JPH02214438A - Supporting device for pneumatic and magnetic bearing type rotary body - Google Patents

Supporting device for pneumatic and magnetic bearing type rotary body

Info

Publication number
JPH02214438A
JPH02214438A JP1031200A JP3120089A JPH02214438A JP H02214438 A JPH02214438 A JP H02214438A JP 1031200 A JP1031200 A JP 1031200A JP 3120089 A JP3120089 A JP 3120089A JP H02214438 A JPH02214438 A JP H02214438A
Authority
JP
Japan
Prior art keywords
magnet
fixed shaft
tip
magnetic bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1031200A
Other languages
Japanese (ja)
Inventor
Umihira Itsushiki
海平 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1031200A priority Critical patent/JPH02214438A/en
Publication of JPH02214438A publication Critical patent/JPH02214438A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0427Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0429Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To break contact between a fixed shaft and a rotary shaft during low speed rotation by making a conical magnet arranged at the tip of a hollow rotary shaft fittable to at least one of a magnet arranged at the tip of the fixed shaft such that it faces to the aforementioned magnet or a magnet arranged on the inner circumferential face of the upper wall of casing. CONSTITUTION:A conical magnet 11 projecting downward toward a magnet 12 arranged at the tip of a fixed shaft 9, and a reverse conical magnet 12 facing therewith are provided. When the magnets having such shape are employed and the component of magnetic force functions in radial direction, contact between a hollow rotary shaft 2 and the fixed shaft 9 is broken. Since the hollow rotary shaft does not contact with the fixed shaft during low speed rotation, a pneumatic and magnetic optical deflector (scanner) having long service life and high reliability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザプリンタ、デジタル複写機、ファクシ
ミリ等のレーザ光書き込み系に利用される光偏向器、あ
るいはVTR等のAV機器の回転部を支持する回転体支
持装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to optical deflectors used in laser beam writing systems such as laser printers, digital copying machines, and facsimiles, or rotating parts of AV equipment such as VTRs. The present invention relates to a rotating body support device.

〔従来の技術〕[Conventional technology]

近年、レーザ応用機器や各種AV機器などの高速・高密
度化が著しく進み、これに用いられるスキャナ等の回転
部にも、より高回転、高II度が要求されている。この
ため、従来の接触式軸受である玉軸受に代わり、非接触
式の動圧流体軸受が注目され、使用されて来ている。
In recent years, the speed and density of laser-applied devices and various AV devices have significantly increased, and rotating parts such as scanners used in these devices are also required to have higher rotation speeds and higher II degrees. For this reason, non-contact type dynamic pressure fluid bearings have been attracting attention and being used instead of ball bearings, which are conventional contact type bearings.

第6図は動圧流体軸受を用いたスキャナの縦断面図であ
って、lは動圧発生溝、2は回転軸、3はポリゴンミラ
ー、4は入出射窓、5はケース、6は電機子コイル、7
はロータ磁石、8は台座、9は固定軸である。
FIG. 6 is a longitudinal cross-sectional view of a scanner using a hydrodynamic bearing, where l is a dynamic pressure generating groove, 2 is a rotating shaft, 3 is a polygon mirror, 4 is an entrance/exit window, 5 is a case, and 6 is an electric device. Child coil, 7
8 is a rotor magnet, 8 is a pedestal, and 9 is a fixed shaft.

同図において、電機子コイル6に電力を加えることで、
回転軸2が回転される0回転軸2の回転数の上昇に伴っ
て、固定軸9上に形成された動圧発生溝1が動圧(空気
軸受)を発生させ、固定軸9と回転軸2は非接触状態と
なり、高速、高精度回転が可能になる。
In the figure, by applying power to the armature coil 6,
As the rotational speed of the zero-rotation shaft 2 increases, the dynamic pressure generating groove 1 formed on the fixed shaft 9 generates dynamic pressure (air bearing), and the fixed shaft 9 and the rotary shaft 2 is in a non-contact state, allowing high-speed, high-precision rotation.

この方式では、回転軸2を浮上させるに足るだけの動圧
が発生するまで、回転軸2は固定軸9に接触しながら回
転することになる。このため、摩耗による性能の低下の
問題があった。
In this method, the rotating shaft 2 rotates while contacting the fixed shaft 9 until a dynamic pressure sufficient to levitate the rotating shaft 2 is generated. For this reason, there was a problem of performance deterioration due to wear.

これを解決するために、耐摩耗性に冨む材料の使用(例
えば炭化珪素、窒化珪素などのセラミック)、あるいは
表面処理による耐摩耗性の増強(例えば窒化チタンコー
ティングなど)が提案されている。
To solve this problem, proposals have been made to use materials with high wear resistance (for example, ceramics such as silicon carbide and silicon nitride) or to enhance wear resistance through surface treatment (for example, titanium nitride coating).

