JPH07259849A - Dynamic pressure bearing - Google Patents

Dynamic pressure bearing

Info

Publication number
JPH07259849A
JPH07259849A JP5398694A JP5398694A JPH07259849A JP H07259849 A JPH07259849 A JP H07259849A JP 5398694 A JP5398694 A JP 5398694A JP 5398694 A JP5398694 A JP 5398694A JP H07259849 A JPH07259849 A JP H07259849A
Authority
JP
Japan
Prior art keywords
bearing
rotating body
dynamic pressure
radial bearing
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5398694A
Other languages
Japanese (ja)
Inventor
Masao Gan
雅夫 翫
Yuko Takahashi
祐幸 高橋
Yoshio Iwamura
義雄 岩村
Toyoji Ito
豊次 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP5398694A priority Critical patent/JPH07259849A/en
Priority to DE1995110593 priority patent/DE19510593A1/en
Publication of JPH07259849A publication Critical patent/JPH07259849A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors

Abstract

PURPOSE:To prevent a peripheral part of a rotary unit, particularly increased with a rotational speed, from coming into contact with a thrust bearing, even in the case of setting the rotary unit tilted or setting it up horizontally. CONSTITUTION:A device has a radial bearing 4, thrust bearing 2, 3 provided in both ends of the radial bearing 4 and a rotary unit 5 rotatably provided in the radial bearing 4 and the thrust bearings 2, 3. At the time of rotating the rotary unit 5 received by the radial bearing and the thrust bearings, a minimum value of clearance width, generated between the rotary unit and the thrust bearing, is increased larger than a minimum value of clearance width generated between the radial bearing and the rotary unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転体と、非回転体間に
動圧発生用溝を形成し、回転体の回転により前記動圧発
生用溝の作用で回転体と非回転体間に間隙を形成するこ
とにより、回転体の高速回転を可能とした回転機械の動
圧軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a dynamic pressure generating groove between a rotating body and a non-rotating body, and the rotation of the rotating body causes the dynamic pressure generating groove to act between the rotating body and the non-rotating body. The present invention relates to a dynamic pressure bearing of a rotary machine that enables high speed rotation of a rotating body by forming a gap.

【0002】[0002]

【従来の技術】一般に動圧軸受を用いた回転体を設置す
るには水平設置が基本となっている。そして動圧軸受
は、回転体の高速回転により発生する風を非回転体に設
けた前記動圧発生用溝に導入し、前記風により、該動圧
発生用溝より強力な風圧を前記回転体面に当てることで
非回転体面と、回転体面間に数μm単位の空気間隙を形
成し、非回転体と、回転体間の抵抗を低下させる事で、
回転体の高速回転を可能にしている。前記のような回転
体を、固定された前記ラジアル軸受と、スラスト軸受に
設けた動圧発生用溝より数μm単位の空気間隙で浮かせ
ながら3000rpm以上の回転数で高速回転するポリゴンミ
ラーに使用した動圧軸受も知られいる(実公平4-38330
号、同5-16574号)。
2. Description of the Related Art In general, horizontal installation is the basis for installing a rotating body using a dynamic pressure bearing. The dynamic pressure bearing introduces the wind generated by the high speed rotation of the rotating body into the dynamic pressure generating groove provided in the non-rotating body, and the wind generates a stronger wind pressure than the dynamic pressure generating groove on the surface of the rotating body. By applying an air gap between the non-rotating body surface and the rotating body surface to form an air gap of several μm unit, the resistance between the non-rotating body and the rotating body is reduced,
It enables high-speed rotation of the rotating body. The rotating body as described above was used for the fixed radial bearing and the polygon mirror that rotates at a high rotation speed of 3000 rpm or more while floating in the air gap of several μm unit from the dynamic pressure generating groove provided in the thrust bearing. Dynamic bearings are also known.
No. 5-16574).

【0003】[0003]

【発明が解決しようとする課題】以上のような動圧軸受
は前記のように水平に設置されていれば回転体の回転
と、動圧発生用溝により発生する風により、前記のよう
に非回転体と、回転体は数μmの空気間隙を保持しなが
ら回転体は回転を維持出来る。前記動圧軸受を使用した
回転体に例えば小型のプリンタ、画像記録装置等に使用
されているレーザ露光用のポリゴンミラーの回転用に使
用した時、設置場所又は部品配置の関係上水平配置が不
可能となる場合がある。そこで前記ポリゴンミラーを形
成した回転体と共に前記動圧軸受を設置場所に応じて傾
斜配置した時、前記のように動圧発生用溝で形成された
数μm間隔で形成された空気間隙が保持されず、回転体
の一部が対向部面に接触する事故を起こすこともある。
前記のようにポリゴンミラーの回転は3000rpm以上の回
転数で回転しており、特に回転体の回転中心部より回転
周辺部の回転速度が増大している。前記のように回転体
を傾斜配置した場合、又は振動等の外部要因により、前
記空気間隙による保持が出来ず、回転体の周辺部が前記
スラスト軸受の一部に接触してしまう欠点がある。
If the dynamic pressure bearing as described above is installed horizontally as described above, it will not be affected by the rotation of the rotating body and the wind generated by the dynamic pressure generating groove as described above. The rotating body can maintain the rotation while maintaining an air gap of several μm between the rotating body. When the rotating body using the dynamic pressure bearing is used for rotating a polygon mirror for laser exposure used in, for example, a small printer, an image recording device, etc., the horizontal arrangement is unsatisfactory due to the installation location or the arrangement of parts. It may be possible. Therefore, when the dynamic pressure bearing is tilted according to the installation location together with the rotating body having the polygon mirror, the air gaps formed by the dynamic pressure generating grooves as described above are maintained at intervals of several μm. In some cases, a part of the rotating body may come into contact with the facing surface.
As described above, the polygon mirror rotates at a rotation speed of 3000 rpm or more, and particularly, the rotation speed of the rotation peripheral portion is higher than the rotation center portion of the rotating body. When the rotating body is arranged in an inclined manner as described above, or due to an external factor such as vibration, it cannot be held by the air gap, and there is a drawback that the peripheral portion of the rotating body contacts a part of the thrust bearing.

