JPS63254182A - Ferroelectric liquid crystal element - Google Patents

Ferroelectric liquid crystal element

Info

Publication number
JPS63254182A
JPS63254182A JP62088097A JP8809787A JPS63254182A JP S63254182 A JPS63254182 A JP S63254182A JP 62088097 A JP62088097 A JP 62088097A JP 8809787 A JP8809787 A JP 8809787A JP S63254182 A JPS63254182 A JP S63254182A
Authority
JP
Japan
Prior art keywords
formulas
tables
mathematical
chemical formulas
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62088097A
Other languages
Japanese (ja)
Inventor
Masataka Yamashita
眞孝 山下
Takashi Iwaki
孝志 岩城
Gouji Kadokanou
門叶 剛司
Yoko Yamada
容子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62088097A priority Critical patent/JPS63254182A/en
Publication of JPS63254182A publication Critical patent/JPS63254182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To obtain the titled element having excellent low-temperature operat ing characteristics and high-speed response, comprising a novel liquid crystal composition containing a specific liquid crystal compound in a ferroelectric liquid crystal layer. CONSTITUTION:The aimed element containing one or more liquid crystal compounds shown by formula I {A1 and A2 are bifunctional six-membered ring which may contain substituent group; X is -(CH2)l -O- or -O-(CH2)m; land m are 1 or 2; at least one of R1 and R2 contains asymmetric carbon and when R1 and R2 are the same, R1 and R2 are group shown by formula II-IV [Y1-Y3 are single bond or -O-; n1 and n2 are 0-8; R3-R5 are replaceable 1-18C chain alkyl; Z1 is -(CH)n2-(n2 is 0 or 1) or carbonyl; Z2 is -CH3 or CN; Z3 is halogen] and further when R1 is different from R2, one of R1 and R2 is group shown by formula II-IV and the other is R3 or acyloxy} in a ferroelectric liquid crystal layer. A compound shown by formula V may be cited as the liquid crystal compound.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は強誘電性液晶素子に関し、さらに詳しくは基板
、電圧印加手段、絶縁性配列制御層及び強誘電性液晶層
を有する強誘電性液晶素子に係り、特に特定の液晶性化
合物を前述強誘電性液晶層に含有した強誘電性液晶素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a ferroelectric liquid crystal device, and more particularly to a ferroelectric liquid crystal device having a substrate, a voltage application means, an insulating alignment control layer, and a ferroelectric liquid crystal layer. In particular, the present invention relates to a ferroelectric liquid crystal element containing a specific liquid crystal compound in the ferroelectric liquid crystal layer.

〔従来技術〕[Prior art]

液晶は既に種々の光学変調素子として応用され、特に表
示素子として、時計、電卓等に実用化されている。
Liquid crystals have already been applied as various optical modulation elements, and in particular, have been put to practical use as display elements in watches, calculators, and the like.

これは、液晶素子が、消費電力が極めて少なく、また装
置の薄型軽量化が可能であることと、更に表示素子とし
ては受光素子であるため長時間使用しても目の疲労が少
ないという特徴によるものである。
This is because liquid crystal elements consume extremely little power and can be made thinner and lighter, and because the display element is a light-receiving element, it causes less eye fatigue even when used for long periods of time. It is something.

現在実用化されている液晶素子のほとんどが、例えばM
、5chadt とW、He1frich著“Appl
iedPhysics Letters  ”Vo、1
8. No、4 (1971,2,15)P、 127
〜128の“Voltage Dpendent 0p
ticalActivity  of  a  Twi
sted  Nematic  LiquidCrys
tal”に示されたTN (Twisted  Nem
atic)型の液晶を用いたものである。
Most of the liquid crystal elements currently in practical use are, for example, M
, 5chadt and W. He1frich “Appl.
iedPhysics Letters ”Vo, 1
8. No. 4 (1971, 2, 15) P, 127
~128 “Voltage Dependent 0p
ticalActivity of a Twi
sted Nematic Liquid Crys
Twisted Nem
atic) type liquid crystal.

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向に向(効果を利用している。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is oriented in a specific direction by an applied electric field due to the dielectric anisotropy of liquid crystal molecules.

これらの素子の光学的な応答速度の限界は数m s e
 cであるといわれ、液晶素子の応用分野拡大への障害
となっている。
The limit of the optical response speed of these elements is several m s e
c, and is an obstacle to expanding the field of application of liquid crystal devices.