しかし、前者では軟加工材のため、加工コストが高くな
る。また材料コストも高い。後者では軸の精度劣化や被
覆膜の剥がれ等によるトラブルなどがあり、両者とも実
用量産レベルにあると言えない。
However, since the former is a soft-processed material, processing costs are high. Also, the material cost is high. In the latter case, there are problems such as deterioration of shaft accuracy and peeling of the coating film, so neither can be said to be at a practical mass production level.

第7図は軸受に磁気反発による磁気軸受を採用した従来
のスキャナ(空気磁気軸受型光偏向器)の他側を示す縦
断面図である。
FIG. 7 is a vertical cross-sectional view showing the other side of a conventional scanner (air magnetic bearing type optical deflector) which employs a magnetic bearing based on magnetic repulsion.

この装置は、ケース5の土壁内面と、中空回転軸2の先
端と、固定軸9の先端にそれぞれ磁石10.11.12
を設け、且つ中空回転軸2の先端の磁石11は、対向す
る磁石10.12から反発力を受けるような磁極配置と
なっている。これにより、磁気軸受が構成されている。
This device has magnets 10, 11, and 12 attached to the inner surface of the earthen wall of the case 5, the tip of the hollow rotating shaft 2, and the tip of the fixed shaft 9, respectively.
, and the magnet 11 at the tip of the hollow rotating shaft 2 has a magnetic pole arrangement such that it receives a repulsive force from the opposing magnet 10.12. This constitutes a magnetic bearing.

なお、この際の回転体支持装置の従来例としては、特開
昭63−173011号公報、特開昭63−17301
4号公報を挙げることができる。
In addition, as conventional examples of the rotating body support device in this case, Japanese Patent Application Laid-Open No. 63-173011, Japanese Patent Application Laid-Open No. 63-17301
Publication No. 4 can be mentioned.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の装置においては、スラスト方向は静止状態か
ら磁気軸受が作用しているが、ラジアル方向の空気軸受
は、中空回転軸2の高速回転により動圧発生溝1との間
で動圧が生じるこ止によって、始めて構成されることに
なる。
In the conventional device described above, the magnetic bearing acts in the thrust direction from a stationary state, but in the radial direction air bearing, dynamic pressure is generated between it and the dynamic pressure generating groove 1 due to the high speed rotation of the hollow rotating shaft 2. It is only through Kodome that it is composed.

第5図のBに示すように、固定軸9と回転軸2が非接触
となるには、11000rp以上の回転数が必要であっ
た。
As shown in B of FIG. 5, a rotation speed of 11,000 rpm or more was required for the fixed shaft 9 and the rotating shaft 2 to come out of contact.

従って、それ以下の回転数では、第7図の構成において
も前述したと同様の問題があった。
Therefore, at lower rotational speeds, the configuration shown in FIG. 7 also has the same problem as described above.

尚、Aはラジアル、スラスト方向とも動圧空気軸受が構
成される第6図に示す装置の特性であり、Cは後述する
本発明の構成による特性を示しである。
Note that A indicates the characteristics of the device shown in FIG. 6, which includes dynamic pressure air bearings in both the radial and thrust directions, and C indicates the characteristics according to the configuration of the present invention, which will be described later.

本発明は上記従来技術の欠点を解消し、低速回転で固定
軸と回転軸を非接触とすることができる空気磁気軸受型
回転体支持装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-magnetic bearing type rotating body support device that eliminates the drawbacks of the prior art described above and allows a fixed shaft and a rotating shaft to be out of contact during low-speed rotation.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、固定軸先端に設けた磁石と、ケース上壁内
面に設けた磁石により、互いに反発するように挟持され
た磁石を該固定軸の先端部に設置し、これらの磁石の反
発力により磁気軸受を構成し、且つ駆動源により回転さ
れることにより固定軸との間で空気軸受を構成する中空
回転軸を有する空気磁気軸受型回転体支持装置において
、中空回転軸先端に設けた磁石と、この磁石と対向する
ごとく設けた固定軸先端の磁石及びケース上壁内面に設
けた磁石の少なくとも一方を、嵌まり合う相似形の円錐
状とすることによって達成される。
The above purpose is to install a magnet at the tip of the fixed shaft, which is sandwiched between a magnet provided at the tip of the fixed shaft and a magnet provided on the inner surface of the upper wall of the case so that they repel each other. In an air-magnetic bearing rotating body support device having a hollow rotating shaft that forms a magnetic bearing and forms an air bearing between it and a fixed shaft when rotated by a drive source, a magnet provided at the tip of the hollow rotating shaft and This is achieved by forming at least one of the magnet at the tip of the fixed shaft facing the magnet and the magnet provided on the inner surface of the upper wall of the case into a similar conical shape that fits into the magnet.