【0004】本発明は前記のような欠点を改善するため
特に考えられたものである。即ち、回転体を受けるラジ
アル軸受と、スラスト軸受の内、回転体とスラスト軸受
との間隙を前記回転体とラジアル軸受との間隙より広く
設定出来るように動圧軸受を構成し、回転体が傾斜設定
された状態において、又、水平設置の場合に於いても、
回転速度が特に増大された前記回転体の周辺部がスラス
ト軸受に接触しないようにしたことを目的としたもので
ある。
The present invention has been particularly devised in order to remedy the above-mentioned drawbacks. That is, of the radial bearing that receives the rotating body and the thrust bearing, the dynamic pressure bearing is configured so that the gap between the rotating body and the thrust bearing can be set wider than the gap between the rotating body and the radial bearing, and the rotating body is inclined. In the set state, and even in the case of horizontal installation,
The object is to prevent the peripheral portion of the rotating body whose rotational speed is particularly increased from coming into contact with the thrust bearing.

【0005】[0005]

【課題を解決するための手段】本発明は前記目的を達成
するため、請求項1に於いて、ラジアル軸受と、該ラジ
アル軸受の両端に設けたスラスト軸受とを有し、前記ラ
ジアル軸受と、前記スラスト軸受に回転自在に設けられ
た回転体を有する動圧軸受に於いて、前記回転体が前記
ラジアル軸受と、前記スラスト軸受で受け回転する時、
前記回転体と前記スラスト軸受間に生ずる間隙幅の最小
値が、前記ラジアル軸受と前記回転体間に生ずる間隙幅
の最小値より大となること。請求項2に於いて、前記動
圧軸受に於いて、前記ラジアル軸受と、前記スラスト軸
受の両方、或いは少なくとも一方に動圧発生用溝が形成
されていること。請求項3に於いて、前記回転体が前記
軸受に接触する時は少なくとも周速の小さいラジアル軸
受に接触すること。請求項4に於いて、前記ラジアル軸
受はセラミックスで形成されていること。請求項5に於
いて、ラジアル軸受と、該ラジアル軸受の両端に設けた
スラスト軸受とを有し、前記ラジアル軸受と、前記スラ
スト軸受に回転自在に設けられた回転体を有する動圧軸
受に於いて、前記回転体が前記ラジアル軸受と、前記ス
ラスト軸受で受け回転する時、前記回転体と前記スラス
ト軸受間に生ずる間隙幅の最小値が、前記ラジアル軸受
と前記回転体間に生ずる間隙幅の最小値より大となる動
圧軸受であって、前記ラジアル軸受と、前記回転体に動
圧発生用溝が形成されていること。請求項6に於いて、
前記回転体が前記軸受に接触する時は少なくとも周速の
小さいラジアル軸受に接触すること。請求項7に於い
て、前記ラジアル軸受はセラミックスで形成されている
こと。請求項8に於いて、ラジアル軸受と、該ラジアル
軸受の一端に設けたスラスト軸受とを有し、前記ラジア
ル軸受と、前記スラスト軸受に回転自在に設けられた回
転体を有する動圧軸受に於いて、前記回転体が前記ラジ
アル軸受と、前記スラスト軸受で受け回転する時、前記
回転体と前記スラスト軸受間に生ずる間隙幅の最小値
が、前記ラジアル軸受と前記回転体間に生ずる間隙幅の
最小値より大となること。請求項9に於いて、前記動圧
軸受に於いて、前記ラジアル軸受と、前記スラスト軸受
の両方或いは少なくとも一方に動圧発生用溝が形成され
ていること。請求項10に於いて、前記回転体が前記軸
受に接触する時は少なくとも周速の小さいラジアル軸受
に接触すること。請求項11に於いて、前記ラジアル軸
受はセラミックスで形成されていることにより達成され
る。
In order to achieve the above-mentioned object, the present invention comprises, in claim 1, a radial bearing and thrust bearings provided at both ends of the radial bearing, and the radial bearing, In a dynamic pressure bearing having a rotating body rotatably provided in the thrust bearing, when the rotating body receives and rotates with the radial bearing and the thrust bearing,
The minimum value of the gap width generated between the rotary body and the thrust bearing is larger than the minimum value of the gap width generated between the radial bearing and the rotary body. 3. The dynamic pressure bearing according to claim 2, wherein a dynamic pressure generating groove is formed in both or at least one of the radial bearing and the thrust bearing. In Claim 3, When the said rotary body contacts the said bearing, it contacts at least a radial bearing with a small peripheral speed. The radial bearing according to claim 4, wherein the radial bearing is made of ceramics. The dynamic pressure bearing according to claim 5, further comprising a radial bearing and thrust bearings provided at both ends of the radial bearing, and the radial bearing and the rotating body rotatably provided on the thrust bearing. In addition, when the rotating body receives and rotates between the radial bearing and the thrust bearing, the minimum value of the gap width generated between the rotating body and the thrust bearing is equal to the minimum gap width generated between the radial bearing and the rotating body. A dynamic pressure bearing having a diameter larger than the minimum value, wherein the radial bearing and the rotary body are formed with a dynamic pressure generating groove. In claim 6,
When the rotating body comes into contact with the bearing, it should come into contact with at least a radial bearing having a low peripheral speed. The radial bearing according to claim 7, wherein the radial bearing is made of ceramics. The dynamic pressure bearing according to claim 8, further comprising a radial bearing and a thrust bearing provided at one end of the radial bearing, the radial bearing and the rotating body rotatably provided on the thrust bearing. In addition, when the rotating body receives and rotates between the radial bearing and the thrust bearing, the minimum value of the gap width generated between the rotating body and the thrust bearing is equal to the minimum gap width generated between the radial bearing and the rotating body. Must be greater than the minimum value. 10. The dynamic pressure bearing according to claim 9, wherein a dynamic pressure generation groove is formed in both or at least one of the radial bearing and the thrust bearing. In Claim 10, When the said rotary body contacts the said bearing, it contacts at least a radial bearing with a small peripheral speed. In Claim 11, it is achieved by forming the radial bearing from ceramics.

