JPH02186118A - Rotating device - Google Patents

Rotating device

Info

Publication number
JPH02186118A
JPH02186118A JP703789A JP703789A JPH02186118A JP H02186118 A JPH02186118 A JP H02186118A JP 703789 A JP703789 A JP 703789A JP 703789 A JP703789 A JP 703789A JP H02186118 A JPH02186118 A JP H02186118A
Authority
JP
Japan
Prior art keywords
spherical
bearing
spherical body
receiving member
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP703789A
Other languages
Japanese (ja)
Inventor
Takashi Minami
隆 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP703789A priority Critical patent/JPH02186118A/en
Publication of JPH02186118A publication Critical patent/JPH02186118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To aim at the stabilization of a bearing characteristic with out being too strict on axial dimension in spherical bearing parts provided at both ends of a rotating part by disposing a spherical body provided with a dynamic pressure generating groove at its peripheral surface on the upper side and a receiving member provided with a semi-spherical recessed part to be fitted at a spherical body on the lower side. CONSTITUTION:A lower spherical bearing part 12 located at the lower end part of a main spindle 18 is formed of a lower spherical body 22 provided with a dynamic pressure generating groove 26 at its peripheral surface coaxially with an axis of rotation, a lower receiving member 24 provided with a semi-spherical recessed part 23 to be fitted at the lower spherical body 22, and a lower cover 25 for preventing the outflow of lubricating oil. An upper spherical bearing part 13 to be fixed at the upper end part of the main spindle 18 is formed of an upper receiving member 28 provided with a semi-spherical recessed part 27 at its upper face, an upper spherical body 29, located at the upper part of the upper receiving member 28, to be fitted at a semi-spherical recessed part 27 and provided with a dynamic pressure generating groove 31 formed at its peripheral surface, and an upper cover 30. The upper spherical bearing part 13 is further supported by an axis 32, a linear bearing 33, and the like. Accordingly, axial dimensional accuracy can be moderated so as to like process assembling easy as well as the leakage of lubricant can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば多面鏡を回転することによりレーザ
光を走査する偏向装置に好適な回転装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotation device suitable for a deflection device that scans laser light by rotating a polygon mirror, for example.

〔従来の技術〕[Conventional technology]

レーザプリンタにおいては、高速で印字を行なわせるた
めにレーザ光を走査させる多面鏡を高速回転させる必要
がある。
In a laser printer, in order to print at high speed, it is necessary to rotate a polygon mirror that scans laser light at high speed.

多面鏡を高速回転させる従来の回転装置としては、一般
に、第3図に示すように、多面鏡1を支持した回転部2
を磁気スラスト軸受部3により非接触で浮上させると共
に、一対の動圧気体ジャーナル軸受部4.5により軸支
する構造が使用されている。
A conventional rotating device for rotating a polygon mirror at high speed generally includes a rotating section 2 that supports a polygon mirror 1, as shown in FIG.
A structure is used in which the magnetic thrust bearing 3 floats the body without contact, and it is pivotally supported by a pair of dynamic pressure gas journal bearings 4.5.

他(7)rf11aトL7ハ、例、tハ’l開昭60−
200221号によって提案されており、その構造は、
第4図に示すように、多面鏡1を支持した回転部2を収
納部6内に収納し、回転部2と収納部6の下部との間に
回転部2を磁気的に浮上させて回転駆動する駆動部7を
設け、回転部2の上下端を一対の動圧球面軸受8.9に
より非接触状態で支持している。
Others (7) rf11a to L7c, e.g.
No. 200221, its structure is as follows:
As shown in FIG. 4, the rotating part 2 supporting the polygon mirror 1 is stored in the housing part 6, and the rotating part 2 is magnetically levitated between the rotating part 2 and the lower part of the housing part 6 to rotate. A drive section 7 is provided, and the upper and lower ends of the rotating section 2 are supported in a non-contact manner by a pair of hydrodynamic spherical bearings 8.9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記のような多面鏡は、毎分数千〜飲方回転
の高速回転を必要とするので、軸変位の方向とその変位
に対する復元力の方向が一致していないことにより生じ
るハーフフレケンシイホワ−ルに起因して回転が不安定
化しやすい。
By the way, polygon mirrors such as those mentioned above require high-speed rotation of several thousand rotations per minute, so half-flecture occurs due to mismatch between the direction of axial displacement and the direction of the restoring force against that displacement. Rotation tends to become unstable due to sea whirl.

