JPS62260388A - Nonelectrolytic plating of ceramic board - Google Patents

Nonelectrolytic plating of ceramic board

Info

Publication number
JPS62260388A
JPS62260388A JP10360686A JP10360686A JPS62260388A JP S62260388 A JPS62260388 A JP S62260388A JP 10360686 A JP10360686 A JP 10360686A JP 10360686 A JP10360686 A JP 10360686A JP S62260388 A JPS62260388 A JP S62260388A
Authority
JP
Japan
Prior art keywords
ceramic substrate
ceramic
electroless plating
plating
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10360686A
Other languages
Japanese (ja)
Inventor
喜市 吉新
井上 奈保
清志 林
広木 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10360686A priority Critical patent/JPS62260388A/en
Publication of JPS62260388A publication Critical patent/JPS62260388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高密度で微細な配線回路をもつセラミック
基板を得るための無電解メッキ方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electroless plating method for obtaining a ceramic substrate having a high density and fine wiring circuit.

〔従来の技術〕[Conventional technology]

第5図にセラミック基板へニッケル導体を無電解メッキ
によって形成する工程図に示す。これによれば従来の無
電解メッキ方法では、焼結後のセラミック基板をアルコ
ールで脱脂し、アルカ1と酸洗浄を行なったのち、反応
触媒金属イオンを吸着させ活性化させる。その後、化学
メッキ、アルコール浸漬および乾燥を行なうものである
。しかし上記の無電解メッキ方法では密着力の強い均一
なメッキ膜を得ることは難しい。このため密着力を向上
させる他の方法として、文献「電子材料、1985年5
月ものP2Oに記載されている日立化成工業のメタルア
ディティグセラミック配線板の無電解鋼メッキ工程のよ
うに焼結後のセラミック基板に化学エツチングを施こす
工程を加えたものや、文献「実務表面技術、1986年
、Vol。
FIG. 5 shows a process diagram for forming a nickel conductor on a ceramic substrate by electroless plating. According to this, in the conventional electroless plating method, the sintered ceramic substrate is degreased with alcohol, washed with alkali 1 and acid, and then the reaction catalyst metal ions are adsorbed and activated. After that, chemical plating, alcohol immersion and drying are performed. However, with the electroless plating method described above, it is difficult to obtain a uniform plating film with strong adhesion. For this reason, as another method for improving adhesion, there is
There are methods that add a process of chemically etching the ceramic substrate after sintering, such as Hitachi Chemical's electroless steel plating process for metal additive ceramic wiring boards described in Tsukimo P2O, and Technology, 1986, Vol.

331m2HのP38に記載されている(株)キザイの
無電解メッキ工程のように改良した活性化液を使い、三
段階の活性化を行なう活性化工程と改良したメッキ液を
用いる化学メッキ工程をもつものがある。
It has an activation process that performs three-step activation using an improved activation solution, such as the electroless plating process of Kizai Co., Ltd. described in page 38 of 331m2H, and a chemical plating process that uses an improved plating solution. There is something.

ここで、第5図に示したセラミック基板に前処理を施こ
した従来例について説明する。セラミック基板は電子部
品材料として重要な96%アルミナセラミックを使用す
る。セラミック1は粒子の焼結体であり、第6図(a)
に示す前処理前の断面図のように無数の凹凸や多くの間
隙を有している。
Here, a conventional example in which the ceramic substrate shown in FIG. 5 is subjected to pretreatment will be described. The ceramic substrate uses 96% alumina ceramic, which is an important material for electronic components. Ceramic 1 is a sintered body of particles, as shown in Fig. 6(a).
As shown in the cross-sectional view before pretreatment, it has countless unevenness and many gaps.