【0006】[0006]

【実施例】図1はポリゴンミラーの回転支持装置1を示
し、該回転支持装置1には上下に板状のスラスト軸受
2,3を設け、該スラスト軸受2,3間に挟まれるよう
に円柱状のラジアル軸受4を固定した動圧軸受11を設け
る。そして前記スラスト軸受2,3の案内面21,31と、
ラジアル軸受4の案内面41には各々動圧発生用溝22,3
2,42を形成する。前記案内面21,31,41に対し回動自
在に形成した対向面51,52,53を形成した回転体5を設
けると共に、該回転体5は前記ラジアル軸受4を回転中
心となるように設け、前記回転体5の外周に取付部材
6,61と共にポリゴンミラー7を固定して設ける。前記
取付部材6にはステータコイル6Aを設け、前記回転支
持装置1には前記ステータコイル6Aに対向したマグネ
ット8が設けられ、前記ステータコイル6Aに通電する
ことで回転体5を高速度で誘導回転させる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a rotary support device 1 for a polygon mirror. The rotary support device 1 is provided with plate-like thrust bearings 2 and 3 on the upper and lower sides, and is circled so as to be sandwiched between the thrust bearings 2 and 3. A dynamic pressure bearing 11 to which a columnar radial bearing 4 is fixed is provided. And the guide surfaces 21 and 31 of the thrust bearings 2 and 3,
The guide surface 41 of the radial bearing 4 has grooves 22 and 3 for generating dynamic pressure, respectively.
Form 2, 42. The rotating body 5 is provided with facing surfaces 51, 52, 53 rotatably formed with respect to the guide surfaces 21, 31, 41, and the rotating body 5 is provided with the radial bearing 4 as a center of rotation. The polygon mirror 7 is fixedly provided on the outer periphery of the rotating body 5 together with the mounting members 6 and 61. The mounting member 6 is provided with a stator coil 6A, and the rotation support device 1 is provided with a magnet 8 facing the stator coil 6A. By energizing the stator coil 6A, the rotating body 5 is induced to rotate at a high speed. Let

【0007】図2は、前記スラスト軸受2,3及びラジ
アル軸受4間に於いて、前記回転体5が回転する時の間
隙を示すものである。前記スラスト軸受2,3の動圧発
生用溝22,32を形成した案内面21,31と、前記回転体5
で前記案内面21,31と対向した対向面51,52間を5〜7
μmとし、前記ラジアル軸受4の案内面41と前記回転体
5の対向面53間を1〜3μmの空気間隙を保持するよう
に前記動圧発生用溝22,32,42を形成する。前記のよう
な設定により前記回転体5とポリゴンミラー7を高速回
転した時に、前記のように傾斜配置又は振動等により前
記回転体5の回転位置が多少変位しても前記スラスト軸
受2,3の案内面21,31に回転体5の対向面51,52が接
触せず、回転体5の対向面53がラジアル軸受4の案内面
41に多少接触するのみである。尚前記ラジアル軸受4は
接触による磨耗や発熱を防止するためセラミックス材等
で形成することも可能である。
FIG. 2 shows a gap between the thrust bearings 2 and 3 and the radial bearing 4 when the rotating body 5 rotates. Guide surfaces 21 and 31 in which the dynamic pressure generating grooves 22 and 32 of the thrust bearings 2 and 3 are formed, and the rotor 5
The distance between the facing surfaces 51 and 52 facing the guide surfaces 21 and 31 is 5 to 7
The dynamic pressure generating grooves 22, 32, 42 are formed so as to maintain an air gap of 1 to 3 μm between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5. When the rotating body 5 and the polygon mirror 7 are rotated at a high speed by the above setting, even if the rotational position of the rotating body 5 is slightly displaced due to the tilted arrangement or vibration as described above, the thrust bearings 2 and 3 are The facing surfaces 51 and 52 of the rotating body 5 do not contact the guide surfaces 21 and 31, and the facing surface 53 of the rotating body 5 is the guide surface of the radial bearing 4.
It only makes some contact with 41. The radial bearing 4 may be formed of a ceramic material or the like to prevent abrasion and heat generation due to contact.

【0008】図3は、前記図2と同様に、前記スラスト
軸受2,3及びラジアル軸受4間に於いて、前記回転体
5が回転する時の間隙として、前記スラスト軸受2,3
の案内面21,31と、前記回転体5で前記案内面21,31と
対向した対向面51,52間を5〜7μmとし、前記ラジア
ル軸受4の案内面41と前記回転体5の対向面53間を1〜
3μmの空気間隙を保持するように前記動圧発生用溝2
2,32,42を形成する。そして本実施例は、前記スラス
ト軸受2,3の案内面21,31に設けた前記動圧発生用溝
22,32に代わって、前記回転体5の対向面51,52に動圧
発生用溝511,521を設けたものである。前記のように構
成し、前記回転体5とポリゴンミラー7を高速回転した
時でも、前記のように傾斜配置又は振動等により前記回
転体5の回転位置が多少変位した時でも、前記スラスト
軸受2,3の案内面21,31に回転体5の対向面51,52が
接触せず、回転体5の対向面53がラジアル軸受4の案内
面41に多少接触するのみである。尚前記ラジアル軸受4
は接触による磨耗や発熱を防止するためセラミックス材
等で形成することも可能である。
Similar to FIG. 2, FIG. 3 shows the thrust bearings 2, 3 as a gap between the thrust bearings 2, 3 and the radial bearing 4 when the rotor 5 rotates.
5 to 7 μm between the guide surfaces 21 and 31 of the rotary body 5 and the facing surfaces 51 and 52 of the rotary body 5 that face the guide surfaces 21 and 31, and the guide surface 41 of the radial bearing 4 and the facing surface of the rotary body 5 are 1 to 53
The dynamic pressure generating groove 2 so as to maintain an air gap of 3 μm
2, 32, 42 are formed. In this embodiment, the dynamic pressure generating grooves provided on the guide surfaces 21 and 31 of the thrust bearings 2 and 3 are used.
Instead of 22, 32, the dynamic pressure generating grooves 511, 521 are provided on the facing surfaces 51, 52 of the rotating body 5. With the above construction, the thrust bearing 2 can be used even when the rotating body 5 and the polygon mirror 7 are rotated at a high speed, or when the rotational position of the rotating body 5 is slightly displaced due to the inclined arrangement or the vibration as described above. The facing surfaces 51 and 52 of the rotating body 5 do not contact the guide surfaces 21 and 31 of the rotating body 5, and the facing surface 53 of the rotating body 5 only slightly contacts the guide surface 41 of the radial bearing 4. Incidentally, the radial bearing 4
Can be formed of a ceramic material or the like to prevent abrasion and heat generation due to contact.

