JPS63256588A - Electroless plating process for ceramic substrate - Google Patents

Electroless plating process for ceramic substrate

Info

Publication number
JPS63256588A
JPS63256588A JP9278087A JP9278087A JPS63256588A JP S63256588 A JPS63256588 A JP S63256588A JP 9278087 A JP9278087 A JP 9278087A JP 9278087 A JP9278087 A JP 9278087A JP S63256588 A JPS63256588 A JP S63256588A
Authority
JP
Japan
Prior art keywords
ceramic substrate
electroless plating
ceramic
plating
reaction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9278087A
Other languages
Japanese (ja)
Inventor
喜市 吉新
賢二 利田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9278087A priority Critical patent/JPS63256588A/en
Publication of JPS63256588A publication Critical patent/JPS63256588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 、 この発明は、無電解めつきKより、セラミック基板上忙
金属導体を形成するセラミック基板への無電解めっき法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a method of electroless plating on a ceramic substrate for forming a metal conductor on the ceramic substrate.

〔従来の技術〕[Conventional technology]

セラミック基板へ、ニッケルや銅などの金属導体を無電
解めっきによって形成する際の従来の一般的な方法を説
明する工程図を第8図に示す。
FIG. 8 is a process diagram illustrating a conventional general method for forming a metal conductor such as nickel or copper on a ceramic substrate by electroless plating.

従来の無電解めっき法は、焼結後のセラミック基板を溶
剤で脱脂し、アルカリおよび酸洗浄を行なった後2反応
触媒金属イオン(例えば pd2+)を含む溶液中に浸
し9反応7!!媒金属イオンを基板表面に成層させ活性
化し、その後、化学めっき。
In the conventional electroless plating method, the ceramic substrate after sintering is degreased with a solvent, washed with alkali and acid, and then immersed in a solution containing 2-reaction catalyst metal ions (e.g., pd2+) for 9 reactions 7! ! A medium metal ion is layered on the substrate surface and activated, followed by chemical plating.

アルコール浸漬、及び乾燥を行なうものである。It performs alcohol immersion and drying.

この方法を従来何人とし、この方法により反応触媒金属
イオンが、セラミック基板表面に吸着した状態を示す断
面図を第3図(atに示す。図において、(3)は反応
触媒金属イオン、(4)はセラミック粒子である。又、
化学めっき工程により、セラミック基板にめっき膜を形
成した状態を示す断面図を第4図(−に示す。ここで、
(5Iはめつき膜である。
A cross-sectional view showing the state in which reaction catalyst metal ions are adsorbed onto the ceramic substrate surface by this method is shown in FIG. 3 (at). ) are ceramic particles. Also,
A cross-sectional view showing a state in which a plating film is formed on a ceramic substrate by a chemical plating process is shown in FIG.
(5I is a plating film.

しかし、この無電解めっき法では、密着力の強い均一な
めつき膜を得る事は困難である。そのため、密着力を向
上させる他の従来例として、刊行物(電子材料、  1
958年5月号第60〜第66貞)にあるメタルアディ
ティブセラミック配線板の無電解鋼めっき法のように、
焼結後のセラミック基板に化学エツチングを施す工程を
加えたものや。
However, with this electroless plating method, it is difficult to obtain a uniform plated film with strong adhesion. Therefore, as another conventional example of improving adhesion, the publication (Electronic Materials, 1
Like the electroless steel plating method for metal additive ceramic wiring boards in May 958 issue No. 60 to 66),
It involves adding a process of chemical etching to the ceramic substrate after sintering.

刊行物(実務表面技術、 ’1986年、第33巻、第
2号、第38頁)にある無電解めっき法のように改良し
た活性化液で十分な活性化を行ない、さらに改良しため
つき液で化学めっきする方法などがある。
Sufficient activation is carried out using an improved activating solution as in the electroless plating method described in the publication (Public Surface Technology, '1986, Vol. 33, No. 2, p. 38), and further improved toughening is performed. There are methods such as chemical plating with liquid.

まず、セラミック基板に化学エツチングによる前処理を
施す工程が加わった例(従来例Bとする)について説明
する。
First, an example (referred to as conventional example B) in which a step of pre-processing a ceramic substrate by chemical etching is added will be described.

セラミック基板は、電子部品材料として広く使われてい
る96%アルミナセラミックを使用する。
The ceramic substrate uses 96% alumina ceramic, which is widely used as an electronic component material.