低消費電力、受光型といった、液晶素子の特長を生かし
、なおかつ、エレクトロルミネッセンスなど発光型素子
に匹敵する応答性を確保するには、TN型液晶素子に変
わる新しい液晶素子の開発が不可欠である。そうした試
みの1つとして、双安定性を有する液晶素子の使用がC
1arkおよびLagerwallにより提案されてい
る(特開昭56−107216号公報、米国特許案4,
367.924号明細書等)。
In order to take advantage of the features of liquid crystal elements such as low power consumption and light-receiving type, and to ensure responsiveness comparable to electroluminescent and other light-emitting elements, it is essential to develop a new liquid crystal element to replace the TN type liquid crystal element. One such attempt is the use of bistable liquid crystal elements.
1ark and Lagerwall (JP-A-56-107216, U.S. Patent No. 4,
367.924 specification, etc.).

双安定性液晶としては、一般に、カイラルスメクチック
C相(SmC*相)、又はH相(SmH*)を有する強
誘電性液晶が用いられる。
As the bistable liquid crystal, a ferroelectric liquid crystal having a chiral smectic C phase (SmC* phase) or H phase (SmH*) is generally used.

この強誘電性液晶は電界に対して第1の光学的安定状態
と第2の光学的安定状態からなる双安定状態を有し、従
って前述のTN型の液晶で用いられた光学変調素子とは
異なり、例えば一方の電界ベクトルに対して第1の光学
的安定状態に液晶が配向し、他方の電界ベクトルに対し
ては第2の光学的安定状態に液晶が配向される。また、
この型の液晶は、加えられる電界に応答して、上記2つ
の安定状態のいずれかを取り、かつ、電界の印加のない
ときは、その状態を維持する性質(双安定性)を有する
This ferroelectric liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state in response to an electric field, and therefore is different from the optical modulation element used in the above-mentioned TN type liquid crystal. Differently, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in a second optically stable state with respect to the other electric field vector. Also,
This type of liquid crystal has a property (bistability) of taking one of the above two stable states in response to an applied electric field and maintaining that state when no electric field is applied.

以上の様な双安定性を有する特徴に加えて、強誘電性液
晶は高速応答性であるという優れた特徴を持つ。それは
、強誘電液晶の持つ自発分極と印加電場が直接作用して
、配向状態の転移を誘起するためであり、誘電異方性と
電場の作用による応答速度より3〜4オーダー速い。
In addition to the above-mentioned feature of bistability, ferroelectric liquid crystals have the excellent feature of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce a transition in the orientation state, which is 3 to 4 orders of magnitude faster than the response speed due to the effect of the dielectric anisotropy and the electric field.

この様に強誘電性液晶はきわめて優れた特性を潜在的に
有しており、この様な性質を゛利用することにより、上
述した従来のTN型液晶素子の問題点の多くに対して、
かなり本質的な改善が得られる。
As described above, ferroelectric liquid crystals potentially have extremely excellent properties, and by utilizing these properties, many of the problems of conventional TN type liquid crystal elements mentioned above can be solved.
A fairly substantial improvement can be obtained.

特に、高速光学光シャッターや、高密度、大画面ディス
プレイへの応答が期待される。
In particular, it is expected to respond to high-speed optical shutters and high-density, large-screen displays.

このため強誘電性液晶素子に用いる強誘電性を持つ液晶
材料に関しても広く研究がなされているが、現在まで報
告されている強誘電性液晶素子で、低温作動特性、高速
応答性等諸特性を満足するものまで至っているものはほ
とんどなく、実用化された強誘電性液晶素子は皆無であ
る。
For this reason, extensive research has been carried out on liquid crystal materials with ferroelectric properties used in ferroelectric liquid crystal elements, but the ferroelectric liquid crystal elements that have been reported up to now have various characteristics such as low temperature operation characteristics and high speed response. Very few have reached a level of satisfaction, and there are no ferroelectric liquid crystal devices that have been put to practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、前述の欠点又は不利を解消した強誘電
性液晶素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a ferroelectric liquid crystal element which eliminates the above-mentioned drawbacks or disadvantages.

本発明の別の目的は、新規な強誘電性液晶組成物を提供
することにある。
Another object of the present invention is to provide a novel ferroelectric liquid crystal composition.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明のかかる目的は、下記一般式(1)で示される。 This object of the present invention is represented by the following general formula (1).