【0009】図4は、前記図2の他の実施例で、前記ス
ラスト軸受2,3の内、該スラスト軸受2のみを設けた
構成である。本実施例に於いても、前記スラスト軸受2
の案内面21と、前記回転体5と対向した対向面51間を5
〜7μmとし、前記ラジアル軸受4の案内面41と、前記
回転体5の対向面53間を1〜3μmの空気間隙を保持す
るように前記動圧発生用溝22,42を形成する。そして本
実施例は、前記スラスト軸受2の案内面21に設けた前記
動圧発生用溝22と、前記ラジアル軸受4の動圧発生用溝
42により、前記同様に回転体5とポリゴンミラー7を高
速回転した時でも、前記のように傾斜配置又は振動等に
より前記回転体5の回転位置が多少変位しても、前記ス
ラスト軸受2の案内面21に回転体5の対向面51が接触せ
ず、回転体5の対向面53がラジアル軸受4の案内面41に
多少接触するのみである。尚前記ラジアル軸受4は接触
による磨耗や発熱を防止するためセラミックス材等で形
成することも可能である。
FIG. 4 shows another embodiment of FIG. 2 in which only the thrust bearing 2 of the thrust bearings 2 and 3 is provided. Also in this embodiment, the thrust bearing 2
5 between the guide surface 21 and the facing surface 51 facing the rotating body 5.
˜7 μm, and the dynamic pressure generating grooves 22, 42 are formed so as to maintain an air gap of 1 to 3 μm between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5. In this embodiment, the dynamic pressure generating groove 22 provided on the guide surface 21 of the thrust bearing 2 and the dynamic pressure generating groove of the radial bearing 4 are provided.
By 42, even when the rotating body 5 and the polygon mirror 7 are rotated at a high speed in the same manner as described above, the thrust bearing 2 is guided even if the rotational position of the rotating body 5 is slightly displaced due to the inclined arrangement or the vibration as described above. The facing surface 51 of the rotating body 5 does not contact the surface 21, but the facing surface 53 of the rotating body 5 only slightly contacts the guide surface 41 of the radial bearing 4. The radial bearing 4 may be formed of a ceramic material or the like to prevent abrasion and heat generation due to contact.

【0010】図5は前記図2に於ける動圧軸受11のラジ
アル軸受4と、スラスト軸受2,3に対し、回転体5の
回転時に於ける間隙条件を示したもので、ラジアル軸受
4の案内面41と回転体5の対向面53間を各々R1,R2
し、スラスト軸受2,3の案内面21,31と回転体5の対
向面51,52間を各々t1,t2とする。そして回転体5の
回転時にt1<t2、及びR1<R2である時、t1 >R1
となるように設定する。
FIG. 5 shows the clearance condition when the rotor 5 rotates with respect to the radial bearing 4 and the thrust bearings 2 and 3 of the dynamic pressure bearing 11 shown in FIG. R 1 and R 2 are provided between the guide surface 41 and the facing surface 53 of the rotating body 5, and t 1 and t 2 are provided between the guide surfaces 21 and 31 of the thrust bearings 2 and 3 and the facing surface 51 and 52 of the rotating body 5, respectively. And When t 1 <t 2 and R 1 <R 2 when the rotating body 5 rotates, t 1 > R 1
To be set.

【0011】前記実施例の図1,図2,図3,図5に於
いて、スラスト軸受2,3の案内面21,31に設けた動圧
発生用溝22,32は、例えば一方の案内面21又は案内面31
のみに設けてもよい。又前記回転体5の動圧発生用溝51
1,521も一方のみに設けてもよい。
In FIGS. 1, 2, 3 and 5 of the above embodiment, the dynamic pressure generating grooves 22 and 32 provided on the guide surfaces 21 and 31 of the thrust bearings 2 and 3 are, for example, one guide. Surface 21 or guide surface 31
You may provide only in. Further, the dynamic pressure generating groove 51 of the rotating body 5
1,521 may be provided on only one side.