セラミックは粒子の焼結体であり、第9図(a)に示す
セラミック基板の断面図のように、無数の凹凸や多くの
空隙σOを有している。一般に、無電解めっきによるめ
っき膜の密着力は、これらの凹凸や間隙ae中にめっき
が析出し、アンカー効果を得る事によって生じる。そこ
で、第9図IbJの化学エツチング後のセラミック基板
の断面図に示すように。
Ceramic is a sintered body of particles, and as shown in the cross-sectional view of the ceramic substrate shown in FIG. 9(a), it has countless irregularities and many voids σO. Generally, the adhesion of a plating film formed by electroless plating is caused by the plating depositing in these irregularities and gaps ae to obtain an anchor effect. Therefore, as shown in the cross-sectional view of the ceramic substrate after chemical etching in FIG. 9 IbJ.

焼結したセラミック多結晶体の結晶粒界及び粒内を微細
に化学エツチングする事によって、多くの微細な凹凸(
91が得られる。この後、基板を脱脂洗浄し、めっきの
核となるシープ(Pd等反応触媒金属)を付与(活性化
)させ還元剤の存在下で、ニッケルイオンを析出させる
。めっきが終了した状態を第9図(clのめつき膜を形
成したセラミック基板の断面図に示す。図中(51はめ
つき膜である。
Many minute irregularities (
91 is obtained. Thereafter, the substrate is degreased and cleaned, and a sheep (reaction catalyst metal such as Pd) that becomes the core of plating is applied (activated) to precipitate nickel ions in the presence of a reducing agent. The state in which plating has been completed is shown in FIG. 9 (a sectional view of a ceramic substrate on which a plating film of cl has been formed). In the figure (51 is the plating film).

すなわち、化学エツチングの前処理を行なう事によって
、引っかかりどなる微細な凹凸(9)が多数得られるの
で、より大きなアンカー効果が得られ。
That is, by performing the pretreatment for chemical etching, a large number of fine irregularities (9) that can be caught can be obtained, so that a greater anchoring effect can be obtained.

セラミックスとの密着力が向上する。Improves adhesion with ceramics.

次に、特願昭61−105554号明細書のセラミック
基板の無電解メッキ法に示したように、セラミックを化
学エツチングする事なく、@着力の優れためつき膜を得
る例(従来例Cとする)について説明する。前述のよう
に、密着力は、セラミック表面での凹凸及び空隙(IQ
によるアンカー効果により生じるものであるが、第4図
(alに示すよう釦。
Next, as shown in the electroless plating method for ceramic substrates in Japanese Patent Application No. 61-105554, an example (conventional example C) of obtaining a plating film with excellent adhesion strength without chemically etching the ceramic is provided. ) will be explained. As mentioned above, adhesion is determined by the unevenness and voids (IQ) on the ceramic surface.
This is caused by the anchoring effect caused by the button as shown in Figure 4 (al).

これらの凹凸や空隙αeを完全に利用する事は難しく、
また第9図(C)に示す従来例Bのように化学エツチン
グによって得られた微細な凹凸(9)にもめっきが入り
込まず空隙として残る場合がある。しかし、第10図の
工程図に示す活性化工程のように。
It is difficult to fully utilize these irregularities and voids αe,
Furthermore, as in conventional example B shown in FIG. 9(C), the plating may not penetrate into the fine irregularities (9) obtained by chemical etching and may remain as voids. However, as in the activation process shown in the process diagram of FIG.

まず、セラミック基板なセラークリーンにより表面改質
処理し9次に表面張力の小さい活性化液を使い、3段階
の活性処理を行なうと、令名困難であった微細な凹凸部
も、ある程度活性化できる。
First, the surface of the ceramic substrate is modified using CellarClean, and then a three-step activation process is performed using an activation liquid with low surface tension.Even the minute irregularities that were difficult to repair can be activated to some extent. can.

この活性化工程は、セラーセンシ(キザイ製、商品名)
でセラミック表面部を感受性化(Snの吸N)し9次の
アクチーセラ(キザイ製、商品名)で、セラミック表面
を均一な感受性状態とし活性化し、セラミックス(キザ
イ製、商品名)で、再活性化処理(pd吸N)する。
This activation process is performed by Cellar Senshi (manufactured by Kizai, product name).
to sensitize the ceramic surface (N absorption of Sn), activate the ceramic surface to a uniform sensitive state with 9-order Acti-Cera (manufactured by Kizai, trade name), and reactivate it with ceramics (manufactured by Kizai, trade name). oxidation treatment (PD suction N).

この活性化状態の基板を化学めつきg(ナイコーセラ)
につける事で、第1)図のめつき膜を形成したセラミッ
ク基板に示すような浸透性の優れた無電解めっき膜(5
)が得られ9強いアンカー効果で密着力の強いセラミッ
ク配線基板を得る。
This activated substrate is chemically plated (Nycocera).
By applying the electroless plating film (5) with excellent permeability as shown on the ceramic substrate on which the plating film is formed in Figure 1),
) is obtained, and a ceramic wiring board with strong adhesion is obtained due to the strong anchor effect.