一般に無電解メッキによるメッキ膜の密着力は、これら
の凹凸や間隙中にメッキが析出し、アンカー効果を得る
ことによって生じる。そこで第6図(b)に示す前処理
後の断面図のように焼結したセラミック多結晶体の結晶
粒界および粒内を微細に化学エツチングすることによっ
て多くの微細な凹凸2が得られる。この後、セラミック
基板を脱脂洗浄し、メッキの核となるシープ(Pd等反
応触媒金m)を付与(活性化)させ、還元剤の存在下で
ニッケルイオンを析出させる。メッキが終了した状態が
第6f7(c)である。すなわち、化学エツチングの前
処理を行なうことによって引掛かりとなる微細な凹凸2
が多数得られるので、より大きなアンカー効果が得られ
セラミック1とメッキ膜3との密着力が向上する。
In general, the adhesion of a plating film formed by electroless plating is caused by the plating depositing in these unevenness and gaps to obtain an anchor effect. Therefore, many fine irregularities 2 can be obtained by finely chemically etching the grain boundaries and inside of the grains of the sintered ceramic polycrystalline body as shown in the cross-sectional view after pretreatment shown in FIG. 6(b). Thereafter, the ceramic substrate is degreased and cleaned, and a sheep (gold m as a reaction catalyst such as Pd) serving as a nucleus for plating is applied (activated), and nickel ions are precipitated in the presence of a reducing agent. The state in which plating has been completed is 6f7(c). In other words, by performing chemical etching pretreatment, fine irregularities that can become snags are removed.
Since a large number of are obtained, a larger anchor effect is obtained and the adhesion between the ceramic 1 and the plating film 3 is improved.

次にセラミックを化学エツチングすることなく密着力の
優れたメッキ膜を得る方法について説明する。上記した
ように密着力はセラミック表面での凹凸および間隙によ
るアンカー効果により生じるものであるが、この凹凸や
間隙を完全に利用することは第6図(&)に示すように
難しく、上記従来例のように化学エツチングによって得
られた微細な凹凸にもメッキが入り込まず空隙として残
る場合がある。しかし第8図に示すように表面張力の小
さい活性液を使い三段階の活性化処理を行なうと今まで
困難であった微細な凹凸部もある程度活性化できる。こ
の活性化工程はセラーセンシ(商品名)でセラミック表
面を感受性化(Snの吸着)し、次のアクチーセラ(商
品名)で最初の感受性に失敗した部分を再感受性化し、
セラミック表面を均一な感受性状態としセラミック基(
商品名)で活性化(Pd吸着)する。この活性化状態の
セラミック基板を化学メッキ液(ナイフ−〇ER)に漬
けることで浸透性のよい無電解メッキ膜が第7図(b)
に示すように得られ、強いアンカー効果で密着力の高い
セラミック配線基板が得られる。
Next, a method for obtaining a plating film with excellent adhesion without chemically etching ceramic will be explained. As mentioned above, adhesion is caused by the anchor effect due to the unevenness and gaps on the ceramic surface, but it is difficult to fully utilize these unevenness and gaps, as shown in Figure 6 (&), and the above conventional example In some cases, the plating does not penetrate into the fine irregularities obtained by chemical etching and remains as voids. However, as shown in FIG. 8, if a three-step activation process is performed using an activating liquid with a low surface tension, it is possible to activate to some extent even fine irregularities, which have been difficult up to now. In this activation process, the ceramic surface is sensitized (Sn adsorption) with CeraSensi (trade name), and the areas where the initial sensitization failed are re-sensitized with the next ActiCera (trade name).
The ceramic surface is made into a uniform sensitive state and the ceramic base (
Product name) to activate (Pd adsorption). By immersing this activated ceramic substrate in a chemical plating solution (knife-〇ER), an electroless plating film with good permeability is formed as shown in Figure 7 (b).
A ceramic wiring board with strong anchoring effect and high adhesion can be obtained as shown in FIG.