【0012】図6(a),(b)は前記図2の他の実施
例である。本実施例の図6(a)は前記スラスト軸受
2,3に於ける前記案内面21,31面を傾斜面211,311と
する。即ち該傾斜面211,311は、ラジアル軸受4の案内
面41より外方に向かってポリゴンミラー7を設けた前記
回転体5の対向面51,52に対し外方に向かって順次離れ
るように傾斜させ、該傾斜によって生ずるスラスト軸受
2,3の最大距離を2〜5μmとする。又前記ラジアル
軸受4の案内面41と前記回転体5の対向面53間は前記図
2と同様に1〜3μmとする。従って特に前記対向面5
1,52面の外周位置は前記傾斜面211,311より大きく離
れるように構成される。次に本実施例の図6(b)は前
記スラスト軸受2,3に於ける前記案内面21,31を曲面
状の傾斜面212,312とする。即ち、該傾斜面212,312は
ラジアル軸受4の案内面41より外方に向かって前記対向
面51,52に対し順次離れるように曲面状で傾斜させ、該
傾斜によって生ずるスラスト軸受2,3の最大距離を2
〜5μmとする。又前記ラジアル軸受4の案内面41と前
記回転体5の対向面53間は前記図2と同様に1〜3μm
とする。従って前記図6(a)と同様に前記対向面51、
52面の外周位置は前記曲面状の傾斜面212,312より大き
く離れるように構成される。
FIGS. 6A and 6B show another embodiment of FIG. In FIG. 6A of this embodiment, the guide surfaces 21 and 31 of the thrust bearings 2 and 3 are inclined surfaces 211 and 311. That is, the inclined surfaces 211 and 311 are inclined outwardly with respect to the facing surfaces 51 and 52 of the rotating body 5 provided with the polygon mirror 7 outwardly from the guide surface 41 of the radial bearing 4. The maximum distance between the thrust bearings 2 and 3 caused by the inclination is set to 2 to 5 μm. The distance between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5 is 1 to 3 μm, as in the case of FIG. Therefore, in particular, the facing surface 5
The outer peripheral positions of the 1st and 52nd surfaces are arranged so as to be farther from the inclined surfaces 211 and 311. Next, in FIG. 6B of the present embodiment, the guide surfaces 21, 31 in the thrust bearings 2, 3 are curved inclined surfaces 212, 312. That is, the inclined surfaces 212 and 312 are inclined in a curved shape so as to be gradually separated from the facing surface 51 and 52 outward from the guide surface 41 of the radial bearing 4, and the thrust bearings 2 and 3 of the thrust bearings 2 and 3 caused by the inclination. Maximum distance is 2
~ 5 μm. The distance between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5 is 1 to 3 μm as in the case of FIG.
And Therefore, as in the case of FIG. 6A, the facing surface 51,
The outer peripheral position of the 52 surface is configured to be farther from the curved inclined surfaces 212 and 312.

【0013】以上のように構成した図6(a),(b)
の実施例において、ポリゴンミラー7を設けた回転体5
を3000rpm以上の回転数で回転した時、ラジアル軸受4
に設けた動圧発生用溝42で回転体5の対向面53は前記1
〜3μmの間隙を保持しながら回転する。その際、前記
のように動圧軸受11を傾斜して設置したり、振動が発生
しても前記回転体5の対向面51,52はスラスト軸受2,
3に傾斜して形成した傾斜面211,311,212,312の外周
部には接触しない。
6 (a) and 6 (b) configured as described above.
In the above embodiment, the rotating body 5 provided with the polygon mirror 7
Radial bearing 4 when rotating at a speed of 3000 rpm or more
In the dynamic pressure generating groove 42 provided in the
Rotate while maintaining a gap of ~ 3 μm. At this time, as described above, even if the dynamic pressure bearing 11 is installed in an inclined manner or vibration occurs, the facing surfaces 51, 52 of the rotating body 5 will not move to the thrust bearing 2, 2.
It does not contact the outer peripheral portions of the inclined surfaces 211, 311, 212, and 312 that are formed so as to be inclined at 3.

【0014】図7(a),(b)は、前記図2の他の実
施例である。本実施例の図7(a)は前記ポリゴンミラ
ー7を設けた前記回転体5に於ける前記対向面51,52を
傾斜面511,521とする。即ち該傾斜面511,521は前記ス
ラスト軸受2,3の案内面21,31に対し外方に向かって
順次離れるように傾斜させ、該傾斜によって生じる回転
体5の最大距離を2〜5μm とする。又前記ラジアル軸
受4の案内面41と前記回転体5の対向面53間は前記図2
と同様に1〜3μmとする。従って特に前記スラスト軸
受2,3の案内面21,31より前記回転体5の外周部は傾
斜により大きく離れるように構成される。図7(b)は
前記ポリゴンミラー7を設けた前記回転体5に於ける前
記対向面51,52を曲面状の傾斜面512,522とする。即ち
該曲面状の傾斜面512,522は前記スラスト軸受2,3の
案内面21,31に対し外方に向かって順次離れるように傾
斜させ、該傾斜によって生じる回転体5の最大距離を2
〜5μm とする。又前記ラジアル軸受4の案内面41と前
記回転体5の対向面53間は前記図2と同様に1〜3μm
とする。従って特に前記スラスト軸受2,3の案内面2
1,31より前記回転体5の外周部は傾斜により大きく離
れるように構成される。
FIGS. 7A and 7B show another embodiment of FIG. In FIG. 7A of this embodiment, the facing surfaces 51 and 52 of the rotating body 5 provided with the polygon mirror 7 are inclined surfaces 511 and 521. That is, the inclined surfaces 511 and 521 are inclined so as to be gradually separated outward with respect to the guide surfaces 21 and 31 of the thrust bearings 2 and 3, and the maximum distance of the rotating body 5 caused by the inclination is 2 to 5 μm. . The space between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5 is the same as in FIG.
1 to 3 μm as in the above. Therefore, in particular, the outer peripheral portion of the rotor 5 is configured to be largely separated from the guide surfaces 21 and 31 of the thrust bearings 2 and 3 by the inclination. In FIG. 7B, the facing surfaces 51 and 52 of the rotating body 5 provided with the polygon mirror 7 are curved inclined surfaces 512 and 522. That is, the curved inclined surfaces 512 and 522 are inclined so as to be gradually separated outward with respect to the guide surfaces 21 and 31 of the thrust bearings 2 and 3, and the maximum distance of the rotating body 5 caused by the inclination is set to 2
~ 5 μm The distance between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5 is 1 to 3 μm as in the case of FIG.
And Therefore, in particular, the guide surface 2 of the thrust bearings 2, 3
The outer peripheral portion of the rotating body 5 is configured so as to be largely separated by the inclination from 1, 31.