また、ニッケルなどの導体金属を化学めっきした後に、
セラミック基板を250〜300tで熱処理して密着力
を向上させる従来例もある。例えば。
In addition, after chemically plating conductive metals such as nickel,
There is also a conventional example in which a ceramic substrate is heat treated at 250 to 300 tons to improve adhesion. for example.

刊行物(実務表面技術、第33巻、第2号、  198
6年、第41頁)では、めっき後の密着強度は2.1k
g/、2だが、これに250 r/h  の熱処理を施
すと。
Publications (Practical Surface Technology, Volume 33, No. 2, 198
6, p. 41), the adhesion strength after plating is 2.1k.
g/, 2, but if it is heat treated at 250 r/h.

4.1kg71)m+2になる例がある。これは、PI
F、処理を行なう事により、  200t:付近からニ
ッケルの結晶化が始まり硬度が増加する効果によるもの
である。
There is an example where the weight is 4.1kg71)m+2. This is P.I.
F. This is due to the effect that by performing the treatment, nickel crystallization begins around 200t and hardness increases.

結晶化温度は、めっき液に含まれるP、  Hの含有量
により異なり、含有量が少ない程低温で最高硬度に達す
る。
The crystallization temperature varies depending on the content of P and H contained in the plating solution, and the lower the content, the lower the temperature and the maximum hardness is reached.

最後に2%願昭61−103606号明細書のセラミッ
ク基板の無電解めっき法に示したように従来例りとして
、工程図の第12図のように、従来何人の活性化と化学
めっきの間に水素中熱処理を施し。
Finally, as shown in the electroless plating method for ceramic substrates in the specification of 2% Application No. 103606/1983, as a conventional example, as shown in Figure 12 of the process diagram, there is a difference between activation and chemical plating of conventional was subjected to heat treatment in hydrogen.

反応触媒金属を広く深く分布させる方法もある。There is also a method in which the reaction catalyst metal is distributed widely and deeply.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の無電解めっき法は以上のようであり、めつき膜の
密着力を向上させるために、酸やアルカリによる化学エ
ツチング工程(従来例B)や、複雑な活性化工程(従来
例C)などを施していた。
Conventional electroless plating methods are as described above, and in order to improve the adhesion of the plated film, a chemical etching process using acid or alkali (Conventional Example B), a complicated activation process (Conventional Example C), etc. was being administered.

しかしながら、これらの工程は複雑で多くの時間と労力
が費されるにもかかわらず、得られるめっき膜の密着強
度は、1.5〜2.5kg/ff1)12程度であり。
However, although these steps are complicated and require a lot of time and effort, the adhesion strength of the resulting plating film is about 1.5 to 2.5 kg/ff1)12.

配線の細線化に伴い、さらに大きな密着強度が要求され
ている。
As wiring becomes thinner, even greater adhesion strength is required.

又、従来例りでは9反応触媒金属イオンのセラミック基
板への吸着量が少ないため、熱処理を施した場合、セラ
ミック基板表面での単位面積当たりの反応触媒金属量が
少なくなってしまい、めっき析出速度が遅くなったり、
析出むらが出じたりする問題点もある。
In addition, in the conventional method, the amount of reaction catalyst metal ions adsorbed onto the ceramic substrate is small, so when heat treatment is performed, the amount of reaction catalyst metal per unit area on the ceramic substrate surface decreases, and the plating deposition rate decreases. becomes late or
There is also the problem of uneven precipitation.

さらに、参考として特公昭5s−1izsss号公報の
セラミック回路基板では、無電解めっきの反応触媒金属
を含有するペーストによりグリーンシート上に回路を形
成した後に、還元雰囲気中で焼結し、その後無電解めっ
きを施すという方法もあるが、焼結温度が高いため2反
応触媒金属がガラ艮等で覆われ、後工程のめっきが困難
となる。
Furthermore, as a reference, in the ceramic circuit board disclosed in Japanese Patent Publication No. 5S-1IZSSS, a circuit is formed on a green sheet using a paste containing a reaction catalyst metal for electroless plating, and then sintered in a reducing atmosphere. There is also a method of plating, but since the sintering temperature is high, the two-reaction catalyst metal is covered with glass, making it difficult to perform plating in the subsequent process.

この発明は上記のような問題点を解消するために為され
たもので、従来低かった密着強度を改善し、均一でむら
の無いめっき膜を形成できるセラミック基板の無を解め
っき法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to improve the conventionally low adhesion strength and to obtain a plating method that solves the problem of ceramic substrates that can form a uniform and even plating film. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のセラミック基板の無電解めっき法は。 The electroless plating method for ceramic substrates of this invention is as follows.

