JPS61238966A - Wet chemical method for obtaining metal layer - Google Patents

Wet chemical method for obtaining metal layer

Info

Publication number
JPS61238966A
JPS61238966A JP61082434A JP8243486A JPS61238966A JP S61238966 A JPS61238966 A JP S61238966A JP 61082434 A JP61082434 A JP 61082434A JP 8243486 A JP8243486 A JP 8243486A JP S61238966 A JPS61238966 A JP S61238966A
Authority
JP
Japan
Prior art keywords
particles
layer
metal layer
electrolyte
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61082434A
Other languages
Japanese (ja)
Other versions
JPH0233788B2 (en
Inventor
ローベルト・オストヴアルト
ラインハルト・シエードルバウアー
ガブリエレ・フオイト
アウグスト‐エフ・ボーゲンシユツツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Publication of JPS61238966A publication Critical patent/JPS61238966A/en
Publication of JPH0233788B2 publication Critical patent/JPH0233788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は、金属層を、基板の清浄化されかつできるだけ
粗面化された表面上に金属層を析出させることにより湿
式化学的に得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application: The present invention relates to a method for obtaining a metal layer wet-chemically by depositing the metal layer on a cleaned and as roughened surface of a substrate. .

従来技術: 種々の、また非金属の基板材料は、特定の機能的又は装
飾的性質を達成するために金属層が設けられている。更
に、この基板材料は、後加工又は実際的使用の際に多種
多様に耐用性でなければならない。殊に、基板材料と金
属層との間で十分に高度に安定に付着することは、実際
の使用に対して根本的な前提条件である。この付着は、
なかんずく高い温度による熱応力の際又は熱交換の際に
起こりうる高い機械的負荷の場合にも十分でなければな
らない。
Prior Art: Various and non-metallic substrate materials have been provided with metallic layers to achieve specific functional or decorative properties. Furthermore, this substrate material must be durable in a wide variety of post-processing or practical applications. In particular, a sufficiently high degree of stable adhesion between the substrate material and the metal layer is a fundamental prerequisite for practical use. This adhesion is
It must also be sufficient in the case of high mechanical loads, which may occur in particular during thermal stress due to high temperatures or during heat exchange.

一般に、非金属基板に対する金属層の付着強さは、例え
ばそれが軟ロウのロウ付けの場合に起こるような熱応力
時に金属層の気泡形勢を阻止することができる程には十
分に高くはない。
In general, the adhesion strength of a metal layer to a non-metallic substrate is not high enough to be able to prevent bubble formation of the metal layer during thermal stress, as occurs, for example, in the case of soft solder brazing. .

この理由から現在絶縁体をメッキする際の熱応力時に金
属層を得るには、例えば真空蒸着技術、陰極スパッタリ
ング技術又はCVD−技術のように専ら不随的に費用が
かかる、経済性の乏しい方法がこれに当てはまる。
For this reason, it is currently possible to obtain a metal layer during thermal stresses when plating insulators only by additionally expensive and uneconomical methods, such as, for example, vacuum evaporation techniques, cathode sputtering techniques or CVD techniques. This applies.

発明が解決しようとする問題点: 本発明の課題は、殊に電気絶縁基板上に、殊に電気的技
術において通例の軟ロウによるロウ付は過程によって、
できるだけ高い付着強さを有しかつ熱的に負荷しうる、
経済的に製造しうる湿式化学的メッキを生ぜしめるとい
うL記概念の方法を記載することである。
Problem to be Solved by the Invention: The problem to be solved by the invention is that, in particular, brazing with soft solder, which is customary in electrical technology, is performed on an electrically insulating substrate by a process.
having the highest possible bond strength and being thermally loadable;
The purpose of the present invention is to describe a method of the L concept to produce wet chemical plating that can be produced economically.