また、その他の方法としてNiを化学メッキしたのちに
セラミック基板′1t250〜300℃で熱処理して密
着強度を高めるものもある。例えば(株)キザイの報告
(実務表面技術、Vo133、m2.1986年、P、
41 )ではメッキのままの密着強度は2.IKf/−
だが、これに250℃で1時間の熱処理を施こすと4.
lKf/−になる例がある。これは熱処理を行なうこと
によりニッケルの結晶化が200℃付近から始まり硬度
が増加する効果によるものと言われている。結晶化温度
はメッキ液に含まれるPやBの含有上により異なり、含
有量の少ない程、低温で最高硬度に達する。
Another method is to chemically plate Ni and then heat treat the ceramic substrate at 250 to 300 DEG C. to increase the adhesion strength. For example, a report by Kizai Co., Ltd. (Practical Surface Technology, Vo133, m2. 1986, P.
41), the adhesion strength as plated is 2. IKf/-
However, when heat treated at 250°C for 1 hour, 4.
There is an example of lKf/-. This is said to be due to the effect that the heat treatment causes nickel crystallization to begin at around 200° C. and increase hardness. The crystallization temperature varies depending on the content of P and B contained in the plating solution, and the lower the content, the lower the temperature and the maximum hardness is reached.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の無電解メッキ方法は、有害な酸やア
ルカリによる化学エツチング工程や複雑な活性化工程に
よって、メッキ膜の密着力を向上させていたが、これら
の工程は複雑な上、労力と時間がかかる等の問題点があ
った。また、上記の無電解メツ千方法によって得られる
密着強度は2.0〜2.5〜/−であり、配線の細線化
に伴ないさらに大きな密層強度を必要としていた。
The conventional electroless plating method described above improves the adhesion of the plating film through a chemical etching process using harmful acids or alkalis and a complicated activation process, but these processes are complex and labor-intensive. There were problems such as the time it took. In addition, the adhesion strength obtained by the above electroless method is 2.0 to 2.5 to /-, and as the wiring becomes thinner, even greater dense layer strength is required.

この発明は上記のような問題点全解消するためになされ
たもので、セラミック基板上に強い密着強度にもつ配線
回路を作ることのできるセラミック基板への無電解メッ
キ方法を得ることを目的とする。
This invention was made to solve all of the above-mentioned problems, and its purpose is to provide an electroless plating method for ceramic substrates that can create a wiring circuit with strong adhesion on the ceramic substrate. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無電解メッキ方法は、セラミック基板上
に導体回路を形成する工程において、セラミック基板表
面に反応触媒金属イオンを吸着させる活性化工程と、セ
ラミック基板面に化学メッキするメッキ工程との間にセ
ラミック基板を還元雰囲気中で熱処理する工程を行なう
ものである。
The electroless plating method according to the present invention includes, in the step of forming a conductor circuit on a ceramic substrate, an activation step in which reaction catalyst metal ions are adsorbed onto the surface of the ceramic substrate, and a plating step in which the surface of the ceramic substrate is chemically plated. In this process, the ceramic substrate is heat treated in a reducing atmosphere.

〔作 用〕[For production]

この発明における無電解メッキ方法において、セラミッ
ク基板を還元雰囲気中で熱処理することは、セラミック
上に吸着したPd等反応触媒金属に対して2L!を類の
作用を及ぼす。第1は温度を上げることによって得られ
るもので、反応触媒金属の拡散を促進し、セラミック表
面近くのオーブンボアや間隙に分布させ、第2の作用は
反応触媒金属の還元によって、より活性な反応触媒金属
にすることができる。
In the electroless plating method of the present invention, heat-treating the ceramic substrate in a reducing atmosphere can reduce the amount of reaction catalyst metal such as Pd adsorbed onto the ceramic by 2L! exerts a similar effect. The first effect is obtained by increasing the temperature, which promotes the diffusion of the reaction catalyst metal and distributes it in the oven bore and interstices near the ceramic surface, and the second effect is by reducing the reaction catalyst metal, which makes the reaction more active. It can be a catalytic metal.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はセラミック基板への無電解メッキ方法の各工程図を
示し、この発明による各工程は、焼成後のセラミック基
板をアルコールで脱脂したのち、セラミック基板をアル
カリ洗浄および酸洗浄を行ない、その後反応触媒金属イ
オンを吸着させ活性化させる。かくしてセラミック基板
を還元雰囲気中で熱処理したのち、化学メッキとアルコ
ール浸漬し、最後に乾燥を行なって終了する。以下、実
施例を詳細に説明する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows each process diagram of an electroless plating method for a ceramic substrate, and each process according to the present invention involves degreasing the fired ceramic substrate with alcohol, then performing alkali cleaning and acid cleaning on the ceramic substrate, and then applying a reaction catalyst. Adsorbs and activates metal ions. After heat-treating the ceramic substrate in a reducing atmosphere, it is then chemically plated, immersed in alcohol, and finally dried. Examples will be described in detail below.