化合物を含有する強誘電性液晶層を有する強誘電性液晶
素子によって達成される。
This is achieved by a ferroelectric liquid crystal element having a ferroelectric liquid crystal layer containing a compound.

一般式(1) R1A 1  X   A2   R2〔式中Xは−C
H20−、÷CH2矢20−、−0CH2−。
General formula (1) R1A 1 X A2 R2 [wherein X is -C
H20-, ÷CH2 arrow 20-, -0CH2-.

−0モCH2矢2から選ばれる。-0Mo CH2 Arrow 2 selected.

R,、R2は同じであっても異なっていても良く、少な
くと・もいずれか一方は不斉炭素を有する。
R,, R2 may be the same or different, and at least one of them has an asymmetric carbon.

R1とR2が同じときは、R1とR2は下記一般式(2
)。
When R1 and R2 are the same, R1 and R2 are represented by the following general formula (2
).

(3)又は(4)で示される。Indicated by (3) or (4).

一般式(2) %式% (但し、式中Y1は単結合、−o−、−c−、−oc−
General formula (2) %Formula% (However, in the formula, Y1 is a single bond, -o-, -c-, -oc-
.

1j1 −CH2CH2C〇−又は−CH=CHC0−1n1は
0〜8までの整数を示し、 zlは(CH2)−又は−C−を示しくn2はO又は1
を示す。)、 R3は置換基を有していても良い炭素数1−18までの
分岐または直鎖のアルキル基を示しく好ま゛しい具体例
としては、メチル、エチル、ブチル、ペンチル、ヘキシ
ル、オクチル、バレル、イソプロピル等があげられる。
1j1 -CH2CH2C〇- or -CH=CHC0-1n1 represents an integer from 0 to 8, zl represents (CH2)- or -C-, n2 represents O or 1
shows. ), R3 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and preferred specific examples include methyl, ethyl, butyl, pentyl, hexyl, octyl, Examples include barrel, isopropyl, etc.

)、*印は不斉炭素を示す。)−Y2子CH2升−CH
−R4 n3* −CH2CH2C〇−又は−CH−CHCO−1n3は
0〜8までの整数を示し、 Z2は−CH3,CNを示す。
), *marks indicate asymmetric carbons. )-Y2 child CH2 sho-CH
-R4 n3* -CH2CH2C〇- or -CH-CHCO-1n3 represents an integer from 0 to 8, Z2 represents -CH3, CN.

R4は置換基を有していても良い炭素数1〜18までの
分岐または直鎖のアルキル基を示しく好ましい具体例と
しては、メチル、エチル、ブチル、ペンチル、ヘキシル
、オクチル、バレル、イソプロピル等があげられる。)
、*印は不斉炭素を示す。)−Y3子CH2′+−CH
−R5 n4* n4はθ〜8までの整数を示し、 Z3はハロゲン原子を示し、好ましい具体例としでは、
フッ素、塩素、臭素があげられる。
R4 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and preferred specific examples include methyl, ethyl, butyl, pentyl, hexyl, octyl, barrel, isopropyl, etc. can be given. )
, * indicates an asymmetric carbon. )-Y3 child CH2'+-CH
-R5 n4* n4 represents an integer from θ to 8, Z3 represents a halogen atom, and preferred specific examples include:
Examples include fluorine, chlorine, and bromine.

R5は置換基を有していても良い炭素数1〜18までの
分岐または直鎖のアルキル基を示しく好ましい具体例と
しては、メチル、エチル、ブチル、ペンチル、ヘキシル
、オクチル、バレル、イソプロピル等があげられる。)
、木部は不斉炭素を示す。)又、R1とR2が異るとき
は、R1とR2のいずれか一方は下記一般式(2)、 
 (3)又は(4)で示され、 −Y1子CH2:)−CH−Z 、 −OR3nl* −Co−,−0CO−、−CH20−、−CH2CH2
0−。
R5 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and preferred specific examples include methyl, ethyl, butyl, pentyl, hexyl, octyl, barrel, isopropyl, etc. can be given. )
, the xylem exhibits asymmetric carbon. ) Also, when R1 and R2 are different, one of R1 and R2 is represented by the following general formula (2),
(3) or (4), -Y1 child CH2:) -CH-Z, -OR3nl* -Co-, -0CO-, -CH20-, -CH2CH2
0-.