問題点を解決するための手段 この課題は、 一金属層として少なくとも1つの導電性の気体透過性及
び蒸気透過性の層を、本質的に無機成分を含存する少な
くとも1つの電解液から析出させ、 −この層を少なくとも1回の熱処理に、層中に埋蔵され
ている電解液の揮発性成分が除去されるように暴露する
ことによって解決される。有利な実施態様及び他の形成
は、特許請求の範囲第2項から第17項までのいずれか
1項から認めることができる。
Means for solving the problem The object consists in depositing at least one electrically conductive gas-permeable and vapor-permeable layer as a single metal layer from at least one electrolyte solution containing essentially inorganic components; - solved by exposing this layer to at least one heat treatment in such a way that volatile components of the electrolyte embedded in the layer are removed. Advantageous embodiments and further developments can be discerned from the claims 2 to 17.

本発明は、基板と金属層との間の機械的応力が熱膨張挙
動における差のみに帰因するのでなく、材料それ自体の
変化及び材料間でのガス状析出にも帰因するという認識
に基づく。すなわち、金属を電気メッキする際に多少と
も大量の水素及び種々の、多くの場合に有機の電解液−
添加剤は、金属層中に一緒に導入される。また、電解液
残分及び/又は水残分は、析出の間に、殊に粗面化した
基板上に埋蔵される。これら全ての物質は、使用した温
度に応じ脱離、蒸発及び/又は分解によって高いガス圧
を惹起し、このガス圧は、金属層を破壊することなしに
ガスを拡散させるか又は他に搬出させることによって減
少させることができるか、或はこのガス圧により層は基
板材料と多少とも大きい面積で分離される。付着強さが
良好であればあるほど、使用される温度はいっそう高く
ともよい。できるだけ高い温度は、殊にロウ付は過程及
び溶接過程にとって重要である。
The present invention recognizes that the mechanical stress between the substrate and the metal layer is not only due to differences in thermal expansion behavior, but also to changes in the materials themselves and to gaseous precipitation between the materials. Based on. That is, when electroplating metals, more or less large amounts of hydrogen and various, often organic, electrolytes are used.
Additives are co-introduced into the metal layer. Also, electrolyte residues and/or water residues are buried during the deposition, especially on the roughened substrate. All these substances, depending on the temperature used, give rise to high gas pressures by desorption, evaporation and/or decomposition, which allow the gas to diffuse or be carried away without destroying the metal layer. This gas pressure can be reduced by separating the layer from the substrate material over a more or less large area. The better the adhesion strength, the higher the temperature used may be. A temperature as high as possible is important, especially for brazing and welding processes.

本発明は、殊にセラミック基板上に気泡を含まない湿式
化学的銅メッキを生ぜしめ、この気泡を含まない湿式化
学的銅メッキの付着強さは、約280℃及び約20秒間
のロウ付は時間で例えば軟ロウをロウ付けする過程の場
合に保持されたままであるか又は400℃で約5秒間硬
ロウをロウ付けする過程の場合にも保持されたままであ
る。
The present invention specifically produces a bubble-free wet chemical copper plating on a ceramic substrate, and the adhesion strength of the bubble-free wet chemical copper plating is determined by brazing at about 280° C. for about 20 seconds. For example, it remains retained during the process of brazing with soft solder or during the process of brazing hard solder at 400° C. for about 5 seconds.