セラミック基板に2反応触媒金属イオンを含むペースト
層を設ける工程、ペースト層を設けたセラミック基次を
還元雰囲気中で熱処理する工程、および熱処理したセラ
ミック基板に無電解めっきをする工程を施すものである
The method includes the steps of providing a paste layer containing two-reaction catalyst metal ions on a ceramic substrate, heat-treating the ceramic substrate provided with the paste layer in a reducing atmosphere, and electroless plating the heat-treated ceramic substrate. .

〔作用〕[Effect]

この発明における反応PBA媒金属イ芽ンを含むペース
ト層をセラミック基板に設ける工程とその基板を還元雰
囲気−中で熱処理する工程は、ペースト中に含まれる反
応触媒金属イオンを、セラミック表面に広く、かつ深X
拡散分布させると共に、化学めっきに対して活性な核(
反応触媒金属イオン)を形成する。
In this invention, the step of providing a paste layer containing reactive PBA-mediated metal ions on a ceramic substrate and the step of heat-treating the substrate in a reducing atmosphere spread the reaction catalytic metal ions contained in the paste over the ceramic surface. And deep X
In addition to diffusing and distributing, active nuclei for chemical plating (
reaction catalyst (metal ions).

第3図は、セラミック基板に反応触媒金属イオンが吸着
した状態を示す断面図であり、(3)は反応触媒金属イ
オン、(4)はセラミック粒子である。第3図(alは
、従来法(第8図のプロセス)によって。
FIG. 3 is a cross-sectional view showing a state in which reaction catalyst metal ions are adsorbed on a ceramic substrate, where (3) is a reaction catalyst metal ion and (4) is a ceramic particle. FIG. 3 (al is by conventional method (process in FIG. 8).

反応触媒金属をセラミック表面に吸着した場合の断面図
である。第3図ら)は、この発明に係わる反応触媒金属
をセラミック表面に分布した場合の断面図である。この
発明では、熱拡散によって2反応触媒金属を分布させる
ため、空隙や開気孔の深いところ迄分布させる事ができ
る。また2反応触媒金属がペーストの担体に多量(X量
比で数100〜数1ooo ppm )に保持されてい
るため、従来の液中吸着(湿式法)(数ppm〜数10
ppmの吸着が考えられる)に比べ、この発明拡散(乾
式法)ツ は、十分な量の反応触媒金属をセラミック表面に分布さ
せる事ができる。さらに、熱拡散処理を還元雰囲気中で
行なうため2反応触媒金属が還元され、より活性なもの
になり、化学めっき反応を促進する効果もある。
FIG. 3 is a cross-sectional view of a case where a reaction catalyst metal is adsorbed onto a ceramic surface. Figures 3 and 3) are cross-sectional views when the reaction catalyst metal according to the present invention is distributed on the ceramic surface. In this invention, since the two-reaction catalyst metal is distributed by thermal diffusion, it can be distributed deep into voids and open pores. In addition, since the catalytic metal for two reactions is retained in a large amount (several 100 to several 1000 ppm in terms of X amount ratio) in the paste carrier, it is less than the conventional in-liquid adsorption (wet method) (several ppm to several 100 ppm).
Compared to conventional methods (where ppm adsorption is considered), the inventive diffusion (dry method) can distribute a sufficient amount of reaction catalytic metal on the ceramic surface. Furthermore, since the thermal diffusion treatment is performed in a reducing atmosphere, the two-reaction catalyst metal is reduced and becomes more active, which also has the effect of promoting the chemical plating reaction.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例の無電解めっき法を説明す
る工程図である。図から明らかなように。
FIG. 1 is a process diagram illustrating an electroless plating method according to an embodiment of the present invention. As is clear from the figure.

この方法によれば、吏結後のセラミック基板を溶剤で脱
脂し、アルカリおよび酸洗浄を行なった後に2反応触媒
金属イオンを含む活性ペースト層をセラミック基板に設
け、その後還元雰囲気中で熱処理し冷却後に、化学めっ
きを施し、アルコール浸漬および乾燥を行なうものであ
る。
According to this method, the ceramic substrate after bonding is degreased with a solvent, washed with alkali and acid, an active paste layer containing two reaction catalyst metal ions is provided on the ceramic substrate, and then heat treated in a reducing atmosphere and cooled. Afterwards, chemical plating is applied, followed by alcohol immersion and drying.

以下、この発明を具体的実施例をもとにより詳細に説明
する。
Hereinafter, this invention will be explained in more detail based on specific examples.

実施例1゜ 9696アルミナセラミツク基板(京セラ製)を。Example 1゜ 9696 alumina ceramic substrate (manufactured by Kyocera).

