JPS63255312A - Method for refining in converter - Google Patents

Method for refining in converter

Info

Publication number
JPS63255312A
JPS63255312A JP8904487A JP8904487A JPS63255312A JP S63255312 A JPS63255312 A JP S63255312A JP 8904487 A JP8904487 A JP 8904487A JP 8904487 A JP8904487 A JP 8904487A JP S63255312 A JPS63255312 A JP S63255312A
Authority
JP
Japan
Prior art keywords
slag
refining
treatment
executed
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8904487A
Other languages
Japanese (ja)
Inventor
Seiichi Masuda
誠一 増田
Toru Matsuo
亨 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8904487A priority Critical patent/JPS63255312A/en
Publication of JPS63255312A publication Critical patent/JPS63255312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To facilitate melting of steel kind having comparatively high Mn and low S steel and to remarkably improve the yield, by executing oxidizing refining of dephosphorization and decarbonization to molten iron and next executing recovery of Fe and/or Mn and desulfurization by reducing refining. CONSTITUTION:The dephosphorizing treatment to less than the presetting P content for the product and next the decarbonizing refining to the prescribed C content are executed to the molten iron after tapping off from a blast furnace. Slag making agents of Fe-Si series reducing agent, lime, fluorite, etc., are charged, and the reducing refining is executed by gas stirring, and oxides of Fe and/or Mn, etc., generated or charged at the decarbonizing refining process, are reduced and recovered, and also desulfurizing treatment is executed. Then, slag basicity (CaO/SiO2) is to come at least more than 1.7, in order to obtain recovery of Mn and Fe in the slag and the desulfurizing treatment. By this method, all available elements from the discharging slag in a converter are recovered, and reduction of ferro-manganese consumption and the desulfurizing treatment can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉出銑後の精錬プロセスを酸化精錬と還元精
錬とに分離してFe、 Mn等の回収並びに脱硫処理を
効率的に行うことを可能とした転炉精錬方法に関する。
[Detailed description of the invention] [Industrial application field] The present invention separates the refining process after blast furnace tapping into oxidation refining and reduction refining to efficiently recover Fe, Mn, etc. and desulfurization treatment. This invention relates to a converter refining method that makes it possible.

C従来技術〕 高炉出銑後、溶銑を生石灰系造滓剤を用いた予備処理過
程で脱燐し、その後の転炉吹錬での脱燐処理を軽減し、
これに代わって転炉吹錬においてMn鉱石を投入し、有
効な合金元素であるMnを溶融還元により溶鋼に安価に
添加することが試みられている。例えば操業条件の制御
によってMn回収率を高める方法(特公昭61−159
23号)、或いはスラグ中に還元剤を投入し、Mn回収
を図る方法(特開昭60−238408号)等が既に提
案されている。
C Prior Art] After blast furnace tapping, the hot metal is dephosphorized in a preliminary treatment process using a quicklime-based slag-forming agent, and the subsequent dephosphorization process in the converter blowing process is reduced.
Instead, attempts have been made to introduce Mn ore in converter blowing and to add Mn, which is an effective alloying element, to molten steel at low cost by melt reduction. For example, a method to increase the Mn recovery rate by controlling operating conditions (Japanese Patent Publication No. 61-159
No. 23), or a method of injecting a reducing agent into the slag to recover Mn (Japanese Patent Application Laid-open No. 60-238408) has already been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが溶銑予備処理で用いる生石灰系造滓剤は脱硫反
応が低く、脱硫率は50%程度にすぎず、しかも脱燐率
の向上を図ると逆に脱硫能力が低下するという関係にあ
る。このため近年の如く低硫黄含有量を要求される鋼種
の場合、脱燐処理の前又は後に脱硫処理を行うこととな
るが、脱燐及び脱炭処理が酸化精錬であるのに対し脱硫
処理は還元精錬であるため、その後の脱燐、脱炭処理に
おいて脱硫スラグからの復硫黄現象が生じて、極低硫黄
銅等の溶製に問題が生じていた。
However, the quicklime-based slag forming agent used in hot metal pretreatment has a low desulfurization reaction, with a desulfurization rate of only about 50%, and furthermore, when an attempt is made to improve the dephosphorization rate, the desulfurization ability decreases. For this reason, in the case of steel types that require low sulfur content as in recent years, desulfurization treatment is performed before or after dephosphorization treatment, but while dephosphorization and decarburization treatment are oxidation refining, desulfurization treatment is Because it is a reduction refining process, resulfurization occurs from the desulfurization slag during the subsequent dephosphorization and decarburization treatments, causing problems in the melting of ultra-low sulfur copper and the like.