〔実施例1〕 反応触媒金属を表面に吸着させたセラミック基板を、精
密雰囲気炉にセットし、室温の状態で炉内の空気を窒素
ガスに置換する。置換の終了後、水素ガスを炉内に導入
して置換し、100%水素ガスの雰囲気にする。水素ガ
スの流量は9000iの炉心管に対しおよそ3 t/−
にとする。昇温速度は10℃/―で、400℃まで昇温
し、この温度で10分間保持し、15℃/騙の割合で降
温する。上記の還元雰囲気での熱処理を行なうことによ
ってセラミック基板表面に吸着した反応触媒金属を広く
拡散させ、表面近くのオープンボアや間隙にも分布させ
ることができる。また、還元雰囲気中で行なうことによ
り、反応触媒金属が還元され、より活性な反応触媒金属
となる。以上の2つの効果によって還元雰囲気中で熱処
理を行なったセラミック基板に無電解ニッケルメッキを
施こすと第2図に示すようにセラミック1表面近くの数
十ミクロンの深さまでメッキ膜3が析出し、従来例で説
明した第7図(a) 、 (b)と比較しても、より大
きなアンカー効果が生じる。第3図に前処理しないセラ
ミック基板を熱処理した場合をX印とし、しない場合を
○印とした平均引張り強度を示す。強度測定は直径2I
IIIlφの円形パッドに銅ビンを半田付けし、5+m
/Mの引張り速度で行なった。試料数は各条件について
30個とした。この結果、第3図から熱処理を行なう方
が平均引張り強度が2倍近く高いことが判る。
[Example 1] A ceramic substrate having a reaction catalyst metal adsorbed on its surface is set in a precision atmosphere furnace, and the air in the furnace is replaced with nitrogen gas at room temperature. After the replacement is completed, hydrogen gas is introduced into the furnace for replacement to create a 100% hydrogen gas atmosphere. The flow rate of hydrogen gas is approximately 3 t/- for a 9000i core tube.
Totosu. The temperature was raised to 400°C at a rate of 10°C/-, held at this temperature for 10 minutes, and then lowered at a rate of 15°C/-. By performing the heat treatment in the reducing atmosphere described above, the reaction catalyst metal adsorbed on the surface of the ceramic substrate can be widely diffused and distributed even in open bores and gaps near the surface. Furthermore, by carrying out the reaction in a reducing atmosphere, the reaction catalyst metal is reduced and becomes a more active reaction catalyst metal. Due to the above two effects, when electroless nickel plating is applied to a ceramic substrate that has been heat-treated in a reducing atmosphere, a plating film 3 is deposited to a depth of several tens of microns near the surface of the ceramic 1, as shown in FIG. Even when compared with FIGS. 7(a) and 7(b) described in the conventional example, a larger anchor effect is produced. In FIG. 3, the average tensile strength of the ceramic substrate without pretreatment is shown as an X mark when the heat treatment is performed, and an O mark when the ceramic substrate is not pretreated. Strength measurement is diameter 2I
Solder a copper bottle to the circular pad of IIIlφ, and
The test was carried out at a tensile speed of /M. The number of samples was 30 for each condition. As a result, it can be seen from FIG. 3 that the average tensile strength is nearly twice as high when heat treatment is performed.

〔実施例2〕 実施例1の水素中熱処理温度tl−6000Cで行ない
、その他の条件は上記実施例と同一とした。これによれ
ば平均引張り強度は第3図にあるように400℃で処理
したものとあまり差がなかった。
[Example 2] Heat treatment in hydrogen was carried out at the temperature tl-6000C of Example 1, and other conditions were the same as in the above example. According to this, the average tensile strength was not much different from that treated at 400° C. as shown in FIG.

〔実施例3〕 実施例1の水素中熱処理温度を1600℃で行なった。[Example 3] The heat treatment in hydrogen in Example 1 was carried out at a temperature of 1600°C.

この場合には熱処理後の化学メッキでメッキを形成でき
なかった。これは処理温度がパラジウム金属の融点(1
555℃)をこえた温度であるため、セラミック基板表
面に吸着したパラジウムの物性が変化したことと、高温
のためセラミックス中のガラス成分が流動的になり、パ
ラジウムがガラス成分中に取込まれたことによるもので
ある。
In this case, plating could not be formed by chemical plating after heat treatment. This is because the processing temperature is the melting point of palladium metal (1
Because the temperature exceeded 555℃, the physical properties of palladium adsorbed on the ceramic substrate surface changed, and the glass component in the ceramic became fluid due to the high temperature, causing palladium to be incorporated into the glass component. This is due to a number of reasons.