従来の無電解めっきプロセス(第8図参照)に従い、セ
ラミック表面の前処理(脱脂・況浄等)を行なう。その
後2反応触媒金属イオンを含む活性ペースト(例えば、
タングステン担体にパラジウムイオンを数1000 p
pm保持させたもの)を、第2図に示すこの発明に係わ
るペースト層を設けたセラミック基板の断面図のように
セラミック基板に印刷する。その後、ペーストの乾燥の
ため電気オーブンで120℃、30分間乾燥させてから
、精密雰囲気炉にセットし、炉内の空気を窒素ガスに置
換する。置換終了後、水素ガスを炉内に導入し。
The ceramic surface is pretreated (degreasing, cleaning, etc.) according to the conventional electroless plating process (see FIG. 8). Then an active paste containing two reactive catalytic metal ions (e.g.
Several thousand p of palladium ions are placed on a tungsten carrier.
pm) is printed on a ceramic substrate as shown in FIG. 2, which is a cross-sectional view of a ceramic substrate provided with a paste layer according to the present invention. Thereafter, the paste was dried in an electric oven at 120° C. for 30 minutes, and then set in a precision atmosphere furnace, and the air in the furnace was replaced with nitrogen gas. After the replacement is complete, hydrogen gas is introduced into the furnace.

今度は窒素ガスを水素ガスで置換し、100%H2の雰
囲気にする。水素ガスの流量は、91の炉心管に対し、
約31/minとした。 昇温速度は、10で/min
とし、5oot迄昇温し、その温度を10分間保持し、
15で/minの割合で降温させた。この還元雰囲気中
での熱処理はセラミック基版上のペース)K含まれてい
る反応触媒金pA(パラジウム)をセラミック表面およ
び表面近傍の開気孔や空隙釦熱拡散によって分布させる
。又、還元雰囲気中で行なう事により9反応触媒金属が
還元され、より活性なものとなる。以上の2つの効果に
より。
This time, nitrogen gas is replaced with hydrogen gas to create an atmosphere of 100% H2. The flow rate of hydrogen gas is as follows for 91 core tubes.
The speed was approximately 31/min. The temperature increase rate is 10/min
Then, raise the temperature to 5oot, hold that temperature for 10 minutes,
The temperature was lowered at a rate of 15 min/min. This heat treatment in a reducing atmosphere causes the reaction catalyst gold pA (palladium) contained in the paste K on the ceramic substrate to be distributed by thermal diffusion through the open pores and voids on and near the ceramic surface. Furthermore, by carrying out the reaction in a reducing atmosphere, the 9 reaction catalyst metal is reduced and becomes more active. Due to the above two effects.

反応触媒金属イオンを含むペーストを印刷、還元雰囲気
中熱処理を行なったセラミック基板に例えばニッケルを
化学めっきを施すと、第4図(hのめつき膜を設けたセ
ラミック基板のように2表面から数ミクロン以上の深さ
に迄、めっきが析出し。
If a ceramic substrate is printed with a paste containing reaction catalyst metal ions and heat-treated in a reducing atmosphere, and then chemically plated with nickel, for example, the ceramic substrate with a plating film shown in Fig. Plating precipitates to a depth of microns or more.

第4図(alと比較しても、より大きなアンカー効果が
得られる。
A larger anchor effect can be obtained compared to FIG. 4 (al).

実施例λ 前処理を施していない96%アルミナセラミック基板を
用い、熱処理温度を400″Cとする以外は。
Example λ A 96% alumina ceramic substrate without pretreatment was used, except that the heat treatment temperature was 400″C.

実施例1と同様にめっきを行なった。第5図は処理温度
と平均引張り強度の関係を示す特性図である。図におい
て、(Xi(2)(2))はこの発明実施例によるセラ
ミック基板の特性、 (Piは従来法によるセラミック
基板の特性であり、(2)は400℃、 (Ylは60
0″C2■)は800 tの熱処理温度の特性である。
Plating was carried out in the same manner as in Example 1. FIG. 5 is a characteristic diagram showing the relationship between treatment temperature and average tensile strength. In the figure, (Xi (2) (2)) is the characteristic of the ceramic substrate according to the embodiment of this invention, (Pi is the characteristic of the ceramic substrate according to the conventional method, (2) is 400°C, (Yl is 60
0″C2■) is a characteristic at a heat treatment temperature of 800 t.