実施例: 次に、本発明を実施例につき詳説する:例1 約0.6 mmの厚さを有する酸化アルミニウム(AQ
、o399.5%)からなるセラミック基板から水酸化
ナトリウム溶融液中への浸漬によって公知方法でガラス
状の“焼は付き膜”を除去し、このセラミック基板を超
音波を用いて脱イオン水中で徹底的に洗浄する。塩化錫
(II)の溶液中、水中及び塩化パラジウムの溶液中で
の順次の処理ならびに脱イオン水中での最後の洗浄によ
って公知方法により化学的に無電流の金属析出に接触的
に作用する芽晶層をセラミック表面上に生成させる。こ
のセラミック表面上に現在市販されている化学的銅浴か
ら厚さ約0.3μの銅−基層を付着させる。引続き、こ
の層を次の組成の電解液から約2μの銅に電気メッキよ
り前強化する: 二燐酸銅         1(10g/f2二燐酸カ
リウム      280g/ f2硝酸カリウム  
      15g/Q濃アンモニア溶液      
2mQ/Q付着を8.7のpH価、60℃の浴温度及び
2A/dm2の電流密度で実施する。この層を脱イオン
水中での洗浄後に乾燥し、かつ窒素雰囲気下で300℃
で15分間熱処理する。その後に、前記浴から約15μ
の全層厚に強化する。この銅層を400℃で窒素雰囲気
下で10分間熱処理する。この銅層は、気泡を含まず、
申し分のない外観を呈する。金属ストリップをフォトエ
ツチング技術により得た後、この銅層は、約0.5N/
mmの剥離力でセラミック表面と分離することかできる
Examples: The invention will now be explained in more detail with examples: Example 1 Aluminum oxide (AQ) having a thickness of about 0.6 mm
, O399.5%) is immersed in a sodium hydroxide melt to remove the glassy "burn-on film" by a known method, and then the ceramic substrate is soaked in deionized water using ultrasonic waves. Clean thoroughly. The spores are chemically catalyzed on the currentless metal deposit by known methods by successive treatments in a solution of tin(II) chloride, in water and in a solution of palladium chloride and a final wash in deionized water. A layer is produced on the ceramic surface. A copper-base layer approximately 0.3 microns thick is deposited onto this ceramic surface from a currently commercially available chemical copper bath. Subsequently, this layer is pre-strengthened by electroplating to approximately 2 μ of copper from an electrolyte of the following composition: Copper diphosphate 1 (10 g/f2 potassium diphosphate 280 g/f2 potassium nitrate)
15g/Q concentrated ammonia solution
2 mQ/Q deposition is carried out at a pH number of 8.7, a bath temperature of 60° C. and a current density of 2 A/dm2. This layer was washed in deionized water and then dried at 300 °C under a nitrogen atmosphere.
Heat-treat for 15 minutes. Thereafter, approximately 15μ of water is removed from the bath.
Strengthen to full thickness. This copper layer is heat treated at 400° C. in a nitrogen atmosphere for 10 minutes. This copper layer does not contain air bubbles,
Presents an impeccable appearance. After obtaining the metal strip by photoetching technique, this copper layer is approximately 0.5N/
It can be separated from the ceramic surface with a peeling force of mm.

例2: 酸化アルミニウムからなるセラミック基板を例1の場合
と同様に前処理し、科学的に無電流で析出することによ
って銅−基層を設ける。約15μの層厚にで電気メッキ
により強化することは、次の組成を何する電解液から行
なわれるフルオロ硼酸銅     2409/Qフルオ
ロ硼酸       209/ρ硼酸        
  209/σ 1))T = t、。
Example 2: A ceramic substrate made of aluminum oxide is pretreated as in Example 1 and provided with a copper base layer by chemical currentless deposition. Reinforcement by electroplating to a layer thickness of approximately 15μ is carried out from an electrolyte having the following composition: copper fluoroborate 2409/Q fluoroboric acid 209/ρ boric acid
209/σ 1)) T = t,.

付加的に微粒状酸化アルミニウム59/Q(この粒径は
IOμ未満、特に1μ〜 5μの範囲内にある。)を強
力に攪拌することによって電解液中に懸濁させる。付着
は、30℃及び5A/ d m 2の電流密度で行なわ
れる。銅層は、均一な絹マットの外観を呈し、窒素雰囲
気下で4゜Oμで20分間の熱応力後に0.6N/mm
の剥離力を有し7、かつ気泡を含んでいない。
Additionally, finely divided aluminum oxide 59/Q, the particle size of which is less than IOμ, in particular in the range from 1μ to 5μ, is suspended in the electrolyte by vigorous stirring. Deposition is carried out at 30 °C and a current density of 5 A/d m2. The copper layer exhibits a uniform silk matte appearance and is 0.6 N/mm after thermal stressing at 4°Oμ for 20 minutes under nitrogen atmosphere.
It has a peeling force of 7 and does not contain air bubbles.