〔実施例4〕 この発明による無電解メッキ方法は、密着力を上げる従
来の無電解メッキ方法と独立して行なえるものであり、
前処理(化学エツチング)を施こし表面に多くの微細な
凹凸をもつセラミック基板に適用したり、三段階の活性
化工程全熱処理前に適用したりすることも可能である。
[Example 4] The electroless plating method according to the present invention can be performed independently of the conventional electroless plating method to increase adhesion.
It is also possible to apply this method to ceramic substrates that have been subjected to pretreatment (chemical etching) and have many fine irregularities on the surface, or to apply it before the full heat treatment in the three-step activation process.

当然これらの無電解メッキ方法を複合して施こしたメッ
キ膜が最も強い密着力を持つことになる。第4図に前処
理をしたセ・ラミック基板に熱処理を加えた試料と加え
ない試料の処理温度と平均引張り強度の関係を示す。こ
の図から判るようにここでも熱処理を行なった方が平均
引張り強度で2倍はど増加している。また第3図と比べ
ると2.5〜3.0倍はど増加していることが明らかで
ある。
Naturally, a plated film formed by combining these electroless plating methods will have the strongest adhesion. FIG. 4 shows the relationship between the treatment temperature and the average tensile strength of pretreated ceramic substrates with and without heat treatment. As can be seen from this figure, the average tensile strength increased by twice when heat treatment was performed. Also, compared to FIG. 3, it is clear that the amount has increased by 2.5 to 3.0 times.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明によれば、前処理を施こし
ていないセラミック基板を使用して、還元雰囲気での熱
処理工程を加えた無電解メッキ方法により、セラミック
基板上に銅、ニッケル等の導体を1.5Kp/−以上の
密着強度で形成することができる。また、従来例と併用
して行なうと密着強度がさらに向上できる。さらに、フ
ッ化アンモニウムで前処理したセラミック基板を使用す
ることにより密着強度は3.0h/−以上を示し、信頼
性の高い強度を有するセラミック配線基板が得られる。
As explained above, according to the present invention, a conductor such as copper or nickel is coated on a ceramic substrate using an electroless plating method that includes a heat treatment process in a reducing atmosphere using a ceramic substrate that has not been pretreated. can be formed with an adhesion strength of 1.5 Kp/- or more. Furthermore, if used in combination with the conventional example, the adhesion strength can be further improved. Further, by using a ceramic substrate pretreated with ammonium fluoride, the adhesion strength is 3.0 h/- or more, and a ceramic wiring board with highly reliable strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるセラミック基板への
無電解メッキ方法の工程図、第2図はセラミックと無電
解メッキ膜との密着状態の断面図、第3図は前処理なし
のセラミック基板を使用した場合の処理温度と平均引張
り強度の特性図、第4図は化学エツチングで前処理を施
こしたセラミック基板を使用した場合の処理温度と平均
引張り強度の特性図、第5図は従来の無電解メッキ方法
の工程図、第6図および第7図は従来における無電解メ
ッキ膜の断面図、第8図は活性化および化学メッキ工程
図である。 1・・・セラミック、2・・・凹凸、3・・・メッキ膜
。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a process diagram of an electroless plating method for a ceramic substrate according to an embodiment of the present invention, Fig. 2 is a sectional view of the state of adhesion between the ceramic and the electroless plating film, and Fig. 3 is a ceramic without pretreatment. Fig. 4 is a characteristic diagram of processing temperature and average tensile strength when using a ceramic substrate pretreated with chemical etching, and Fig. 5 is a characteristic diagram of processing temperature and average tensile strength when using a ceramic substrate pretreated with chemical etching. FIGS. 6 and 7 are cross-sectional views of a conventional electroless plating film, and FIG. 8 is a process diagram of activation and chemical plating. 1...Ceramic, 2...Irregularity, 3...Plating film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック基板上にニッケルの導体回路を形成す
る方法において、 (a)セラミック基板上に付着する油や汚れを溶剤で除
去する脱脂工程と、 (b)(a)の工程後にセラミック基板表面を洗浄にす
るアルカリ、酸洗浄工程と、 (c)(b)の工程後に反応触媒金属イオンをセラミッ
ク基板表面に吸着させる活性化工程と、 (d)(c)の工程後にセラミック基板を還元雰囲気中
で熱処理する熱処理工程と、 (e)(d)の工程後にセラミック基板面に化学メッキ
を行なうメッキ工程と、 (f)(e)の工程後にセラミック基板をアルコール浸
漬と乾燥を行なう工程と、 からなることを特徴とするセラミック基板への無電解メ
ッキ方法。
(1) In the method of forming a nickel conductor circuit on a ceramic substrate, (a) a degreasing step in which oil and dirt adhering to the ceramic substrate are removed using a solvent, and (b) the surface of the ceramic substrate is removed after step (a). (c) After step (b), an activation step to adsorb reaction catalyst metal ions onto the ceramic substrate surface; (d) After step (c), the ceramic substrate is placed in a reducing atmosphere. (e) a plating step in which the surface of the ceramic substrate is chemically plated after the steps (e) and (d); (f) a step in which the ceramic substrate is immersed in alcohol and dried after the steps (e); A method for electroless plating on a ceramic substrate, characterized by comprising:
(2)(d)の熱処理工程において、処理温度をパラジ
ウム融点までとすることを特徴とする特許請求の範囲第
1項記載のセラミック基板への無電解メッキ方法。
(2) A method for electroless plating on a ceramic substrate according to claim 1, wherein in the heat treatment step (d), the treatment temperature is set to a temperature up to the melting point of palladium.
(3)(d)の熱処理工程において、雰囲気ガスを水素
とすることを特徴とする特許請求の範囲第1項記載のセ
ラミック基板への無電解メッキ方法。
(3) The method for electroless plating on a ceramic substrate according to claim 1, wherein in the heat treatment step (d), the atmospheric gas is hydrogen.
JP10360686A 1986-05-06 1986-05-06 Nonelectrolytic plating of ceramic board Pending JPS62260388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10360686A JPS62260388A (en) 1986-05-06 1986-05-06 Nonelectrolytic plating of ceramic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10360686A JPS62260388A (en) 1986-05-06 1986-05-06 Nonelectrolytic plating of ceramic board