O −C112CH2C〇−又は−CH=CHC0−から選
ばれ、nlは0〜8までの整数を示し、 Zlは(:CH23−又は−C−を示し、(n2はO又
は1を示す。) R3は置換基を有していても良い炭素数1−18までの
分岐または直鎖のアルキル基を示し、*印は不斉炭素を
示す。) 一般式(3) %式% (但し、式中Y2は単結合、−O−、−C−、〜OC−
selected from O -C112CH2C〇- or -CH=CHC0-, nl represents an integer from 0 to 8, Zl represents (:CH23- or -C-, (n2 represents O or 1) R3 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and * represents an asymmetric carbon.) General formula (3) % formula % (However, in the formula Y2 is a single bond, -O-, -C-, ~OC-
.

O0 −CO−、−0CO−、−CH20−、−CH2CH2
0−。
O0 -CO-, -0CO-, -CH20-, -CH2CH2
0-.

o        o    ’。o      o ’.

II        11      ll−CH20
(、−、−CH2CH20C−、−CH2Co−。
II 11 ll-CH20
(, -, -CH2CH20C-, -CH2Co-.

−CH2CH2C〇−又は−CH−CHC〇−から選ば
れ、n 3はθ〜8までの整数を示し、 Z2は−CH3又はCNを示す。) R4は置換基を有していても良い炭素数1〜18までの
分岐または直鎖のアルキル基を示し、*印は不斉炭素を
示す。) 一般式(4) %式% −CH2CH2Co−又は−CH=CHC0−から選ば
れ、n 4は0〜8までの整数を示し、 Z3はハロゲン原子を示し、 R5は置換基を有していても良い炭素数1〜18の分岐
または直鎖のアルキル基を示し、*印は不斉炭素を示す
。) 又R1とR2の他方は置換基を有していても良い炭素数
1〜18の分岐または直鎖のアルキル基、または置換基
を有していても良い炭素数1〜18の分岐 または直鎖
のアルキル基を有するアシル基、アシルオキシ基、アル
コキシ基、アルコキシカルボニル基、アルコキシカルボ
ニルオキシ基を示す。
selected from -CH2CH2C〇- or -CH-CHC〇-, n3 represents an integer from θ to 8, and Z2 represents -CH3 or CN. ) R4 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and the mark * represents an asymmetric carbon. ) General formula (4) % Formula % selected from -CH2CH2Co- or -CH=CHC0-, n4 represents an integer from 0 to 8, Z3 represents a halogen atom, R5 has a substituent, represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms, and the * mark represents an asymmetric carbon. ) The other of R1 and R2 is a branched or straight alkyl group having 1 to 18 carbon atoms which may have a substituent, or a branched or straight alkyl group having 1 to 18 carbon atoms which may have a substituent. Indicates an acyl group, acyloxy group, alkoxy group, alkoxycarbonyl group, or alkoxycarbonyloxy group having an alkyl group in the chain.

好ましい具体例としては、メチル、エチル、プロピル、
ブチル、ペンチル、ヘキシル、イソプロピル等のアルキ
ル基、アセチル、プロピオニル、ブチニル、バレリル、
バルミトイル、2−メチル−プロピオニル等のアシル基
、アセチルオキシ、プロピオニルオキシ。
Preferred specific examples include methyl, ethyl, propyl,
Alkyl groups such as butyl, pentyl, hexyl, isopropyl, acetyl, propionyl, butynyl, valeryl,
Acyl groups such as valmitoyl, 2-methyl-propionyl, acetyloxy, propionyloxy.

ブチニルオキシ、2−メチル−プロピオニルオキシ等の
アシルオキシ基、メトキシ、エトキシ、プロポキシ、ブ
トキシ、2−メチル−ブトキシ等のアルコキシ基、メト
キシカルボニル、エトキシカルボニル、ブトキシカルボ
ニル、2−メチル−ブトキシカルボニル等のアルコキシ
カルボニル基、メトキシカルボニルオキシ、エトキシカ
ルボニルオキシ、ブトキシカルボニルオキシ、2−メチ
ル−ブトキシカルボニルオキシ等のアルコキシカルボニ
ルオキシ基を示す。
Acyloxy groups such as butynyloxy, 2-methyl-propionyloxy, alkoxy groups such as methoxy, ethoxy, propoxy, butoxy, 2-methyl-butoxy, alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl, 2-methyl-butoxycarbonyl, etc. group, alkoxycarbonyloxy groups such as methoxycarbonyloxy, ethoxycarbonyloxy, butoxycarbonyloxy, and 2-methyl-butoxycarbonyloxy.