〔作用〕[Effect]

スラスト方向の磁気軸受に使われる磁石の磁気分力をラ
ジアル方向に働かせることができ1.その結果500r
pm以下で空気軸受を構成することができる。
The magnetic force of the magnet used in the magnetic bearing in the thrust direction can be applied in the radial direction.1. The result was 500r.
An air bearing can be constructed at pm or less.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図、第3図及び第4図は本発明の回転体支
持装置の各実施例に係る空気磁気軸受型光偏向器の磁気
軸受部の・縦断面図であって、従来例と同一もしくは同
一と見做せる個所には同一符号を付しである。
1, 2, 3, and 4 are vertical cross-sectional views of the magnetic bearing portion of the air-magnetic bearing type optical deflector according to each embodiment of the rotating body support device of the present invention. The same reference numerals are given to parts that are or can be considered to be the same as those in the example.

本発明では、磁石lOと磁石12の間に設置した磁石1
1と、これに対向する磁石10あるいは磁石12の少な
くとも一方を、互いに嵌合し得る相似形の円錐状に形成
したものである。
In the present invention, the magnet 1 installed between the magnet IO and the magnet 12
1 and at least one of the magnet 10 and the magnet 12 facing it are formed into similar conical shapes that can fit into each other.

すなわち、第1図に示す実施例では、磁石11を固定軸
9の先端に設けた磁石】2側に向かって下方に突出する
円錐状とし、これと対向する磁石12を逆に凹状の円錐
形状としている。
That is, in the embodiment shown in FIG. 1, the magnet 11 is provided at the tip of the fixed shaft 9 and has a conical shape protruding downward toward the magnet 2 side, and the magnet 12 facing the magnet 12 has a concave conical shape. It is said that

また、第2図に示す実施例ではこれとは逆に、磁石11
を凹状の円錐形とし、磁石12を凸状の円錐形としてい
る。
In the embodiment shown in FIG. 2, on the contrary, the magnet 11
has a concave conical shape, and the magnet 12 has a convex conical shape.

また、第3図に示す実施例では磁石11の上下を凸状の
円錐形状とし、対向する磁石10.12をそれぞれ凹状
の円錐形状としている。
Further, in the embodiment shown in FIG. 3, the upper and lower sides of the magnet 11 have convex conical shapes, and the opposing magnets 10 and 12 each have concave conical shapes.

そして、第4図に示す実施例では、磁石11の軸方向上
下を凹状の円錐形状とし、これと対向する磁石10.1
2をそれぞれ凸状の円錐形状としている。
In the embodiment shown in FIG. 4, the top and bottom of the magnet 11 in the axial direction are formed into a concave conical shape, and the magnet 10.1 facing the magnet 11 has a concave conical shape.
2 each have a convex conical shape.

尚、これら実施例における磁石は成型品のプラスチック
マグネットを使用し、その円錐形状の頂角は略90″で
ある。しかし、この磁石は、中空回転軸2を浮上させ得
る磁力を持つものであれば、他のもの、例えば焼結磁石
でも良い。
The magnets used in these embodiments are molded plastic magnets, and the apex angle of the conical shape is approximately 90''. Alternatively, other materials such as sintered magnets may be used.

このような磁石形状とし、ラジアル方向にその磁気分力
を働かせると、第5図における符号Cで示す特性から明
らかなように約200〜300rpmで中空回転軸2と
固定軸9は非接触となる。
When the magnet is shaped like this and its magnetic force is exerted in the radial direction, the hollow rotating shaft 2 and the fixed shaft 9 come out of contact at about 200 to 300 rpm, as is clear from the characteristic indicated by the symbol C in Fig. 5. .

これによって動圧発生溝1は、高回転時に高い剛性を得
るパターン形状のみを考えて設計すれば良くなり、性能
の向上が期待される。
As a result, the dynamic pressure generating grooves 1 need only be designed with a pattern shape that provides high rigidity at high rotation speeds, and an improvement in performance is expected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、(1)従来に比
べ低い回転数で中空回転軸と固定軸が非接触となるので
、長寿命、高信頼性の空気磁気軸受型光偏向器(スキャ
ナ)とすることができる、(2)高速回転に適した動圧
発生溝の設計をすることができるようになり、性能の向
上が図れる、等の効果を奏する。
As explained above, according to the present invention, (1) the hollow rotating shaft and the fixed shaft come out of contact at a lower rotation speed than conventional ones, so the air-magnetic bearing type optical deflector has a long life and high reliability ( (2) It becomes possible to design dynamic pressure generating grooves suitable for high-speed rotation, and the performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図及び第4図は本発明の各実施例
に係る空気磁気軸受型回転体支持装置の磁気軸受部の縦
断面図、第5図は従来技術と本発明の比較特性図、第6
図及び第7図は従来例に係る動圧軸受型回転体支持装置
及び空気磁気軸受型回転体支持装置の縦断面図である。 2・・・中空回転軸、9・・・固定軸、10,11.1
2・・・磁石。 第1図 ]0 第3図 ]O 第2図 第4図 第 図 団献礼(r、p、m) 第 図 未 図
1, 2, 3, and 4 are longitudinal cross-sectional views of the magnetic bearing portion of the air-magnetic bearing type rotating body support device according to each embodiment of the present invention, and FIG. 5 is a diagram showing the prior art and the present invention. Comparative characteristics diagram, No. 6
7 and 7 are vertical cross-sectional views of a conventional hydrodynamic bearing type rotary body support device and an air magnetic bearing type rotary body support device. 2...Hollow rotating shaft, 9...Fixed shaft, 10, 11.1
2...Magnet. Figure 1] 0 Figure 3] O Figure 2 Figure 4 Figure Group offering (r, p, m) Figure not shown