引張り試験は、セラミック基板上に、  2w*φの無
電解ニッケルの円形パッドを形成し、それに長さ101
゜太さ06uの銅リードビンをハンダ付けして、5fi
/minの速度で垂直に引張って行なった。試料数は、
各条件について30個とした。熱処理を施したもの(こ
の発明)は、従来法の2倍近い密着力が得られた。
In the tensile test, a circular pad of electroless nickel of 2w*φ was formed on a ceramic substrate, and a pad with a length of 101
゜Solder a copper lead bin with a thickness of 06u and make a 5fi
The test was performed by vertically pulling at a speed of /min. The number of samples is
Thirty pieces were used for each condition. The heat-treated product (this invention) had nearly twice the adhesion of the conventional method.

実施例ふ 実施例2の水素中熱処理温度を600℃とし、その他の
条件は同一とした。平均引張り強度は、第5図の(イ)
で示すよう[,400t:で熱処理したもの閃とあまり
差が無かった。さらに、水素中熱処理温度を800℃と
した場合についても、第5図の(2))で示すように、
400tで熱処理したものとあまり差が無かった。
Example The heat treatment temperature in hydrogen was 600° C. in Example 2, and the other conditions were the same. The average tensile strength is shown in (a) in Figure 5.
As shown in the figure, there was not much difference between the heat treatment at [,400t] and the heat treatment. Furthermore, even when the heat treatment temperature in hydrogen is 800°C, as shown in (2) in Figure 5,
There was not much difference from that heat treated at 400t.

実施例4゜ 実施例2の水素中熱処理温度をI 5ol)Cとし。Example 4゜ The heat treatment temperature in hydrogen in Example 2 was set to I5ol)C.

その他の条件は同一とした。しかし、熱処理後のめつき
は、析出しなかった。これは、熱処理温度が、高いため
セラミック基板中に含まれているガラス成分が流動的に
なり、セラミック表面のパラジウムをガラス中へ取り込
んでしまうためと考えられる。以上のことから2反応触
媒金属イオンにパラジウムを用いた場合、熱処理温度は
200〜1200 tが望ましい。
Other conditions were the same. However, no plating was deposited after heat treatment. This is thought to be because the glass component contained in the ceramic substrate becomes fluid due to the high heat treatment temperature, and palladium on the ceramic surface is incorporated into the glass. From the above, when palladium is used as the 2-reaction catalyst metal ion, the heat treatment temperature is preferably 200 to 1200 t.

実施例5゜ スルーホール付きの96%アルミナセラミック基板に、
実施例2と同一条件で、無電解ニッケルめっきを行なっ
たところ、スルーホール内のめつき膜厚も均一で、密着
強度の高いものが得られた。
Example 5: A 96% alumina ceramic substrate with through holes,
When electroless nickel plating was performed under the same conditions as in Example 2, the thickness of the plating film inside the through hole was uniform and the adhesion strength was high.

これは、パラジウムが、従来法に比べ熱拡散で均一に分
布し、かつセラミック内部へ数ミクロンのところ迄入り
込んだためと思われる。
This is thought to be because palladium was distributed more uniformly by thermal diffusion than in the conventional method and penetrated into the ceramic to a depth of several microns.

この発明の実施例の無電解めっき法は、従来。The electroless plating method of the embodiment of this invention is conventional.

密着力を上げるために行なわれている種々の無電解めっ
き法(従来例B、 Cなど)と独立して行なえるもので
あり2例えばエツチング処理を施して表面に多くの微細
な凹凸を有するセラミック基板に適用したり、3段階の
活性化工程を採用した基板に適用する事も可能である。
It can be performed independently of various electroless plating methods (conventional examples B, C, etc.) that are used to increase adhesion. 2For example, it can be applied to ceramics that have been subjected to etching treatment to have many fine irregularities on the surface. It is also possible to apply it to a substrate or to a substrate that adopts a three-step activation process.

当然、これらの方法を組み合わせた無電解めっき法によ
り、最も密着力の強いめっき膜が得られる。
Naturally, a plating film with the strongest adhesion can be obtained by electroless plating, which is a combination of these methods.

第6図はフッ化アン七ニウムによるエツチング処理を施
したセラミック基&にこの発明を適用した時の、処理温
度と平均引張り強度との関係を示す特性図で、 lQI
、(8)はこの発明の実施例によるセラミック基板の特
性、αGは従来法による特性であリ、(Q)は500′
c、(R1は70()Cの熱処理温度の特性である。す
なわちペーストの印刷と水素ガス中熱処理(熱処理は5
00Cと700℃)Kよる めっきと従来法(至)によ
るめっきについ【、めっき膜の平均@看強度を示したも
のである。やはり、ここでも、この発明を適用した例の
方が従来例に比べ。
Figure 6 is a characteristic diagram showing the relationship between treatment temperature and average tensile strength when this invention is applied to a ceramic substrate etched with am7nium fluoride.
, (8) are the characteristics of the ceramic substrate according to the embodiment of the present invention, αG is the characteristic according to the conventional method, and (Q) is 500'
c, (R1 is the characteristic of heat treatment temperature of 70 () C. That is, paste printing and heat treatment in hydrogen gas (heat treatment is 5
00C and 700°C) K plating and conventional plating method (excluding). Again, the example to which this invention is applied is better than the conventional example.