例3: セラミック基板を例1の場合と同様に前処理し、かつ銅
−基層を設ける。例1の銅電解液に濃アンモニア溶液の
代りに1%の水酸化カワラム溶液をpH価が87になる
まで滴加する。電解液は、基材の燐酸銅からのコロイド
によって乳白色に混蜀する。基板をこの電解液中で60
℃及び2 A、 / 4m2の電流密度で絶え間なく1
5μの全層厚に強化する。銅層は、絹マットの外観を呈
し、窒素雰囲気下で400 ’Cで20分間の熱応力後
に気泡を含まず、かつ0.5N/mm2の剥離力を示す
Example 3: A ceramic substrate is prepared as in Example 1 and provided with a copper base layer. Instead of the concentrated ammonia solution, a 1% hydroxide kawaram solution is added dropwise to the copper electrolyte of Example 1 until the pH value is 87. The electrolyte has a milky white color due to colloids from the base copper phosphate. The substrate was placed in this electrolyte for 60 minutes.
1 °C and 2 A, continuously at a current density of /4 m2
Reinforced to a total thickness of 5μ. The copper layer has the appearance of a silk mat, is bubble-free after thermal stressing at 400'C for 20 minutes under nitrogen atmosphere, and exhibits a peel force of 0.5 N/mm2.

例4: 約0.6 mmの厚さを有する酸化アルミニウム (A
120399,5%)からなるセラミック基板から水酸
化ナトリウム溶液中への浸漬によって公知方法でガラス
状の“焼は付き膜”を除去し、このセラミック基板を超
音波を用いて脱イオン水中で徹底的に洗浄する。塩化錫
(II)の溶液中、水中及び塩化パラジウム溶液中での
順次の処理ならびに脱イオン水中での最後の洗浄によっ
て公知方法により科学的に無電流の金属析出に接触的に
作用する芽晶層をセラミック表面上に生成させる。この
セラミック表面上に現在市販されている科学的銅浴から
厚さ約0.2μの銅−基層を付着させる。引続き、この
銅−基層を、10μ未満の粒径及び約15g#2の濃度
を有する黒鉛からの粒子が懸濁されている、現在市販さ
れている常用の電気メッキ硫酸銅浴中で約5μの全層厚
に強化する。暗色マットの外観を呈する生成された銅層
を水素雰囲気下で約400°Cの温度で約10分間灼熱
する。引続く顕微鏡検査で銅層中に気泡は全く見い出だ
せない。
Example 4: Aluminum oxide (A
120399, 5%) by immersion in a sodium hydroxide solution to remove the glassy "scorch film" in a known manner, and the ceramic substrate was thoroughly soaked in deionized water using ultrasonic waves. Wash. A spore layer catalytically acted upon in a chemically current-free metal deposition by means of known methods by successive treatments in a solution of tin(II) chloride, in water and in a palladium chloride solution and a final wash in deionized water. is produced on the ceramic surface. A copper-base layer approximately 0.2 microns thick is deposited onto this ceramic surface from a currently commercially available chemical copper bath. This copper-base layer is then coated in a conventional electroplating copper sulfate bath, currently commercially available, in which particles of graphite having a particle size of less than 10 microns and a concentration of about 15 g #2 are suspended. Reinforce to full thickness. The copper layer produced, which has a dark matte appearance, is annealed under a hydrogen atmosphere at a temperature of about 400° C. for about 10 minutes. Subsequent microscopic examination reveals no air bubbles in the copper layer.