【0015】以上のように構成した図7(a),(b)
の実施例に於いて、ポリゴンミラー7を設けた回転体5
を3000rpm以上の回転数で回転した時、ラジアル軸受4
に設けた動圧発生用溝42で回転体5の対向面53は前記1
〜3μmの間隔を保持しながら回転する。その際、前記
のように動圧軸受11を傾斜して設置したり、振動が発生
しても前記回転体5の対向面51,52に形成した傾斜面51
1,521,512,522はスラスト軸受2,3の案内面21,31
の外周部には接触しない。
7 (a) and 7 (b) configured as described above.
In the embodiment, the rotating body 5 provided with the polygon mirror 7
Radial bearing 4 when rotating at a speed of 3000 rpm or more
In the dynamic pressure generating groove 42 provided in the
Rotate while maintaining an interval of ~ 3 μm. At that time, as described above, even if the dynamic pressure bearing 11 is installed at an inclination or vibration occurs, the inclined surface 51 formed on the facing surfaces 51 and 52 of the rotating body 5
1,521,512,522 are guide surfaces 21,31 of thrust bearings 2,3
Does not touch the outer periphery of the.

【0016】図8は前記図2,図3,図4,図6
(a),(b),図7(a),(b)の他の実施例で、
前記スラスト軸受2,3に於ける前記案内面21、31面を
傾斜面213,313とする。即ち該傾斜面213,313は、ラジ
アル軸受4の案内面41より外方に向かってポリゴンミラ
ー7を設けた前記回転体5の対向面51,52に対し外方に
向かって順次離れるように傾斜させる。又前記ラジアル
軸受4の案内面41と前記回転体5の対向面53間は前記図
2と同様に1〜3μmとする。又前記ポリゴンミラー7
を設けた前記回転体5に於ける前記対向面51、52を曲面
状の傾斜面513,523とする。即ち該曲面状の傾斜面51
3,523は前記スラスト軸受2,3の前記傾斜面213,313
に対し外方に向かって順次離れるように曲面状に傾斜さ
せる。前記スラスト軸受2,3の傾斜面213,313と回転
体5の曲面状の傾斜面513,523の二方向の傾斜によって
生じる回転体5外周端と、前記スラスト軸受2,3の傾
斜面213,313の外周端は大きく離間し、その最大距離を
4〜10μm とする。従って特に回転体5の外周位置は互
いに大きく離れるように構成される。
FIG. 8 shows the above-mentioned FIG. 2, FIG. 3, FIG. 4, and FIG.
(A), (b), other embodiments of FIGS. 7 (a), (b),
The guide surfaces 21 and 31 of the thrust bearings 2 and 3 are inclined surfaces 213 and 313. That is, the inclined surfaces 213 and 313 are inclined outwardly with respect to the facing surfaces 51 and 52 of the rotating body 5 provided with the polygon mirror 7 outwardly from the guide surface 41 of the radial bearing 4. Let The distance between the guide surface 41 of the radial bearing 4 and the facing surface 53 of the rotating body 5 is 1 to 3 μm, as in the case of FIG. Also, the polygon mirror 7
The facing surfaces 51 and 52 of the rotating body 5 provided with are the curved inclined surfaces 513 and 523. That is, the curved inclined surface 51
3, 523 are the inclined surfaces 213, 313 of the thrust bearings 2, 3
On the other hand, it is inclined in a curved shape so as to be gradually separated outward. The outer peripheral end of the rotor 5 caused by the two-direction inclination of the inclined surfaces 213 and 313 of the thrust bearings 2 and 3 and the curved inclined surfaces 513 and 523 of the rotor 5, and the inclined surfaces 213 of the thrust bearings 2 and 3, The outer peripheral edges of 313 are largely separated, and the maximum distance is 4 to 10 μm. Therefore, in particular, the outer peripheral positions of the rotating bodies 5 are configured to be largely separated from each other.

【0017】以上のように構成した図8の実施例に於い
て、ポリゴンミラー7を設けた回転体5を3000rpm以上
の回転数で回転した時、ラジアル軸受4に設けた動圧発
生用溝42で回転体5の対向面53は前記1〜3μmの間隔
を保持しながら回転する。その際、前記のように動圧軸
受11を傾斜して設置したり、振動が発生しても前記回転
体5に形成した曲面状の傾斜面513,523、スラスト軸受
2,3の傾斜面213,313の外周部には接触しない。
In the embodiment of FIG. 8 configured as described above, when the rotating body 5 provided with the polygon mirror 7 is rotated at a rotation speed of 3000 rpm or more, the dynamic pressure generating groove 42 provided in the radial bearing 4 is formed. Then, the facing surface 53 of the rotating body 5 rotates while maintaining the interval of 1 to 3 μm. At that time, even if the dynamic pressure bearing 11 is installed at an inclination as described above, or even if vibration is generated, the curved inclined surfaces 513 and 523 formed on the rotating body 5 and the inclined surfaces 213 of the thrust bearings 2 and 3 are formed. , 313 does not touch the outer periphery.

【0018】[0018]

【発明の効果】以上のように本発明に於ける動圧軸受
は、スラスト軸受と前記回転体間の空気間隙に比べ、中
心軸となるラジアル軸受に対向する該回転体の対向面間
の空気間隙を小さくするように構成し、特に回転体の速
度が増大する外周方向の回転体面とスラスト軸受との接
触を防止するようにしたので、ポリゴンミラー等を設け
た回転体がスラスト軸受に接触して「かじり」(回転体
と軸受が接触して互いの接触面を傷つけ、又は焼付いた
状態)の状態となるのを防止出来る。従ってポリゴンミ
ラーを設けた回転体を必要に応じて傾斜設置したり、外
部から振動が加わっても、回転速度を3000rpm以上の回
転速度で長期間安定した回転を保持することが出来る。
As described above, in the dynamic pressure bearing according to the present invention, compared with the air gap between the thrust bearing and the rotating body, the air between the facing surfaces of the rotating body facing the radial bearing serving as the central axis is increased. The structure is designed to reduce the gap, especially to prevent the contact between the rotor surface and the thrust bearing in the outer peripheral direction where the speed of the rotor increases, so that the rotor equipped with a polygon mirror etc. does not contact the thrust bearing. It is possible to prevent "galling" (a state in which the rotating body and the bearing are in contact with each other and the contact surfaces thereof are damaged or seized). Therefore, even if the rotary body provided with the polygon mirror is installed as tilted as necessary, or even if vibration is applied from the outside, stable rotation can be maintained for a long period of time at a rotation speed of 3000 rpm or more.