そこで、第3図に示した上記動圧気体ジャーナル軸受が
固定配室された構造では、寸法精度及び両者の同軸度を
厳重に管理する必要があるが、2種類の軸受が組込まれ
ていることと、形状が複雑で部品点数が多いことにより
、所望の加工精度及び組立精度を得るのが非常に困難で
あると共に、製造コストも高騰するという問題がある。
Therefore, in the structure shown in Fig. 3 in which the hydrodynamic gas journal bearings are fixedly arranged, it is necessary to strictly control the dimensional accuracy and coaxiality of both bearings, but it is necessary to strictly control the dimensional accuracy and coaxiality of both bearings. However, due to the complicated shape and large number of parts, it is very difficult to obtain desired processing and assembly accuracy, and the manufacturing cost also increases.

また、第4図に示した上下の動圧球面軸受は、球面体と
半凹球部を設けた受部材で形成され、L下に逆の配置と
なっているため、受部材に対して球面体が下側に位置す
る軸受8においては、特に静止時における軸受隙間内の
潤滑剤に漏れが生じるという問題がある。
In addition, the upper and lower hydrodynamic spherical bearings shown in Fig. 4 are formed of a receiving member with a spherical body and a semi-concave spherical part, and are arranged in reverse under L, so that the spherical surface is In the bearing 8 whose body is located on the lower side, there is a problem in that lubricant leaks in the bearing gap especially when the bearing is stationary.

この発明の1iinは、上記のような問題点を解決する
ためになされたものであり、同軸度及び各構成部品の軸
方向寸法を厳密にする必要がなく、常に安定した軸受特
性を得ることができると共に、球面軸受における隙間の
潤滑剤の漏れを防止することができる回転装置を提供す
ることにある。
The 1iin of this invention was made to solve the above-mentioned problems, and it is not necessary to make the coaxiality or the axial dimension of each component strict, and it is possible to always obtain stable bearing characteristics. It is an object of the present invention to provide a rotating device that can prevent lubricant from leaking in gaps in a spherical bearing.

〔課題を解決するための手段〕[Means to solve the problem]

上記のような課題を解決するため、この発明は、鉛直回
転軸線の回りを回転する回転部と、前記回転部の回転軸
線に沿った両端部にてこの回転部を非接触的に球面軸支
する球面軸受部とで構成され、前記両端部の球面軸受部
が、外周面に動圧発生溝を設けた球面体を上側に、この
球面体が嵌合する半凹球部を設けた受部材を下側に配置
して形成されている構造としたものである。
In order to solve the above-mentioned problems, the present invention includes a rotating part that rotates around a vertical rotation axis, and a non-contact spherical shaft support for the rotating part at both ends of the rotating part along the rotation axis. and a spherical bearing part at both ends, the spherical bearing part at both ends has a spherical body provided with a hydrodynamic groove on the outer circumferential surface on the upper side, and a semi-concave spherical part into which the spherical body fits. It has a structure in which it is arranged on the lower side.

〔作用〕[Effect]

回転部の両端を動圧球面軸受部で支持しているので、回
転する回転部を非接触的に支持することができると共に
、上下の内球面軸受は共に球面体に対して受部材が下に
位置しているので、軸受隙間から潤滑剤が漏れるのを防
止することができる。
Since both ends of the rotating part are supported by hydrodynamic spherical bearings, the rotating part can be supported in a non-contact manner, and both the upper and lower inner spherical bearings allow the support member to be placed downwards relative to the spherical body. This position prevents lubricant from leaking from the bearing gap.

〔実施例〕〔Example〕

以下、この発明の実施例を添付図面の第1図と第2図に
基づいて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2 of the accompanying drawings.

第1図に示す第1の例において、回転装置はレーザプリ
ンタ用の光偏光装置に使用している。
In the first example shown in FIG. 1, the rotating device is used in a light polarizing device for a laser printer.

