improves the perpendicularity and parallelism of the polygon rotor and prevents rotor center runout. In addition to being as compact as possible, it is easy to assemble and deploy, is robust, and balance adjustment is easy, allowing for stable rotational operation. Even if the thickness of the polygon rotor whose outer peripheral surface is a part of the mirror is thin, the amount of deformation can be reduced, and compared to conventional polygon mirrors, the dimension in the direction of the rotation axis on which the polygon mirror is attached is shorter, significantly reducing the It is possible to make it thinner, smaller, and lighter, and its air resistance can be significantly reduced. It also means that it can achieve the same rotational speed as the conventional model with less power, and it also uses the same amount of power as the conventional model. When inserted, it becomes a polygon mirror that can obtain higher rotational speeds, and because it generates a dynamic pressure effect on the polygon rotor and receives thrust loads well, maintenance and security are easy, and solid contact during startup and shutdown is avoided. Even if there is, it will not wear out,
In addition, the dynamic pressure generation effect when generated is well maintained and can support high thrust loads, so it always functions well as a polygon mirror that stably scans the light beam, and the ceramic sliding member Through the intervention of the present invention, a polygon mirror capable of accurately reflecting laser beams and the like can be obtained in a form that is simple in structure, easy to manufacture, and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の縦断面図、第2図は他の実施
例の切断側面図、第3図はさらに他の実施例の一部の縦
断面図、第4図は第3図If線の底面図、第5図は第3
図■n線の平面図、第6図はまた他の実施例の一部の縦
断面図、第7図は従来例の縦断面図である。 1・・・貫通孔、2・・・鏡面、3・・・回転体、4・
・・支持体、5・・・固定軸、5I・・・ブツシュ、6
・・・ステータコイル、7・・・マグネット、8・・・
挿入孔、1o・・・受部材、11.11.・・・動圧発
生用溝、12・・・カバ一体、15・・・座金、16・
・・固定ナツト、17・・・バネ。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention, FIG. 2 is a cut side view of another embodiment, FIG. 3 is a longitudinal sectional view of a part of still another embodiment, and FIG. Figure 5 is the bottom view of the If line.
FIG. 6 is a longitudinal sectional view of a part of another embodiment, and FIG. 7 is a longitudinal sectional view of a conventional example. 1... Through hole, 2... Mirror surface, 3... Rotating body, 4...
...Support, 5...Fixed shaft, 5I...Bouch, 6
... Stator coil, 7... Magnet, 8...
Insertion hole, 1o...receiving member, 11.11. ...Groove for dynamic pressure generation, 12...Cover integrated, 15...Washer, 16.
...fixing nut, 17...spring.

Claims (6)