また前述したスラグ中のMn回収を図る際、還元物質と
してコークス等の炭材が用いられるが、コ−クスの使用
は溶鋼中の硫黄量を増大させることとなるためコークス
自体の使用量が制限を受け、Mn回収を図るうえでの大
きな障害となっていた。
Furthermore, when attempting to recover Mn from the slag mentioned above, carbonaceous materials such as coke are used as reducing substances, but since the use of coke increases the amount of sulfur in molten steel, the amount of coke itself used is limited. This has become a major obstacle in efforts to recover Mn.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは高炉出銑後の精錬プロセスを、酸化
精錬と還元精錬に分離し、脱燐。
The present invention was made in view of the above circumstances, and its purpose is to separate the refining process after blast furnace tapping into oxidation refining and reduction refining, and to dephosphorize it.

脱炭の酸化精錬を行い、次いで還元精錬により鋼に有効
な成分元素であるMn等の回収、脱酸或いは酸化損失し
た鉄分等の回収、並びに脱硫処理をも行い得る転炉精錬
方法を提供するにある。
To provide a converter refining method capable of performing oxidation refining for decarburization, and then performing reduction refining to recover Mn, etc., which is an effective component element for steel, recover iron, etc. lost by deoxidation or oxidation, and also perform desulfurization treatment. It is in.

c問題点を解決するための手段〕 本発明にあっては、予め成品燐濃度以下まで脱燐処理を
行った溶銑に所定炭濃度となるまで脱炭精錬を施した後
、これに還元剤、造滓剤を投入し、スラグ塩基度(Ca
O/SiO□)を1.7以上として前記脱炭精錬過程に
おいて生成又は投入したFe及び/又はMn等の酸化物
を還元回収すると共に、脱硫処理を行う。
Means for Solving Problem c] In the present invention, after decarburizing and refining hot metal that has been previously dephosphorized to below the product phosphorus concentration to a predetermined coal concentration, a reducing agent, Add the slag forming agent and adjust the slag basicity (Ca
O/SiO□) is set to 1.7 or more to reduce and recover oxides such as Fe and/or Mn produced or introduced in the decarburization refining process, and also performs a desulfurization treatment.

〔作用〕[Effect]

本発明はこれによって転炉排出スラグより有効成分を全
て回収し、Mn合金鉄の削減、脱硫処理が可能となる。
According to the present invention, all of the effective components can be recovered from the converter discharge slag, and the amount of Mn alloy iron can be reduced and desulfurization treatment can be performed.

〔精錬内容〕[Refining contents]

以下各処理について具体的に説明する。 Each process will be specifically explained below.

(1)溶銑予備処理 予め設定した成品としての燐濃度又はこれよりも低い燐
濃度を得られるよう脱燐処理を行う。
(1) Hot metal pretreatment Dephosphorization treatment is performed to obtain a preset phosphorus concentration as a finished product or a lower phosphorus concentration.

処理条件は上記条件を達成し得る処理であれば特に限定
するものではなく、従来実施されている場所、方法を適
宜選定して行えばよい。特に必要な場合は脱燐処理後、
溶銑脱硫処理を伴う方法であってもよい。
The processing conditions are not particularly limited as long as the above-mentioned conditions can be achieved, and the processing may be carried out by appropriately selecting the location and method conventionally practiced. If especially necessary, after dephosphorization treatment,
A method involving hot metal desulfurization treatment may also be used.

脱燐処理を行う場所としては例えば高炉鋳床、トーピー
ドカー、溶銑鍋、転炉等があり、また使用フラツクスと
してはCaO系、Na、0系、その他脱燐能は高いが硫
黄の上昇を伴う如き脱燐剤であるCa5On等でもよい
Examples of places where dephosphorization is performed include blast furnace casthouses, torpedo cars, hot metal pots, converters, etc.Fluxes used include CaO-based, Na-based, 0-based, and other fluxes that have high dephosphorizing ability but are accompanied by an increase in sulfur. A dephosphorizing agent such as Ca5On may also be used.