同口において、回転装置は、円柱状の回転部11と、こ
の回転部11の回転軸線に沿った両端部にて上記回転部
11を非接触的に球面支持する下側球面軸受部12及び
上側球面軸受部13と、−F鋼球面軸受部13を上下に
移動自在となるよう支持する上側球面軸受支持部14と
、回転部11を回転駆動する駆動部15と、これらを内
部に収納する円筒状の収納部16とで構成されている。
In the same mouth, the rotating device includes a cylindrical rotating section 11, a lower spherical bearing section 12 that supports the rotating section 11 spherically in a non-contact manner at both ends along the rotational axis of the rotating section 11, and an upper spherical bearing section 12. A spherical bearing part 13, an upper spherical bearing support part 14 that supports the -F steel spherical bearing part 13 so as to be movable up and down, a drive part 15 that rotationally drives the rotating part 11, and a cylinder that houses these parts inside. It is composed of a shaped storage section 16.

上記回転部11は、下部外周にフランジ17を設けた例
えば鋼製の主軸18と、この主軸18のフランジ17の
下部に固定した多面鏡19と、主軸18の上下端部に各
々固定した鋼製のバランスリング20.21とからなり
、多面鏡19はフランジ17と下部バランスリング20
とで挟まれて主軸18に固定されている。
The rotating part 11 includes a main shaft 18 made of steel, for example, with a flange 17 provided on the lower outer periphery, a polygon mirror 19 fixed to the lower part of the flange 17 of the main shaft 18, and a steel made main shaft 19 fixed to the upper and lower ends of the main shaft 18, respectively. The polygon mirror 19 consists of a flange 17 and a lower balance ring 20.
and is fixed to the main shaft 18.

上記多面鏡19は、アルミニウム製であって、切削加工
により外周面が正多角形に形成されており、主軸18の
熱膨張による軸方向変位を小さくするために、主軸18
の下端近くに固定されている。
The polygon mirror 19 is made of aluminum, and its outer peripheral surface is formed into a regular polygon by cutting.In order to reduce the axial displacement due to thermal expansion of the main shaft 18,
is fixed near the bottom edge of the

下側球面軸受部12は、主軸18の下端部で回転軸線と
同軸心に設けられた下側球面体22と、下側球面体22
の下部に同軸心状に設けられ、上面に下側球面体22が
嵌合する半凹球部23が設けられた下側受部材24と、
下側受部材22の上部を囲み、潤滑剤の流出を防止する
下側カバー25とで形成され、下側球面体22の外周面
に動圧発生溝26が設けられている。
The lower spherical bearing part 12 includes a lower spherical body 22 provided coaxially with the rotational axis at the lower end of the main shaft 18, and
a lower receiving member 24 provided coaxially at the lower part thereof and having a semi-concave spherical part 23 on the upper surface into which the lower spherical body 22 fits;
It is formed by a lower cover 25 that surrounds the upper part of the lower receiving member 22 and prevents lubricant from flowing out, and a dynamic pressure generating groove 26 is provided on the outer peripheral surface of the lower spherical body 22.

上側球面軸受部13は、主軸18の上端部に、下側球面
軸受部12と同軸心状に固定され、上面に半凹球部27
が設けられた上側受部材28と、この上側受部材28の
上部に同軸心状となるよう配置され、半凹球部27に嵌
合する上側球面体29と、上側受部材28の上部を囲み
潤滑剤の流出を防止する上側カバー30とで形成され、
上側球面体29の外周面に動圧発生溝31が設けられて
いる。
The upper spherical bearing part 13 is fixed to the upper end of the main shaft 18 coaxially with the lower spherical bearing part 12, and has a semi-concave spherical part 27 on the upper surface.
an upper spherical body 29 which is arranged coaxially on the upper part of the upper receiving member 28 and fits into the semi-concave spherical part 27; It is formed with an upper cover 30 that prevents lubricant from flowing out,
Dynamic pressure generating grooves 31 are provided on the outer peripheral surface of the upper spherical body 29 .