【特許請求の範囲】[Claims] (1)鏡面のある回転体を支持体に備えた固定軸に回転
自在に設けてポリゴンロータとし、前記回転体にマグネ
ットを設けると共に、該マグネットに対応してステータ
コイルを配備したポリゴンミラーにおいて、前記固定軸
に嵌装配備したブッシュに前記回転体を回転自在に嵌合
すると共に、ブッシュ外周面又はこれに対面する回転体
側摺動面のいずれかに動圧発生用溝を形成し、かつ前記
回転体をその両側からスラスト受部材で挟持し、固定部
材をもってブッシュと共に固定軸に嵌着し、この回転体
の受部材に対向する摺動面に動圧発生用溝を設けたこと
を特徴とするポリゴンミラー。
(1) A polygon mirror in which a rotating body with a mirror surface is rotatably provided on a fixed shaft provided on a support body to form a polygon rotor, a magnet is provided on the rotating body, and a stator coil is provided corresponding to the magnet, The rotating body is rotatably fitted into a bush fitted and disposed on the fixed shaft, and a dynamic pressure generating groove is formed on either the outer circumferential surface of the bush or the sliding surface on the rotating body side facing the bush, and the The rotating body is held between thrust receiving members from both sides, the fixed member is fitted onto the fixed shaft together with the bushing, and a groove for generating dynamic pressure is provided on the sliding surface of the rotating body facing the receiving member. Polygon mirror.
(2)前記回転体がその両側面に備えられる受部材間に
介在配備されたものであって、両面に動圧発生用のスパ
イラル溝を形成したセラミックス材からなるものである
特許請求の範囲第1項記載のポリゴンミラー。
(2) The rotating body is interposed between receiving members provided on both sides thereof, and is made of a ceramic material with spiral grooves for generating dynamic pressure formed on both sides. The polygon mirror described in item 1.
(3)前記回転体が、外周縁が正多角形の平板状の板体
であって、該外周面にアルミニウム箔を固着して鏡面を
形成したポリゴンロータとしたものである特許請求の範
囲第1項又は第2項記載のポリゴンミラー。
(3) The rotating body is a polygon rotor, which is a flat plate having a regular polygonal outer periphery, and has a mirror surface formed by fixing aluminum foil to the outer periphery. The polygon mirror according to item 1 or 2.
(4)前記回転体が、中央に貫通孔のある平板であって
、該貫通孔と同心円状にマグネットを環状に複数配備し
たポリゴンロータである特許請求の範囲第1〜3項のい
ずれか一つの項記載のポリゴンミラー。
(4) Any one of claims 1 to 3, wherein the rotating body is a polygon rotor that is a flat plate with a through hole in the center and has a plurality of annular magnets arranged concentrically with the through hole. Polygon mirror described in two sections.
(5)前記支持体が、アルミニウム材から構成されるも
のであって、前記回転体の軸方向動圧軸受を形成する受
部材として用いられるものである特許請求の範囲第1〜
4項のいずれか一つの項記載のポリゴンミラー。
(5) The support body is made of an aluminum material and is used as a receiving member forming an axial dynamic pressure bearing of the rotating body.
The polygon mirror described in any one of item 4.
(6)前記ブッシュが、前記受部材と固定軸に設けた座
金との間にコイルバネが介在されて押圧挟持されている
ものである特許請求の範囲第1〜5項のいずれか一つの
項記載のポリゴンミラー。
(6) The bushing is pressed and held between the receiving member and a washer provided on the fixed shaft with a coil spring interposed therebetween. polygon mirror.
JP9097287A 1987-04-15 1987-04-15 Polygon mirror Expired - Lifetime JPH0677107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097287A JPH0677107B2 (en) 1987-04-15 1987-04-15 Polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097287A JPH0677107B2 (en) 1987-04-15 1987-04-15 Polygon mirror

Publications (2)

Publication Number Publication Date
JPS63257716A true JPS63257716A (en) 1988-10-25
JPH0677107B2 JPH0677107B2 (en) 1994-09-28

Family

ID=14013420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097287A Expired - Lifetime JPH0677107B2 (en) 1987-04-15 1987-04-15 Polygon mirror

Country Status (1)

Country Link
JP (1) JPH0677107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373391A (en) * 1992-02-26 1994-12-13 Ebara Corporation Polygon mirror with embedded yoke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373391A (en) * 1992-02-26 1994-12-13 Ebara Corporation Polygon mirror with embedded yoke

Also Published As

Publication number Publication date
JPH0677107B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
KR940011647B1 (en) Synchronous motor
JPS5917019A (en) Rotary body supporter
US5538347A (en) Dynamic pressure bearing
JPS63241516A (en) Polygon mirror
JP2872202B2 (en) motor
JPS63241517A (en) Polygon mirror
JPS63241515A (en) Polygon mirror
JPS63257716A (en) Polygon mirror
JPH0651224A (en) Optical scanning device
JPH0691717B2 (en) Electric machine
JPS63266420A (en) Polygonal mirror
JPS63241518A (en) Polygon mirror
JPS63257717A (en) Polygon mirror
JPH0677111B2 (en) Polygon mirror
JPS619138A (en) High speed rotary drive device
JPH07259849A (en) Dynamic pressure bearing
JPS60208629A (en) Light deflector device
JPS6381316A (en) Polygonal mirror
JPS63259617A (en) Polygon mirror rotor
JPH02186118A (en) Rotating device
JPS5968716A (en) Rotary body supporting device
JPS63191117A (en) Dynamic pressure bearing unit for rotary polygon mirror
JPS6055315A (en) Optical deflector
JPH0725774Y2 (en) Polygon mirror device
JPS6223354A (en) Flattened motor