Claims (1)

【特許請求の範囲】[Claims] 固定軸先端に設けた磁石と、ケース上壁内面に設けた磁
石により、互いに反発するように挟持された磁石とを備
え、これらの磁石の反発力により磁気軸受を構成し、且
つ駆動源により回転されるで固定軸との間で空気軸受を
構成する中空回転軸を有する空気磁気軸受型回転体支持
装置において、中空回転軸先端に設けた磁石と、この磁
石と対向する固定軸先端に設けた磁石及びケース上壁内
面に設けた磁石の少なくとも一対の対向面を、相似形の
円錐状としたことを特徴とする空気磁気軸受型回転体支
持装置。
It is equipped with a magnet provided at the tip of the fixed shaft and a magnet provided on the inner surface of the upper wall of the case, which are held in such a way that they repel each other.The repulsive force of these magnets forms a magnetic bearing, and it is rotated by a drive source. In an aeromagnetic bearing type rotating body support device that has a hollow rotating shaft that forms an air bearing with a fixed shaft, a magnet is installed at the tip of the hollow rotating shaft, and a magnet is installed at the tip of the fixed shaft facing the magnet. An air-magnetic bearing type rotating body support device, characterized in that at least one pair of opposing surfaces of the magnet and the magnet provided on the inner surface of the upper wall of the case have similar conical shapes.
JP1031200A 1989-02-13 1989-02-13 Supporting device for pneumatic and magnetic bearing type rotary body Pending JPH02214438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1031200A JPH02214438A (en) 1989-02-13 1989-02-13 Supporting device for pneumatic and magnetic bearing type rotary body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1031200A JPH02214438A (en) 1989-02-13 1989-02-13 Supporting device for pneumatic and magnetic bearing type rotary body

Publications (1)

Publication Number Publication Date
JPH02214438A true JPH02214438A (en) 1990-08-27

Family

ID=12324777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1031200A Pending JPH02214438A (en) 1989-02-13 1989-02-13 Supporting device for pneumatic and magnetic bearing type rotary body

Country Status (1)

Country Link
JP (1) JPH02214438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359357B1 (en) * 2000-08-18 2002-03-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combination radial and thrust magnetic bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359357B1 (en) * 2000-08-18 2002-03-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Combination radial and thrust magnetic bearing

Similar Documents

Publication Publication Date Title
US5018881A (en) Self acting gas bearing apparatus
KR950000921B1 (en) Dynamic pressure gas bearing
US5538347A (en) Dynamic pressure bearing
JPH01501577A (en) rotating device
US20060001939A1 (en) Dynamic bearing and beam deflecting apparatus employing the same
US6031651A (en) Scanning optical apparatus
JPH02214438A (en) Supporting device for pneumatic and magnetic bearing type rotary body
US6933642B2 (en) Hydrodynamic gas bearing
JP3406198B2 (en) Spindle motor and rotating device using spindle motor
JPS5917020A (en) Rotary body supporter
JPH07259849A (en) Dynamic pressure bearing
JPS63259510A (en) Aeromagnetic bearing type of optical deflector
JPS60208629A (en) Light deflector device
JPS58200816A (en) Dynamic pressure gas bearing device for rotary unit
JP2002130256A (en) Air dynamic bearing unit
JP3095139B2 (en) Fluid bearing device
JPH0416014Y2 (en)
JPH0742214Y2 (en) Fluid bearing motor
JPH0752419Y2 (en) Dynamic bearing structure
JPH0560126A (en) Dynamic pressure fluid bearing
JPS5968716A (en) Rotary body supporting device
JP3643047B2 (en) Ceramic hydrodynamic bearing, motor with bearing, hard disk drive, and polygon scanner
JPH08338960A (en) Scanning optical device
JPS61269115A (en) Device for supporting rotary body
JPS631053Y2 (en)