【0019】又前記回転数を増大したポリゴンミラーを
使用した画像形成装置、又はプリンタは、画質をより向
上させる事及び、高速度に出力を出す事、又周速度の低
い位置で接触する構成としたため、前記「かじり」のエ
ネルギーが低くなる事で軸受け材質の選択の幅が広が
り、コストダウンを行える効果がある。
Further, the image forming apparatus or printer using the polygon mirror having the increased number of revolutions is configured to further improve the image quality, output at high speed, and contact at a position with low peripheral speed. Therefore, the energy of the "galling" is lowered, so that the range of selection of the bearing material is widened, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動圧軸受を使用したポリゴンミラーを
示す断面図。
FIG. 1 is a sectional view showing a polygon mirror using a dynamic pressure bearing of the present invention.

【図2】本発明の動圧軸受と各間隙値を示す断面図。FIG. 2 is a cross-sectional view showing a dynamic pressure bearing of the present invention and respective gap values.

【図3】本発明の動圧軸受と各間隙値を示す他の実施例
の断面図。
FIG. 3 is a cross-sectional view of another embodiment showing the dynamic pressure bearing of the present invention and each gap value.

【図4】本発明の動圧軸受と各間隙値を示す他の実施例
の断面図。
FIG. 4 is a sectional view of another embodiment showing the dynamic pressure bearing of the present invention and each gap value.

【図5】本発明の動圧軸受と各間隙値の設定を示す断面
図。
FIG. 5 is a cross-sectional view showing the dynamic pressure bearing of the present invention and setting of each gap value.

【図6】本発明の動圧軸受に於ける他の実施例を示す断
面図。
FIG. 6 is a sectional view showing another embodiment of the dynamic pressure bearing of the invention.

【図7】本発明の動圧軸受に於ける他の実施例を示す断
面図。
FIG. 7 is a sectional view showing another embodiment of the dynamic pressure bearing of the invention.

【図8】本発明の動圧軸受に於ける他の実施例を示す断
面図。
FIG. 8 is a sectional view showing another embodiment of the dynamic pressure bearing of the invention.

【符号の説明】[Explanation of symbols]

1 ポリゴンミラーの回転支持装置 2,3 スラスト軸受 4 ラジアル軸受 5 回転体 7 ポリゴンミラー 22,32,42,511,521 動圧発生用溝 21,31,41 案内面 51,52,53 対向面 1 Rotating support device for polygon mirror 2,3 Thrust bearing 4 Radial bearing 5 Rotating body 7 Polygon mirror 22, 32, 42, 511, 521 Dynamic pressure generating groove 21, 31, 41 Guide surface 51, 52, 53 Opposing surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 豊次 東京都八王子市石川町2970番地コニカ株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toyoji Ito 2970 Ishikawa-cho, Hachioji-shi, Tokyo Konica stock company

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ラジアル軸受と、該ラジアル軸受の両端
に設けたスラスト軸受とを有し、前記ラジアル軸受と、
前記スラスト軸受に回転自在に設けられた回転体を有す
る動圧軸受に於いて、前記回転体が前記ラジアル軸受
と、前記スラスト軸受で受け回転する時、前記回転体と
前記スラスト軸受間に生ずる間隙幅の最小値が、前記ラ
ジアル軸受と前記回転体間に生ずる間隙幅の最小値より
大となることを特徴とする動圧軸受。
1. A radial bearing, and thrust bearings provided at both ends of the radial bearing, and the radial bearing,
In a dynamic pressure bearing having a rotating body rotatably provided in the thrust bearing, a gap generated between the rotating body and the thrust bearing when the rotating body receives and rotates by the radial bearing and the thrust bearing. A dynamic pressure bearing, wherein a minimum value of the width is larger than a minimum value of a gap width generated between the radial bearing and the rotating body.
【請求項2】 前記動圧軸受に於いて、前記ラジアル軸
受と、前記スラスト軸受の両方、或いは少なくとも一方
に動圧発生用溝が形成されていることを特徴とする請求
項1記載の動圧軸受。
2. The dynamic pressure bearing according to claim 1, wherein in the dynamic pressure bearing, a dynamic pressure generating groove is formed in both or at least one of the radial bearing and the thrust bearing. bearing.
【請求項3】 前記回転体が前記軸受に接触する時は少
なくとも周速の小さいラジアル軸受に接触することを特
徴とする請求項1〜2記載の動圧軸受。
3. The hydrodynamic bearing according to claim 1, wherein when the rotating body comes into contact with the bearing, it comes into contact with a radial bearing having a low peripheral speed.
【請求項4】 前記ラジアル軸受はセラミックスで形成
されていることを特徴とする請求項1〜3記載の動圧軸
受。
4. The dynamic pressure bearing according to claim 1, wherein the radial bearing is made of ceramics.
【請求項5】 ラジアル軸受と、該ラジアル軸受の両端
に設けたスラスト軸受とを有し、前記ラジアル軸受と、
前記スラスト軸受に回転自在に設けられた回転体を有す
る動圧軸受に於いて、前記回転体が前記ラジアル軸受
と、前記スラスト軸受で受け回転する時、前記回転体と
前記スラスト軸受間に生ずる間隙幅の最小値が、前記ラ
ジアル軸受と前記回転体間に生ずる間隙幅の最小値より
大となる動圧軸受であって、前記ラジアル軸受と、前記
回転体に動圧発生用溝が形成されていることを特徴とす
る動圧軸受。
5. A radial bearing, and thrust bearings provided at both ends of the radial bearing, and the radial bearing,
In a dynamic pressure bearing having a rotating body rotatably provided in the thrust bearing, a gap generated between the rotating body and the thrust bearing when the rotating body receives and rotates by the radial bearing and the thrust bearing. A dynamic pressure bearing having a minimum width larger than a minimum gap width generated between the radial bearing and the rotating body, wherein a dynamic pressure generating groove is formed in the radial bearing and the rotating body. A dynamic pressure bearing characterized in that
【請求項6】 前記回転体が前記軸受に接触する時は少
なくとも周速の小さいラジアル軸受に接触することを特
徴とする請求項5記載の動圧軸受。
6. The dynamic pressure bearing according to claim 5, wherein when the rotating body comes into contact with the bearing, it comes into contact with at least a radial bearing having a low peripheral speed.
【請求項7】 前記ラジアル軸受はセラミックスで形成
されていることを特徴とする請求項5〜6記載の動圧軸
受。
7. The dynamic pressure bearing according to claim 5, wherein the radial bearing is made of ceramics.
【請求項8】 ラジアル軸受と、該ラジアル軸受の一端
に設けたスラスト軸受とを有し、前記ラジアル軸受と、
前記スラスト軸受に回転自在に設けられた回転体を有す
る動圧軸受に於いて、前記回転体が前記ラジアル軸受
と、前記スラスト軸受で受け回転する時、前記回転体と
前記スラスト軸受間に生ずる間隙幅の最小値が、前記ラ
ジアル軸受と前記回転体間に生ずる間隙幅の最小値より
大となることを特徴とする動圧軸受。
8. A radial bearing, and a thrust bearing provided at one end of the radial bearing, and the radial bearing,
In a dynamic pressure bearing having a rotating body rotatably provided in the thrust bearing, a gap generated between the rotating body and the thrust bearing when the rotating body receives and rotates by the radial bearing and the thrust bearing. A dynamic pressure bearing, wherein a minimum value of the width is larger than a minimum value of a gap width generated between the radial bearing and the rotating body.
【請求項9】 前記動圧軸受に於いて、前記ラジアル軸
受と、前記スラスト軸受の両方或いは少なくとも一方に
動圧発生用溝が形成されていることを特徴とする請求項
8記載の動圧軸受。
9. The dynamic pressure bearing according to claim 8, wherein, in the dynamic pressure bearing, a dynamic pressure generating groove is formed in both or at least one of the radial bearing and the thrust bearing. .
【請求項10】 前記回転体が前記軸受に接触する時は
少なくとも周速の小さいラジアル軸受に接触することを
特徴とする請求項8〜9記載の動圧軸受。
10. The hydrodynamic bearing according to claim 8, wherein when the rotating body comes into contact with the bearing, it comes into contact with a radial bearing having a low peripheral speed.
【請求項11】 前記ラジアル軸受はセラミックスで形
成されていることを特徴とする請求項8〜10記載の動圧
軸受。
11. The dynamic pressure bearing according to claim 8, wherein the radial bearing is made of ceramics.
JP5398694A 1994-03-24 1994-03-24 Dynamic pressure bearing Pending JPH07259849A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5398694A JPH07259849A (en) 1994-03-24 1994-03-24 Dynamic pressure bearing
DE1995110593 DE19510593A1 (en) 1994-03-24 1995-03-23 Dynamic thrust bearing for machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5398694A JPH07259849A (en) 1994-03-24 1994-03-24 Dynamic pressure bearing