例5: 酸化アルミニウムからのセラミック基板を例1の場合と
同様に前処理し、かつ化学的に無電流で厚さ約0.2μ
の銅−基層を設ける。引続き、この銅−基層を、濃度が
約10g/&であるポリアクリル酸エステルを含有しか
つ現在“アクロナール(Acronal)4 F”の商
品名で入手しうる分散液−調製物の添加下に生成される
粒子が懸濁されている、現在市販されている電気メッキ
銅浴から約7μの層厚に強化する。銅層は、綱マットの
外観を呈し、かつ窒素雰囲気下で約400℃の温度で1
0分間の熱処理(熱による後処理)後に全く気泡を示し
ていない。
Example 5: A ceramic substrate made of aluminum oxide was pretreated as in Example 1 and chemically current-free to a thickness of approximately 0.2μ.
A copper base layer is provided. This copper base layer was subsequently produced with the addition of a dispersion preparation containing polyacrylic esters with a concentration of approximately 10 g/& and currently available under the trade name "Acronal 4 F". from a currently commercially available electroplating copper bath in which the particles are suspended to a layer thickness of about 7 microns. The copper layer has the appearance of a wire mat and is heated at a temperature of about 400°C under a nitrogen atmosphere.
No bubbles are shown after 0 minutes of heat treatment (thermal post-treatment).

本発明は、記載した実施例に限定されるものではなく、
意味上同じようにさらに使用することか仕きる。すなわ
ち、例えば前記のA(2203−粒子の代りに金属層に
5iOz 、Si3N4又はSiCからの粒子を埋蔵さ
せることもできる。
The invention is not limited to the examples described;
It can also be used in the same way in meaning. Thus, for example, instead of the A(2203-particles) mentioned above, particles of 5iOz, Si3N4 or SiC can also be embedded in the metal layer.

Claims (1)