平均密着強度で、2倍程増加している。中には。The average adhesion strength has increased by about 2 times. Inside.

最大7−/IIJI2の強度を示すものもある。その破
壊断面図を第7図に示す。(7)は鋼リードピン、(8
)ははんだである図から明らかなように、めっきがセラ
ミック表面の凹凸に十分に入り込み、さらに表面から数
ミクロンの間隙にも析出し、破壊がセラミック内で生じ
ている事がわかる。
Some exhibit strengths of up to 7-/IIJI2. A fractured cross-sectional view of the same is shown in FIG. (7) is a steel lead pin, (8
) is solder.As is clear from the figure, the plating has penetrated into the unevenness of the ceramic surface well, and has also precipitated in gaps of several microns from the surface, indicating that destruction has occurred within the ceramic.

なお、第1図に示す、この発明の一実施例の無電解めっ
き法を説明する工程図において、溶剤脱脂工程やアルカ
リ洗浄工程、酸洗浄工程は、その順序が逆になったり、
場合によっては省略される事もある。また、アルコール
浸漬工程や乾燥工程についても同様に省略されることも
ある。
In addition, in the process diagram for explaining the electroless plating method according to one embodiment of the present invention shown in FIG. 1, the order of the solvent degreasing process, alkali cleaning process, and acid cleaning process may be reversed, or
In some cases, it may be omitted. Further, the alcohol immersion step and the drying step may also be omitted in the same way.

また、上記実施例では主に金属導体がニッケル。Furthermore, in the above embodiments, the metal conductor is mainly nickel.

である場合について説明したが1例えば銅など他の金属
導体であってもよく、上記実施例と同様の効果を奏する
Although the case where the conductor is 1 is described, other metal conductors such as copper may be used, and the same effects as in the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、セラミック基板に2反
応触媒金属イオンを含むペースト層を設ける工程、ペー
スト層を設けたセラミック基板を還元雰囲気中で熱処理
する工程、および熱処理したセラミック基板に無電解め
っきをする工程を施すことにより、密着強度に優れ、均
一でむらの少ないセラミック基板の無電解めっき法を得
ることができる。
As explained above, this invention includes a step of providing a paste layer containing two-reaction catalyst metal ions on a ceramic substrate, a step of heat-treating the ceramic substrate provided with the paste layer in a reducing atmosphere, and an electroless plating process on the heat-treated ceramic substrate. By carrying out this step, it is possible to obtain an electroless plating method for ceramic substrates with excellent adhesion strength, uniformity, and less unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の無電解めっき法の工程
図、g2図は、この発明の一実施例に係わるペースト層
を設けたセラミック基板の断面図。 第3図は、従来法(a)とこの発明の実施例(blによ
って得られた反応触媒金属の吸着状態を示す断面図。 第4図は、従来法(alとこの発明の実施例(blによ
って得られためつき膜を設けたセラミック基板の断面図
、第5図は、この発明の実施例によって得られためつき
膜と従来のめつき膜の平均引張り強度を比較する特性図
、第6図は、この発明の他の実施例によって得られため
つき膜と従来のめつき膜の平均引張り強度を比軟する特
性図、第7図は。 この発明の一実施例によって得られためつき膜の引張り
試験後の破壊面の断面図、第8図は、従来の一般的な無
電解めつき法を説明する工程図、第9図は、従来の無電
解めっき法を工程順に説明する断面図、第10図は、従
来の無電解めっき法を説明する工程図、第1)図は、従
来の方法によって得られためつき膜を設けたセラミック
基板の断面図、$12図は、従来の無電解めっき法の工
程図である。 図において、(1)はセラミック基板、(2)は反応触
媒金属イオンを含むペースト、(3)は反応触媒金属。 (4)はセラミック粒子、(51はめつき膜である。 なお、谷図中則−符号は同一または相当部分を示すもの
とする。
FIG. 1 is a process diagram of an electroless plating method according to an embodiment of the present invention, and FIG. g2 is a sectional view of a ceramic substrate provided with a paste layer according to an embodiment of the present invention. FIG. 3 is a sectional view showing the adsorption state of the reaction catalyst metal obtained by the conventional method (a) and the embodiment of the present invention (bl). FIG. 5 is a cross-sectional view of a ceramic substrate provided with a plating film obtained by the present invention, and FIG. is a characteristic diagram comparing the average tensile strength of the plated film obtained by another embodiment of the present invention and the conventional plated film. A cross-sectional view of the fracture surface after a tensile test, FIG. 8 is a process diagram explaining a conventional general electroless plating method, and FIG. 9 is a cross-sectional diagram explaining a conventional electroless plating method in the order of steps. Figure 10 is a process diagram explaining the conventional electroless plating method, Figure 1) is a cross-sectional view of a ceramic substrate provided with a plating film obtained by the conventional method, and Figure 12 is a process diagram explaining the conventional electroless plating method. This is a process diagram of the plating method. In the figure, (1) is a ceramic substrate, (2) is a paste containing reaction catalyst metal ions, (3) is a reaction catalyst metal, (4) is a ceramic particle, and (51 is a plated film). In addition, according to Tanizu's middle rule, the symbols indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック基板に、反応触媒金属イオンを含むペ
ースト層を設ける工程、ペースト層を設けたセラミック
基板を還元雰囲気中で熱処理する工程、および熱処理し
たセラミック基板に無電解めつきをする工程を施すセラ
ミック基板の無電解めつき法。
(1) A process of providing a paste layer containing reaction catalyst metal ions on a ceramic substrate, a process of heat-treating the ceramic substrate provided with the paste layer in a reducing atmosphere, and a process of electroless plating the heat-treated ceramic substrate. Electroless plating method for ceramic substrates.
(2)還元雰囲気は水素ガス雰囲気である特許請求の範
囲第1項記載のセラミック基板への無電解めつき法。
(2) The electroless plating method for ceramic substrates according to claim 1, wherein the reducing atmosphere is a hydrogen gas atmosphere.
(3)反応触媒金属イオンがパラジウムイオンであり、
熱処理温度が200〜1200℃である特許請求の範囲
第1項又は第2項記載のセラミック基板への無電解めつ
き法。
(3) the reaction catalyst metal ion is a palladium ion,
The electroless plating method for ceramic substrates according to claim 1 or 2, wherein the heat treatment temperature is 200 to 1200°C.
JP9278087A 1987-04-15 1987-04-15 Electroless plating process for ceramic substrate Pending JPS63256588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9278087A JPS63256588A (en) 1987-04-15 1987-04-15 Electroless plating process for ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9278087A JPS63256588A (en) 1987-04-15 1987-04-15 Electroless plating process for ceramic substrate