Publications (1)

Publication Number Publication Date
JPH07259849A true JPH07259849A (en) 1995-10-09

Family

ID=12957951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5398694A Pending JPH07259849A (en) 1994-03-24 1994-03-24 Dynamic pressure bearing

Country Status (2)

Country Link
JP (1) JPH07259849A (en)
DE (1) DE19510593A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6894817B2 (en) 2002-01-21 2005-05-17 Konica Corporation Optical deflection device and producing method thereof
US7038825B2 (en) 2002-09-05 2006-05-02 Konica Corporation Optical deflection device and optical scanning apparatus equipped therewith
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
JP2008082414A (en) * 2006-09-27 2008-04-10 Nippon Densan Corp Fluid dynamic bearing device, magnetic disk device and portable electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303383A (en) * 1996-05-09 1997-11-25 Konica Corp Rotary device and light deflecting device
DE102010022574A1 (en) * 2010-06-02 2011-12-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor shaft with plain bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215508B2 (en) 2001-03-08 2007-05-08 Ngk Spark Plug Co., Ltd. Ceramic dynamic-pressure bearing and hard disk drive using the same
US6894817B2 (en) 2002-01-21 2005-05-17 Konica Corporation Optical deflection device and producing method thereof
US7038825B2 (en) 2002-09-05 2006-05-02 Konica Corporation Optical deflection device and optical scanning apparatus equipped therewith
JP2008082414A (en) * 2006-09-27 2008-04-10 Nippon Densan Corp Fluid dynamic bearing device, magnetic disk device and portable electronic equipment

Also Published As

Publication number Publication date
DE19510593A1 (en) 1995-09-28

Similar Documents

Publication Publication Date Title
US5538347A (en) Dynamic pressure bearing
JP3400632B2 (en) Spindle motor
JPH07259849A (en) Dynamic pressure bearing
JP2872202B2 (en) motor
US5957587A (en) Air dynamic bearing
JP3574266B2 (en) Shaft bearing structure of small motor
JPH0691717B2 (en) Electric machine
JP3017068B2 (en) Rotating polygon mirror drive motor
JP2001238383A (en) Motor and disc device equipped with motor
JP3286631B2 (en) Polygon scanner motor
JP2872203B2 (en) Motor with hemispherical bearing
JPH05184099A (en) Polygon scanner motor equipped with bearing unit
JPH0730785B2 (en) Gas dynamic pressure bearing
JP3092026B2 (en) Dynamic pressure air bearing type optical deflector
JPS60208629A (en) Light deflector device
JPH01307723A (en) Holding structure for rotating polygon mirror
JPH02214438A (en) Supporting device for pneumatic and magnetic bearing type rotary body
JPH1172738A (en) Scanning optical device
JP3730036B2 (en) Rotating body
JPH0332764B2 (en)
JP2000120659A (en) Dynamic pressure air bearing, motor with the bearing, and light polarizer
JPH07261111A (en) Noncontact bearing type polygon scanner
JPS63257716A (en) Polygon mirror
JPS63221315A (en) Polygonal scanner motor
JPH10186264A (en) Polygon mirror scanner motor