(II)上底吹転炉精錬 溶銑の燐濃度が成品として予め定められている濃度又は
それを下まわる濃度まで脱燐処理を施した溶銑は上底吹
転炉に移して、更に次の如き精錬プロセス、即ち先ず酸
化精錬であるi)脱炭処理を、ついで還元精錬である1
i)Fe及び/又はMnの回収、並びに脱硫処理を行う
(II) Top-bottom blowing converter Refined hot metal that has undergone dephosphorization treatment until the phosphorus concentration is at or below the predetermined concentration for the finished product is transferred to the top-bottom blowing converter and further processed as follows. The refining process is first oxidation refining i) decarburization treatment and then reduction refining 1
i) Recovery of Fe and/or Mn and desulfurization treatment are performed.

なお上底吹転炉を用いるのは還元精錬過程において必要
とされる攪拌条件を容易に満たすことが出来ることによ
る。
The reason why a top-bottom blowing converter is used is that it can easily satisfy the stirring conditions required in the reduction refining process.

i)脱炭処理 溶銑に対し炭素濃度が所定値(通常0.10%程度)と
なるまで行う。  ・ 加熱用としてはコークス等の炭材を用いるが、その使用
量が多くなり、これに含まれる硫黄が増大しても後に脱
硫処理を行うから何らの不都合も生じない。
i) Decarburization is carried out until the carbon concentration of hot metal reaches a predetermined value (usually about 0.10%). - Carbon materials such as coke are used for heating, but even if the amount used increases and the sulfur contained in this increases, no problems will occur because desulfurization treatment will be performed later.

また脱炭処理においてはFeの蒸発損を低減するため適
正量のスラグを利用するが、スラグの塩基度は脱炭後の
Mnの回収率に影響を与えるため2.5〜3.5程度に
設定する。なおスラグ量はこれを多くすると後の還元精
錬時に必要な還元剤が増加することとなるため、通常は
20〜40kg/lン程度とするのが望ましい。
In addition, in decarburization treatment, an appropriate amount of slag is used to reduce the evaporation loss of Fe, but the basicity of slag is around 2.5 to 3.5 because it affects the recovery rate of Mn after decarburization. Set. It should be noted that if the amount of slag is increased, the amount of reducing agent required for subsequent reduction refining will increase, so it is usually desirable to set the amount of slag to about 20 to 40 kg/l.

第1図はスラグ量とPeの蒸発損との関係を示すグラフ
であり、横軸にスラグi(kg/トン)を、また縦軸に
Feの蒸発損(kg/)ン)をとって示しである。この
グラフから明らかな如くスラグ量は20kg/)ンまで
は量が増すに従って蒸発損が低減されるが、20kg/
トンを越えても殆ど蒸発損が変化しないことが解る。
Figure 1 is a graph showing the relationship between the amount of slag and the evaporation loss of Pe, with the horizontal axis representing slag i (kg/ton) and the vertical axis representing the evaporation loss of Fe (kg/ton). It is. As is clear from this graph, the evaporation loss decreases as the amount of slag increases up to 20 kg/).
It can be seen that the evaporation loss hardly changes even if the amount exceeds tons.

一方第2図はスラグ量と還元剤原単位との関係を示すグ
ラフであり、横軸にスラグ■(kg/)ン)を、また縦
軸に還元剤(Fe−5i)の必要! (kg/)ン)を
とって示しである。
On the other hand, Figure 2 is a graph showing the relationship between the amount of slag and the reducing agent consumption rate, with the horizontal axis representing slag (kg/) and the vertical axis representing the amount of reducing agent (Fe-5i) required. (kg/)ton).

このグラフから明らかな如くスラグ量が40kg/トン
を越えると必要還元剤は急激に増大することが解る。従
って第1.2図からスラグ量は20〜40kg/)ンが
望ましいといえる。
As is clear from this graph, when the amount of slag exceeds 40 kg/ton, the amount of required reducing agent increases rapidly. Therefore, from Fig. 1.2, it can be said that the slag amount is desirably 20 to 40 kg/).