前記下側球面軸受部12の下側球面体22と上側球面軸
受部13の上側球面体29は、共に下側受部材24及び
上側受部材28に対して上部に設けられ、下側球面軸受
部12及び上側球面軸受部13の何れにおいても軸受隙
間内の潤滑剤を保持することができるようになっている
The lower spherical body 22 of the lower spherical bearing part 12 and the upper spherical body 29 of the upper spherical bearing part 13 are both provided above the lower receiving member 24 and the upper receiving member 28, and the lower spherical bearing part 12 and the upper spherical bearing part 13 can hold the lubricant in the bearing gap.

上側球面軸受部13は、上側球面体2Sの上部に設けら
れた軸32と、この軸32を半径方向に支持するリニア
ベアリング33と、このリニアベアリング33を支持す
るよう収納部16に固定したハウジング34と、軸32
を下向きに押圧するようハウジング34内に収納したば
ね35と、ばね35の上端を支持するようハウジング3
4の上部に螺装したねじ36とからなっている。
The upper spherical bearing part 13 includes a shaft 32 provided at the upper part of the upper spherical body 2S, a linear bearing 33 that supports this shaft 32 in the radial direction, and a housing fixed to the storage part 16 so as to support this linear bearing 33. 34 and the shaft 32
A spring 35 is housed in the housing 34 so as to press the spring 35 downward, and a housing 3
It consists of a screw 36 threaded onto the top of the 4.

上側球面体29は、上側球面軸受支持部14のスライド
機能により軸方向に移動可能であるため、主軸18の熱
膨張による上側受部材28の軸方向の移動が、球面軸受
の軸方向の隙間を変化させることを防ぎ、常に安定した
軸受性能を得ることができる。
Since the upper spherical body 29 is movable in the axial direction by the sliding function of the upper spherical bearing support part 14, the axial movement of the upper bearing member 28 due to thermal expansion of the main shaft 18 closes the axial clearance of the spherical bearing. This prevents the bearing from changing and ensures stable bearing performance at all times.

前記駆動部15は、主軸18に固定した円筒状のロータ
37と、ロータ37に対して同軸心状に外嵌し、支持リ
ング38を介して収納部16に固定されたステータ39
とからなる円筒型モータに形成されている。
The drive section 15 includes a cylindrical rotor 37 fixed to the main shaft 18, and a stator 39 fitted coaxially with the rotor 37 and fixed to the storage section 16 via a support ring 38.
It is formed into a cylindrical motor consisting of.

また、収納部16は、下側受部材24を支持する円板状
の底板40と、底板40上に固定された円筒状のケース
41と、このケース41上に固定され、ハウジング34
及びステータ支持リング38を取付ける円板状の上板4
2とからなり、ケース41の周囲で多面鏡19と対応す
る位置にレーザ光の出入口となる窓部43が設けられて
いる。
The storage section 16 also includes a disk-shaped bottom plate 40 that supports the lower receiving member 24, a cylindrical case 41 fixed on the bottom plate 40, and a housing 34 fixed on the case 41.
and a disc-shaped upper plate 4 to which the stator support ring 38 is attached.
A window 43 is provided around the case 41 at a position corresponding to the polygon mirror 19 and serves as an entrance and exit for laser light.