Publications (1)

Publication Number Publication Date
JPS63256588A true JPS63256588A (en) 1988-10-24

Family

ID=14063934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9278087A Pending JPS63256588A (en) 1987-04-15 1987-04-15 Electroless plating process for ceramic substrate

Country Status (1)

Country Link
JP (1) JPS63256588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002807A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor element and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002807A1 (en) * 2014-06-30 2016-01-07 株式会社デンソー Gas sensor element and production method therefor
JP2016011884A (en) * 2014-06-30 2016-01-21 株式会社デンソー Gas sensor element and gas sensor element manufacturing method
US10591438B2 (en) 2014-06-30 2020-03-17 Denso Corporation Gas sensor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5058799A (en) Metallized ceramic substrate and method therefor
EP0866735B1 (en) Process for the fabrication of a silicon/integrated circuit wafer
US5100714A (en) Metallized ceramic substrate and method therefor
JPS63203775A (en) Plating treatment of substrate
JPS6227393A (en) Formation of copper film on ceramic substrate
JPS61197488A (en) Formation of copper electrode on aluminum nitride
JP2003013249A (en) Gold substitution plating solution
JPS63256588A (en) Electroless plating process for ceramic substrate
JPS583962A (en) Stress free nickel layer formation
US4975160A (en) Process for wet chemical metallization of a substrate
TWI688674B (en) Liquid crystal polymer metallization method
JP4012968B2 (en) Electroless plating method and product on smooth substrate
JPS62260788A (en) Electroless plating process to ceramic substrate
JPS62260388A (en) Nonelectrolytic plating of ceramic board
JPH03124091A (en) Manufacture of thick-film printed board
JP2007324522A (en) Method of manufacturing metallized ceramic substrate
JP4090602B2 (en) Plated ceramic / metal composite material and method for producing the same
JPH0337319B2 (en)
JPH10242205A (en) Wire bonding terminal and manufacture thereof
JPH08325744A (en) Method for activating nickel-boron electroless plating film
JP3801334B2 (en) Semiconductor device mounting substrate and manufacturing method thereof
KR20050072367A (en) Electress plating method low temperature simultaneous plasticity of ceramic substrate
JPH09256163A (en) Nickel plating treatment on ceramic substrate
JPS6335481A (en) Manufacture of ceramic distribution substrate
JPS61238966A (en) Wet chemical method for obtaining metal layer