第3図はスラグ塩基度と脱炭後のMnの回収率との関係
を示すグラフであり、横軸にスラグ塩基度(Cab/5
ift )を、また縦軸に脱炭後のMn回収率(%)を
とって示しである。このグラフから明らかな如くスラグ
塩基度は2.5〜3.5程度とするのが望ましいことが
解る。
Figure 3 is a graph showing the relationship between the slag basicity and the Mn recovery rate after decarburization, and the horizontal axis shows the slag basicity (Cab/5
ift), and the Mn recovery rate (%) after decarburization is plotted on the vertical axis. As is clear from this graph, it is desirable that the slag basicity is about 2.5 to 3.5.

1i)Fe及び/又はMnの回収並びに脱硫処理所定の
炭素濃度にまで脱炭処理された溶鋼に対しFe−5i系
の還元剤、生石灰、蛍石、ドロマイト等の造滓剤を投入
し、ガス攪拌して還元精錬し、脱炭精錬過程で生成又は
投入されたFe及び/又はMn等の酸化物を還元回収す
ると共に脱硫処理を行う。
1i) Fe and/or Mn recovery and desulfurization treatment The molten steel that has been decarburized to a predetermined carbon concentration is charged with a Fe-5i reducing agent, slag-forming agents such as quicklime, fluorite, and dolomite, and gas Stirring is performed to perform reduction refining, and oxides such as Fe and/or Mn produced or introduced during the decarburization refining process are reduced and recovered, and a desulfurization treatment is also performed.

還元剤としてはSi、Af、C等を含む物質であればよ
く、製造すべき鋼の目標炭素含有量に合わせて採択すれ
ばよい。特に炭素濃度の高い溶鋼の場合、炭素自体を還
元剤として利用することにより安価な還元精錬を行い得
る。
The reducing agent may be any substance containing Si, Af, C, etc., and may be selected depending on the target carbon content of the steel to be manufactured. Particularly in the case of molten steel with a high carbon concentration, inexpensive reduction refining can be performed by using carbon itself as a reducing agent.

またスラグ塩基度(CaO/5iOz)はスラグ中のM
n、 Feの回収と脱硫処理を達成するために少なくと
も1.7以上とする。従ってSiを含有する還元剤を用
いるときは炉壁の溶損防止のためCaOを投入して塩基
度調整を行う。
In addition, the slag basicity (CaO/5iOz) is the M in the slag.
n, at least 1.7 to achieve Fe recovery and desulfurization treatment. Therefore, when using a reducing agent containing Si, basicity is adjusted by adding CaO to prevent erosion of the furnace wall.

第4図はスラグ中の残留MnOとスラグ塩基度との関係
を示すグラフであって、横軸にスラグ塩基度(CaO/
5iOz)を、また縦軸にMn0(%)をとって示しで
ある。また第5図は脱硫指数(S)/ (S)とスラグ
塩基度との関係を示すグラフであり、横軸にスラグ塩基
度CaO/5iOzを、また縦軸に(S)/ (S)を
とって示しである。第4,5図から明らかな如り、Mn
の回収率を高め、また同時に十分な脱硫処理を行うため
にはスラグ塩基度を1.7以上とするのが望ましいこと
が解る。
FIG. 4 is a graph showing the relationship between residual MnO in slag and slag basicity, where the horizontal axis shows the slag basicity (CaO/
5iOz), and Mn0 (%) is plotted on the vertical axis. Figure 5 is a graph showing the relationship between desulfurization index (S)/(S) and slag basicity, with the horizontal axis representing slag basicity CaO/5iOz and the vertical axis representing (S)/(S). This is a great indication. As is clear from Figures 4 and 5, Mn
It can be seen that it is desirable to have a slag basicity of 1.7 or more in order to increase the recovery rate and at the same time perform sufficient desulfurization treatment.

攪拌ガスとしてはAr、 N、等の非酸化性ガスを用い
る。またそのガス量は還元剤の原単位に影響するため、
下式で算出される鋼浴の均一混合時間τが50秒以下と
なる程度とするのがよい。
A non-oxidizing gas such as Ar or N is used as the stirring gas. In addition, since the amount of gas affects the basic unit of reducing agent,
It is preferable that the uniform mixing time τ of the steel bath calculated by the following formula be set to 50 seconds or less.