この発明の第1の例は上記のような構成であり、駆動部
15に給電して、回転部11を例えば毎分3万rpsで
回転させると、下側球面体22及び上側球面体29の外
周面に設けられた動圧発生溝により動圧が発生する。そ
の結果、静止時にはOであった下側球面体22と下側受
部材24及び上側球面体28と上側受部材28の軸方向
のすきまが、ばね36が微小量縮むことにより形成され
る。軸方向のすきまが大きくなる程、発生する動圧の値
は小さくなるため、軸方向のすきまは、動圧による力と
ばねによる力が等しくなるように、自動的に調整される
。したがって、回転部11の径方向及び軸方向の負荷が
、下側球面軸受部12及び上側球面軸受部13により非
接触支持され、高速回転中においても、回転ふれまわり
を生じることな(安定した回転精度を得ることができ、
レーザ光を正確に走査することができる。また、上側球
面軸受支持部14のねじ36を運転開始後に再調整する
ことにより、停止時と定常運転時とにおける、ばね35
が上側球面体29を押す力を変えれば、頻ばんに起動停
止を繰り返す回転装置、あるいは非常に大きな軸受剛性
を必要とする回転装置への適用が可能である。
The first example of the present invention has the above configuration, and when power is supplied to the drive unit 15 and the rotating unit 11 is rotated at, for example, 30,000 rpm, the lower spherical body 22 and the upper spherical body 29 are rotated. Dynamic pressure is generated by dynamic pressure generating grooves provided on the outer circumferential surface. As a result, the axial clearances between the lower spherical body 22 and the lower receiving member 24 and between the upper spherical body 28 and the upper receiving member 28, which are O when at rest, are formed by the spring 36 contracting by a minute amount. The larger the axial clearance, the smaller the value of the generated dynamic pressure, so the axial clearance is automatically adjusted so that the force due to the dynamic pressure and the force due to the spring are equal. Therefore, the radial and axial loads of the rotating part 11 are supported in a non-contact manner by the lower spherical bearing part 12 and the upper spherical bearing part 13, and even during high-speed rotation, there is no rotational wobbling (stable rotation). Accuracy can be obtained,
Laser light can be scanned accurately. In addition, by readjusting the screw 36 of the upper spherical bearing support part 14 after the start of operation, the spring 35 can be
By changing the force with which the upper spherical body 29 is pushed, the present invention can be applied to rotating devices that frequently start and stop, or to rotating devices that require extremely high bearing rigidity.

次に、第2図に示す第2の例は、駆動部として第1の例
の円筒型モータに代えてフラットモータを採用すると共
に、上側球面軸受部13の上側球面体29をねし構造に
よって軸方向に移動自在としている。
Next, in the second example shown in FIG. 2, a flat motor is used as the drive unit in place of the cylindrical motor in the first example, and the upper spherical body 29 of the upper spherical bearing part 13 is provided with a screw structure. It is movable in the axial direction.

なお、第1図に示した第1の例と同一部分には同一符号
を付すことによって説明に代える。
It should be noted that the same parts as those in the first example shown in FIG.

第2図において、駆動部15となるフラットモータは、
上板42の内面側に円板状のステータ51を固定し、主
軸18に固定した支持台52上に同じく円板状のロータ
53をステータ51と対向するように固定して形成され
ている。
In FIG. 2, the flat motor serving as the drive unit 15 is
A disc-shaped stator 51 is fixed to the inner surface of the upper plate 42, and a disc-shaped rotor 53 is fixed on a support base 52 fixed to the main shaft 18 so as to face the stator 51.

上側球面軸受部13は上側球面体29の上部にねじ軸5
4を連ねて設け、上板41に形成したねじ孔55にねじ
軸54を綜合し、ねじ軸54を回転させることにより、
上側球面軸受支持部14を構成する上側球面体29と上
側受部材28との間の軸受隙間を自由に調整することが
できる。
The upper spherical bearing part 13 has a screw shaft 5 on the upper part of the upper spherical body 29.
4 in series, and by integrating the screw shaft 54 into the screw hole 55 formed in the upper plate 41 and rotating the screw shaft 54,
The bearing gap between the upper spherical body 29 and the upper receiving member 28 that constitute the upper spherical bearing support portion 14 can be freely adjusted.

この第2の例は、駆動部15としてフラットモータを採
用しているので主軸18の軸方向の長さを短縮でき、主
軸18の熱膨張の発生量は小さくなり、上側球面軸受部
13の上側球面体29をねじ軸54とねじ孔55で上下
に位置調整自在とした構造が支障な(採用でき、部品点
数の減少により、装置の小型化及び軽量化が可能になる
In this second example, since a flat motor is adopted as the drive unit 15, the length of the main shaft 18 in the axial direction can be shortened, the amount of thermal expansion of the main shaft 18 is reduced, and the upper side of the upper spherical bearing part 13 is The structure in which the spherical body 29 can be vertically adjusted using the screw shaft 54 and the screw hole 55 can be adopted, and by reducing the number of parts, the device can be made smaller and lighter.