【特許請求の範囲】 1、金属層を、基板の清浄化されかつできるだけ粗面化
された表面上に金属層を付着させることにより湿式化学
的に得る方法において、金属層として少なくとも1つの
導電性の気体透過性及び蒸気透過性の層を、本質的に無
機成分を含有する少なくとも1つの電解液から析出させ
、この層を少なくとも1回の熱処理に、層中に埋蔵され
ている電解液の揮発性成分が除去されるように暴露する
ことを特徴とする、金属層を湿式化学的に得る方法。 2、金属層を少なくとも2つの導電性の気体透過性及び
蒸気透過性の層からなる連続層として付着させ、それぞ
れの層の付着後に層中に埋蔵されている揮発性成分が除
去されるように熱処理を実施する、特許請求の範囲第1
項記載の方法。 3、電解液は融点が200Kよりも高い微粒状無機粒子
を含有し、この粒子は電解液からの析出の際に導電性層
が気体透過性及び蒸気透過性になるようにこの導電性層
中に埋蔵される、特許請求の範囲第1項又は第2項記載
の方法。 4、導電性層を必要とされる気体透過性及び蒸気透過性
が保証される層厚で付着させる特許請求の範囲第1項か
ら第3項までのいれか1項記載の方法。 5、電解液はSO_4、PO_4、P_2O_7、CN
^−、Cl^−、BF_4^−及び/又はNH_2SO
_3^−の少なくとも1つのアニオンを含有する、特許
請求の範囲第1項から第4項までのいずれか1項記載の
方法。 6、電解液は直径が10μよりも小さい無機のコロイド
状粒子を含有する、特許請求の範囲第1項から第5項ま
でのいずれか1項記載の方法。 7、電解液は直径が1μよりも小さい無機のコロイド状
粒子を含有する、特許請求の範囲第1項から第6項まで
のいずれか1項記載の方法。 8、粒子を調節可能な濃度比に基づき及び/又は調節可
能なpH価に基づいて電解液内で発生させる、特許請求
の範囲第1項から第7項までのいずれか1項記載の方法
。 9、有利に熱による後処理によつて粒子を金属層中で付
着させる、特許請求の範囲第1項から第8項までのいず
れか1項記載の方法。 10、基板は本質的にセラミックからなり、このセラミ
ック上に析出された金属層は本質的に銅を含有し、この
金属層中に直径が10μ未満であり約5%の濃度を有す
るセラミック粒子が埋蔵されている、特許請求の範囲第
1項から第9項までのいずれか1項記載の方法。 11、電気メッキ浴中に粒子を懸濁させ、このメッキ浴
から粒子が埋蔵されている金属層を析出させ、この金属
層中に埋蔵された粒子の容量を物理的化学的後処理によ
つて減少させる特許請求の範囲第1項第10項までのい
ずれか1項記載の方法。 12、メッキ浴中に直径が0.1μ〜20μの範囲内に
ある粒子を懸濁させる、特許請求の範囲第1項から第1
1項までのいずれか1項記載の方法。 13、基板上に先に接着剤層ないしは付着仲介層により
直径が0.1μ〜20μの範囲内にある粒子を施し、次
にこの粒子上に湿式化学的にメッキ層を付着させる、特
許請求の範囲第1項から第12項までのいずれか1項記
載の方法。 14、粒子は炭素及び/又は無機成分ないしは有機成分
を含有する、特許請求の範囲第1項から第13項までの
いずれか1項記載の方法。 15、粒子の容量を物理的化学的後処理の間に本質的に
選択される溶解及び/又は分解及び/又は昇華によつて
減少させる、特許請求の範囲第1項から第14項までの
いずれか1項記載の方法。 16、物理的化学的後処理は本質的に、粒子の容量を分
解及び/又は蒸発及び/又は昇華によつて減少させるよ
うな熱的後処理からなる、特許請求の範囲第1項から第
15項までのいずれか1項記載の方法。 17、物理的化学的後処理において粒子の容量を減少さ
せるためにレドックス反応を使用する特許請求の範囲第
1項から第16項記載の 方法。
[Claims] 1. A method for obtaining a metal layer wet-chemically by depositing the metal layer on a cleaned and as roughened surface of a substrate, in which at least one electrically conductive layer is used as the metal layer. a gas-permeable and vapor-permeable layer is deposited from at least one electrolyte containing essentially inorganic components, and this layer is subjected to at least one heat treatment for volatilization of the electrolyte embedded in the layer. A method for obtaining a metal layer wet-chemically, characterized by exposure in such a way that the sexual components are removed. 2. Depositing the metal layer as a continuous layer consisting of at least two electrically conductive gas-permeable and vapor-permeable layers, such that volatile components embedded in the layer are removed after deposition of each layer. Claim 1, which performs heat treatment
The method described in section. 3. The electrolyte contains fine inorganic particles with a melting point higher than 200K, and these particles are incorporated into the conductive layer so that it becomes gas and vapor permeable upon precipitation from the electrolyte. The method according to claim 1 or 2, embedded in 4. A method according to any one of claims 1 to 3, in which the electrically conductive layer is deposited in a layer thickness that ensures the required gas and vapor permeability. 5. Electrolytes are SO_4, PO_4, P_2O_7, CN
^-, Cl^-, BF_4^- and/or NH_2SO
5. The method according to any one of claims 1 to 4, comprising at least one anion of _3^-. 6. The method according to any one of claims 1 to 5, wherein the electrolyte contains inorganic colloidal particles having a diameter of less than 10 μm. 7. The method according to any one of claims 1 to 6, wherein the electrolyte contains inorganic colloidal particles having a diameter of less than 1 μm. 8. Process according to any one of claims 1 to 7, characterized in that the particles are generated in the electrolyte on the basis of an adjustable concentration ratio and/or on the basis of an adjustable pH value. 9. The method as claimed in claim 1, wherein the particles are deposited in the metal layer, preferably by thermal post-treatment. 10. The substrate consists essentially of a ceramic, and the metal layer deposited on the ceramic contains essentially copper, in which ceramic particles having a diameter of less than 10 μm and a concentration of about 5% are present. A method according to any one of claims 1 to 9, wherein the method is buried. 11. Suspending the particles in an electroplating bath, depositing a metal layer in which the particles are embedded from the electroplating bath, and reducing the volume of the particles embedded in the metal layer by physical-chemical post-treatment. A method according to any one of claims 1 to 10 for reducing. 12. Claims 1 to 1, in which particles having a diameter within the range of 0.1 μ to 20 μ are suspended in the plating bath.
The method described in any one of items up to item 1. 13. Particles having a diameter within the range of 0.1 μm to 20 μm are first applied on the substrate by an adhesive layer or an adhesion mediating layer, and then a plating layer is deposited on the particles by wet chemical method. The method according to any one of the ranges 1 to 12. 14. The method according to any one of claims 1 to 13, wherein the particles contain carbon and/or an inorganic component or an organic component. 15. Any of claims 1 to 14, wherein the volume of the particles is reduced by essentially selected dissolution and/or decomposition and/or sublimation during physical-chemical post-treatment. or the method described in item 1. 16. The physicochemical post-treatment essentially consists of a thermal post-treatment such that the volume of the particles is reduced by decomposition and/or evaporation and/or sublimation. The method described in any one of the preceding paragraphs. 17. A method according to claims 1 to 16, in which a redox reaction is used to reduce the volume of the particles in a physical-chemical post-treatment.
JP8243486A 1985-04-13 1986-04-11 KINZOKUSOOSHITSUSHIKIKAGAKUTEKINIURUHOHO Expired - Lifetime JPH0233788B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19853513266 DE3513266A1 (en) 1985-04-13 1985-04-13 Process for the wet-chemical preparation of a metal layer
DE3513266.3 1985-04-13
DE3518767.0 1985-05-24