τ=800ε−0・4 Q:il拌ガス流! (Nm’/min)Wg :溶鋼
量(トン) T:鋼浴温度(K) 2:浴深さく cm ) 第6図はスラグ量を20〜40kg/)ンとしたときの
攪拌ガスと還元剤原単位との関係を示すグラフであり、
横軸に溶鋼の均一混合時間(秒)を、また縦軸に還元剤
(kg/)ン)をとって示しである。このグラフから明
らかなように、均一混合時間が50秒より長くなると還
元剤使用量が急激に多くなっており、均一混合時間が略
50秒以下となるよう攪拌ガス量を設定するのがよいこ
とが解る。
τ=800ε-0・4 Q:il stirring gas flow! (Nm'/min) Wg: Molten steel amount (tons) T: Steel bath temperature (K) 2: Bath depth cm) Figure 6 shows the stirring gas and reducing agent when the slag amount is 20 to 40 kg/min. This is a graph showing the relationship with basic unit,
The horizontal axis represents the uniform mixing time (seconds) of molten steel, and the vertical axis represents the reducing agent (kg/). As is clear from this graph, when the uniform mixing time is longer than 50 seconds, the amount of reducing agent used increases rapidly, so it is better to set the stirring gas amount so that the uniform mixing time is approximately 50 seconds or less. I understand.

上記した(I)、  (II)の処理後は合金元素が酸
化されるおそれがないことを利用して例えば炉内での成
分組成の調整等を行ってよいことは勿論である。
It goes without saying that after the above-mentioned treatments (I) and (II), the composition of the alloying elements may be adjusted in the furnace by taking advantage of the fact that there is no risk of oxidation of the alloying elements.

〔実施例〕〔Example〕

容量21−ンの上底吹構造の転炉を用い、底吹羽口2本
からArをI Nm3/分の割合で吹き込んで攪拌しつ
つMnを含む所定の成分組成の鋼を得べく吹錬した。
Using a 21-ton capacity converter with a top-bottom blowing structure, Ar was blown into it at a rate of I Nm3/min through two bottom-blowing tuyeres, and blowing was carried out to obtain steel with a predetermined composition including Mn while stirring. did.

吹錬過程ではMn鉱石50kgを初期装入し、還元剤と
してFe−5iを10kg、また造滓剤として生石灰:
15kg及びドロマイト:10kg5蛍石:4kgを投
入した。このときのスラグ量は略25kg/)ンであり
、塩基度(CaO/5iOz)は2.9であった。
In the blowing process, 50 kg of Mn ore is initially charged, 10 kg of Fe-5i is used as a reducing agent, and quicklime is used as a slag forming agent.
15 kg of dolomite, 10 kg of dolomite, and 4 kg of fluorite were charged. The amount of slag at this time was approximately 25 kg/), and the basicity (CaO/5iOz) was 2.9.

脱炭処理前、後及び還元精錬後の各成分組成の准移を示
すと表1に示すとおりである。
Table 1 shows the transition of each component composition before and after decarburization treatment and after reduction refining.

表   1 「 ]− 表1から明らかな如く、脱炭後と還元後とのMn組成を
比較すれば明らかな如<、Mnが0.48%も高くなっ
ていることが解る。また本発明方法と従来方法とを実施
して脱炭処理終了時点で出鋼したところ本発明方法に依
った場合は約1.55%歩留りが向上することが確認さ
れた。これはFe、 Mnの回収率の向上と還元剤とし
てのFe−5iの投入による効果−と推定される。
As is clear from Table 1, if we compare the Mn composition after decarburization and after reduction, it can be seen that Mn is as high as 0.48%. When steel was tapped at the end of the decarburization process using the conventional method and the conventional method, it was confirmed that the yield improved by approximately 1.55% when using the method of the present invention. This is presumed to be due to the improvement and the effect of adding Fe-5i as a reducing agent.