Publications (1)

Publication Number Publication Date
JPS62260388A true JPS62260388A (en) 1987-11-12

Family

ID=14358430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10360686A Pending JPS62260388A (en) 1986-05-06 1986-05-06 Nonelectrolytic plating of ceramic board

Country Status (1)

Country Link
JP (1) JPS62260388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163061A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Wiring board, electronic device, and electronic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163061A1 (en) * 2022-02-25 2023-08-31 京セラ株式会社 Wiring board, electronic device, and electronic module

Similar Documents

Publication Publication Date Title
JP6469657B2 (en) Novel adhesion promoter for metallization of substrate surface
US5058799A (en) Metallized ceramic substrate and method therefor
JPS634075A (en) Formation of seed for electroless plating
JPS6227393A (en) Formation of copper film on ceramic substrate
JPS63203775A (en) Plating treatment of substrate
US4066809A (en) Method for preparing substrate surfaces for electroless deposition
EP0446522B1 (en) Electroless copper plating process
JP2003013249A (en) Gold substitution plating solution
JPS62260388A (en) Nonelectrolytic plating of ceramic board
JPS583962A (en) Stress free nickel layer formation
JPS63227784A (en) Method for providing electroless plating catalyst
JPH02294486A (en) Electroless plating method
US6773760B1 (en) Method for metallizing surfaces of substrates
TWI688674B (en) Liquid crystal polymer metallization method
JPS63256588A (en) Electroless plating process for ceramic substrate
JP4012968B2 (en) Electroless plating method and product on smooth substrate
JPS62260788A (en) Electroless plating process to ceramic substrate
JP2000244084A (en) Wiring board
US5198264A (en) Method for adhering polyimide to a substrate
EP1953262A1 (en) Catalyst treatment method, electroless plating method, and method for formation of circuit by using the electroless plating method
JPH05148658A (en) Electroless tin plating method
JPH04180572A (en) Method for electroless plating
KR20050072367A (en) Electress plating method low temperature simultaneous plasticity of ceramic substrate
JPH0337319B2 (en)
JP3801334B2 (en) Semiconductor device mounting substrate and manufacturing method thereof