Publications (2)

Publication Number Publication Date
JPS61238966A true JPS61238966A (en) 1986-10-24
JPH0233788B2 JPH0233788B2 (en) 1990-07-30

Family

ID=6267918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8243486A Expired - Lifetime JPH0233788B2 (en) 1985-04-13 1986-04-11 KINZOKUSOOSHITSUSHIKIKAGAKUTEKINIURUHOHO

Country Status (2)

Country Link
JP (1) JPH0233788B2 (en)
DE (1) DE3513266A1 (en)

Also Published As

Publication number Publication date
JPH0233788B2 (en) 1990-07-30
DE3513266A1 (en) 1986-10-23

Similar Documents

Publication Publication Date Title
US5190796A (en) Method of applying metal coatings on diamond and articles made therefrom
US4913784A (en) Process for metallizing a ceramic substrate
KR960030457A (en) METHOD FOR MANUFACTURING POROUS MATERIAL, METHOD FOR MANUFACTURING ELECTRODE SUBSTRATE FOR BATTERY,
EP0035626A1 (en) Improved electroless plating process for glass or ceramic bodies
JP4159897B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JPS6227393A (en) Formation of copper film on ceramic substrate
US5730853A (en) Method for plating metal matrix composite materials with nickel and gold
Ogutu et al. Hybrid method for metallization of glass interposers
JPS61197488A (en) Formation of copper electrode on aluminum nitride
US4975160A (en) Process for wet chemical metallization of a substrate
JPS61238966A (en) Wet chemical method for obtaining metal layer
JPH0694593B2 (en) Electroless nickel plating on anodized aluminum
JPH10298788A (en) Tarnishing preventing solution for copper or copper alloy and tarnishing preventing method therefor
JP3567539B2 (en) Electronic component substrate and method of manufacturing the same
JP4090602B2 (en) Plated ceramic / metal composite material and method for producing the same
US6737173B2 (en) Pretreating method before plating and composites having a plated coat
JP3560764B2 (en) Etching solution for polyamide resin
JP3766411B2 (en) Surface-treated Al plate excellent in solderability, heat sink using the same, and method for producing surface-treated Al plate excellent in solderability
JPH05160551A (en) Method of manufacturing electronic part mounting aluminum nitride board
JPH01301866A (en) Formation of metallic layer on aluminum nitride surface
JPH06200396A (en) Manufacture of metal-coated polyimide substrate
JPH07192529A (en) Thick film copper composition for thick conductive coating formation with high plating resistance
JPH01169990A (en) Substrate for mounting surface
JPS6150920B2 (en)
JPS593076A (en) Method of bonding ceramic member and metal