〔効果〕〔effect〕

・以・上の如く本発明方法にあっては、Mn系合金鉄を
使用することなく比較的Mnの高い鋼種を容易、且つ安
価に溶製することができ、また低硫黄鋼の溶製も容易に
行い得、歩留りも大幅に向上するなど本発明は優れた効
果を奏するものである。
・As described above, in the method of the present invention, it is possible to easily and inexpensively produce steel types with relatively high Mn content without using Mn-based alloy iron, and it is also possible to produce low-sulfur steel. The present invention has excellent effects, such as being easy to carry out and greatly improving the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラグ量とFeの蒸発損との関係を示すグラフ
、第2図はスラグ量と還元剤原単位との関係を示すグラ
フ、第3図はスラグ塩基度とMn回収率との関係を示す
グラフ、第4図はスラグ中残留MnOとスラグ塩基度と
の関係を示すグラフ、第5図は脱硫指数とスラグ塩基度
との関係を示すグラフ、第6図は攪拌ガス量と還元剤量
との関係を示すグラフである。
Figure 1 is a graph showing the relationship between slag amount and Fe evaporation loss, Figure 2 is a graph showing the relationship between slag amount and reducing agent consumption, and Figure 3 is the relationship between slag basicity and Mn recovery rate. Figure 4 is a graph showing the relationship between residual MnO in slag and slag basicity, Figure 5 is a graph showing the relationship between desulfurization index and slag basicity, and Figure 6 is a graph showing the relationship between the amount of stirring gas and reducing agent. It is a graph showing the relationship with quantity.

Claims (1)

【特許請求の範囲】[Claims] 1、予め成品燐濃度以下まで脱燐処理を行った溶銑に所
定炭素濃度となるまで脱炭精錬を施した後、これに還元
剤、造滓剤を投入し、スラグ塩基度(CaO/SiO_
2)を1.7以上として前記脱炭精錬過程において生成
又は投入したFe及び/又はMn等の酸化物を還元回収
すると共に、脱硫処理を行うことを特徴とする転炉精錬
方法。
1. After decarburizing the hot metal that has been previously dephosphorized to below the product phosphorus concentration and decarburizing it until it reaches a predetermined carbon concentration, a reducing agent and a slag-forming agent are added to it to reduce the slag basicity (CaO/SiO_
2) A converter refining method characterized in that oxides such as Fe and/or Mn produced or introduced in the decarburization refining process are reduced and recovered by setting 1.7 or more, and a desulfurization treatment is performed.
JP8904487A 1987-04-10 1987-04-10 Method for refining in converter Pending JPS63255312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8904487A JPS63255312A (en) 1987-04-10 1987-04-10 Method for refining in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8904487A JPS63255312A (en) 1987-04-10 1987-04-10 Method for refining in converter

Publications (1)

Publication Number Publication Date
JPS63255312A true JPS63255312A (en) 1988-10-21

Family

ID=13959890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8904487A Pending JPS63255312A (en) 1987-04-10 1987-04-10 Method for refining in converter

Country Status (1)

Country Link
JP (1) JPS63255312A (en)

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JPH07216434A (en) Production of very low carbon and very low sulfur steel
JP2958848B2 (en) Hot metal dephosphorization method
JP2896839B2 (en) Molten steel manufacturing method
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JPH08311519A (en) Steelmaking method using converter
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JP2000109924A (en) Method for melting extra-low sulfur steel
JP3194212B2 (en) Converter steelmaking method
JPS63255312A (en) Method for refining in converter
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP2607329B2 (en) Hot metal dephosphorization method
JP2587286B2 (en) Steelmaking method
JPH08134528A (en) Production of extra low carbon steel
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS6247417A (en) Melt refining method for scrap
JP2776188B2 (en) Hot metal pretreatment method
JPS5847450B2 (en) Method for promoting dephosphorization in oxygen top-blown steelmaking process
JPS6121285B2 (en)
JPS6353206A (en) Operational method for high manganese content at blow-end in top-bottom blowing converter
JPH02182820A (en) Refining method for increasing mn-content in molten steel in converter
RU1801143C (en) Method of ferrovanadium smelting
JPH01215917A (en) Method for melting stainless steel
JPH07109507A (en) Method for pretreating molten iron
JPH01312020A (en) Method for dephosphorizing molten iron by heating