なお、何れの例においても、回転装置はレーザ光を走査
する光偏向装置に限ることなく、例えば磁気記録用、音
響用ディスクの回転テーブル等、高精度、高速回転が要
求される各種機器への適用が可能である。
In both examples, the rotating device is not limited to an optical deflection device that scans laser beams, but can also be used for various devices that require high precision and high speed rotation, such as rotary tables for magnetic recording and audio disks. Applicable.

C発明の効果〕 以上のように、この発明によると、回転部の上下を非接
触的に球面軸受部で支持しているので、同軸受をwt密
にする必要がなく、しかも上側球面体が軸方向に移動可
能になっているので、各構成部品の軸方向寸法を厳密に
する必要がなく、従って加工や組立てが容易となる。
C Effects of the Invention As described above, according to the present invention, since the upper and lower parts of the rotating part are supported by the spherical bearing part in a non-contact manner, there is no need to make the bearings wt dense, and moreover, the upper spherical body is Since it is movable in the axial direction, it is not necessary to make the axial dimensions of each component part strict, and therefore processing and assembly are facilitated.

更に、上側球面体が軸方向に移動することにより、球面
軸受部及び駆動部で発止する熱による回転部の熱膨張の
影響を受けることがなく、常に安定した軸受性能を得る
ことができる。
Furthermore, since the upper spherical body moves in the axial direction, it is not affected by thermal expansion of the rotating part due to heat generated in the spherical bearing part and the drive part, and stable bearing performance can always be obtained.

また、上下球面軸受部において、何れも球面体を受部材
の上部に設けたので、特に静止時における球面軸受の隙
間内の潤滑剤の漏れを完全に防止することができる。
Further, in both the upper and lower spherical bearing parts, since the spherical body is provided at the upper part of the receiving member, it is possible to completely prevent leakage of lubricant in the gap between the spherical bearings, especially when the bearing is stationary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る回転装置の第1の例を示す縦断
面図、第2図は同第2の例を示す縦断面図、第3図と第
4図は従来の回転装置の異なった例を示す縦断面図であ
る。 11・・・・・・回転部、    12・・・・・・下
側球面軸受部、13・・・・・・−E側球面軸受部、 14・・・・・・上側球面軸受支持部、15・・・・・
・駆動部、    16・・・・・・収納部、18・・
・・・・主軸、     19・・・・・・多面鏡、2
2・・・・・・下側球面体、 23・・・・・・半凹球
部、24・・・・・・下側受部材、 26・・・・・・
動圧発生溝、27・・・・・・半凹球部、  28・・
・・・・」二側受部材、29・・・・・・上側球面体、
 31・・・・・・動圧発生溝、34・・・・・・ハウ
ジング、 35・・・・・・ばね、36・・・・・・ね
じ、     54・・・・・・ねじ軸、55・・・・
・・ねじ孔。 特許出願人   ニス・チー・エヌ 東洋ベアリング株式会社 同 代理人 鎌 田 文 第1図 第2図 第3図 第・1図
FIG. 1 is a vertical cross-sectional view showing a first example of a rotating device according to the present invention, FIG. 2 is a vertical cross-sectional view showing a second example of the same, and FIGS. 3 and 4 are differences between conventional rotating devices. FIG. 11...Rotating part, 12...Lower spherical bearing part, 13...-E side spherical bearing part, 14...Upper spherical bearing support part, 15...
・Drive part, 16...Storage part, 18...
...Main axis, 19...Polygon mirror, 2
2...Lower spherical body, 23...Semi-concave spherical part, 24...Lower receiving member, 26...
Dynamic pressure generating groove, 27... Semi-concave spherical part, 28...
..."Second side receiving member, 29...Upper spherical body,
31...Dynamic pressure generation groove, 34...Housing, 35...Spring, 36...Screw, 54...Screw shaft, 55・・・・・・
・Screw hole. Patent applicant Nissqn Toyo Bearing Co., Ltd. Agent Aya Kamata Figure 1 Figure 2 Figure 3 Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)鉛直回転軸線の回りを回転する回転部と、前記回
転部の回転軸線に沿った両端部にてこの回転部を非接触
的に球面軸支する球面軸受部とで構成され、前記両端部
の球面軸受部が、外周面に動圧発生溝を設けた球面体を
上側に、この球面体が嵌合する半凹球部を設けた受部材
を下側に配置して形成されている回転装置。
(1) Consisting of a rotating part that rotates around a vertical rotation axis, and spherical bearing parts that spherically support the rotating part in a non-contact manner at both ends of the rotating part along the rotation axis, and The spherical bearing part of the part is formed by arranging a spherical body with a dynamic pressure generating groove on the outer circumferential surface on the upper side and a receiving member with a semi-concave spherical part in which this spherical body fits on the lower side. Rotating device.
(2)上側球面軸受の球面体を軸方向に移動可能に支持
した請求項1に記載の回転装置。
(2) The rotating device according to claim 1, wherein the spherical body of the upper spherical bearing is supported movably in the axial direction.
JP703789A 1989-01-13 1989-01-13 Rotating device Pending JPH02186118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP703789A JPH02186118A (en) 1989-01-13 1989-01-13 Rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP703789A JPH02186118A (en) 1989-01-13 1989-01-13 Rotating device

Publications (1)

Publication Number Publication Date
JPH02186118A true JPH02186118A (en) 1990-07-20

Family

ID=11654844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP703789A Pending JPH02186118A (en) 1989-01-13 1989-01-13 Rotating device

Country Status (1)

Country Link
JP (1) JPH02186118A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284391A (en) * 1992-05-06 1994-02-08 Maxtor Corporation Apparatus for adjustment of a hydrodynamic spindle bearing assembly
US5488523A (en) * 1992-05-06 1996-01-30 Maxtor Corporation Ultra-slim disk storage unit having a hydrodynamic bearing assembly which forms a stable meniscus
US5822152A (en) * 1992-05-06 1998-10-13 Maxtor Corporation Ultra-slim disk storage unit with an enclosed circuit board and a hydrodynamic bearing assembly which forms a stable meniscus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284391A (en) * 1992-05-06 1994-02-08 Maxtor Corporation Apparatus for adjustment of a hydrodynamic spindle bearing assembly
US5328271A (en) * 1992-05-06 1994-07-12 Maxtor Corporation Hydrodynamic spindle bearing for ultra-slim disk storage unit
US5488523A (en) * 1992-05-06 1996-01-30 Maxtor Corporation Ultra-slim disk storage unit having a hydrodynamic bearing assembly which forms a stable meniscus
US5822152A (en) * 1992-05-06 1998-10-13 Maxtor Corporation Ultra-slim disk storage unit with an enclosed circuit board and a hydrodynamic bearing assembly which forms a stable meniscus

Similar Documents

Publication Publication Date Title
US5036235A (en) Brushless DC motor having a stable hydrodynamic bearing system
US5013947A (en) Low-profile disk drive motor
EP0412509A2 (en) Bearing structure
JPH04235522A (en) Rotating mirror optical scanner with grooved grease bearing
US4958098A (en) Rotary device
US6897585B2 (en) Kinetic pressure bearing motor
US5142174A (en) Low-profile disk drive motor with deflecting-pad bearings
JPH03140915A (en) Optical deflector
JPH02186118A (en) Rotating device
JPS60241518A (en) Dynamic pressure spindle unit
JPS63241517A (en) Polygon mirror
JPH0651224A (en) Optical scanning device
JP3892995B2 (en) Hydrodynamic bearing unit
JP2505916B2 (en) Bearing structure
JP4024007B2 (en) Hydrodynamic bearing unit
KR19980030390A (en) Double Ended Support Pivot Thrust Bearing
JPH11190340A (en) Dynamic pressure type bearing device
JPS63266420A (en) Polygonal mirror
JPH09331652A (en) Fluid bearing motor and disc drive having this motor
JPH03181612A (en) Bearing device
JPS63257716A (en) Polygon mirror
JPH1031188A (en) Polygon scanner
JPH08163817A (en) Polygon motor
KR0128635Y1 (en) Lubricating apparatus of vcr head drum assembly
KR100233013B1 (en) Structure of step bearing