このときR,、R2の示す基の更なる置換基としては、
フッ素、塩素、臭素等のハロゲン原子、メチル。
At this time, as further substituents for the group represented by R, R2,
Halogen atoms such as fluorine, chlorine, and bromine, and methyl.

エチル、プロピル、ブチル、ペンチル等のアルキル基、
メトキシ、プロポキシ、ブトキシ等のアルコキシ、トリ
フルオロメチル、シアノ基等があげられる。
Alkyl groups such as ethyl, propyl, butyl, pentyl,
Examples include alkoxy groups such as methoxy, propoxy, butoxy, trifluoromethyl, and cyano groups.

AI +  A2は置換基を有していても良い2価の含
入員環基を示し、好ましい具体例としては以下のように
なる。
AI + A2 represents a divalent ring group which may have a substituent, and preferred specific examples thereof are as follows.

一般式(1)において、R1及びR2の少なくとも一方
が一般式(2)又は(4)を有する時A1゜A2は一般
式(5)で示される。
In general formula (1), when at least one of R1 and R2 has general formula (2) or (4), A1°A2 is represented by general formula (5).

一般式(5) 子A3妖A4テ (式中A3.A4は置換基を有していても良いより選択
されるのが好ましく、p、qは0. 1又は2で示され
る。) 一般式(1)においてR8及びR2の少なくとも一方が
一般式(3)を有する時A、、A2は一般式(6)で示
される。
General formula (5) Child A3 A4 Te (In the formula, A3 and A4 are preferably selected from those that may have a substituent, and p and q are represented by 0.1 or 2.) General formula In (1), when at least one of R8 and R2 has general formula (3), A2 is represented by general formula (6).

一般式(6) 壬A5矢(A6矢 (式中A5とA6は同じでも異なっていてもよくA5.
A6は置換基を有していても良いより選択される。
General formula (6) 壬A5arrow (A6arrow (in the formula, A5 and A6 may be the same or different, and A5.
A6 is selected from those which may have a substituent.

但しA5とA6が異なる時はいずれが一方が一りリ←で
あってもよい。r、sは0,1又は2である。)又、A
3.A4の示す基の更なる置換基としてはフッ素、塩素
、臭素等のハロゲン原子、メチル。
However, when A5 and A6 are different, either one may be one point. r and s are 0, 1 or 2. ) Also, A
3. Further substituents for the group represented by A4 include halogen atoms such as fluorine, chlorine, and bromine, and methyl.

エチル、プロピル、ブチル等のアルキル基、メトキシ、
エトキシ、プロポキシ等のアルコキシ基、トリフルオロ
メチル、シアノ基等があげられる。
Alkyl groups such as ethyl, propyl, butyl, methoxy,
Examples include alkoxy groups such as ethoxy and propoxy, trifluoromethyl, and cyano groups.

以下に、一般式(2)式を有する化合物について代表例
を挙げる。
Representative examples of compounds having general formula (2) are listed below.

H3 C2H5,−@−0CH2(X防0CH2CHOC3H
7* H3 ■ c 4H9−@−CH□(ト)◎−@−OCH2CHO
C15H、。
H3 C2H5, -@-0CH2 (X defense 0CH2CHOC3H
7* H3 ■ c 4H9-@-CH□(T)◎-@-OCH2CHO
C15H.

* H3 Cs H17% OCH2舎0CI(2CI(OC2H
5* H3 ■ 012H25−o−o−OCH2−@r−OCH2CI
]0C3H5* H3 ? C16H33−@−@−CH20(■0CH2CHOC
6H13* H3 ■ C4H90舎0CH2−@F@−OC■]2CHOC2
2H25* H3 ■ O〒H3 C8H1□CO−@l−CH20−@1−@1−ocI
]2cHoc4H9* * CH3 ■ 1− (25)         ?H3C8H1□0
−@−CH20色X防O子CH2矢。CHOC5Hn* テH3 C8H1□o(Y奈CH20(濾0CHCH2QC2H
5* CH3 * 不 * T。
*H3 Cs H17% OCH2 buildings 0CI(2CI(OC2H
5* H3 ■ 012H25-o-o-OCH2-@r-OCH2CI
]0C3H5*H3? C16H33-@-@-CH20 (■0CH2CHOC
6H13* H3 ■C4H90sha0CH2-@F@-OC■]2CHOC2
2H25* H3 ■ O〒H3 C8H1□CO-@l-CH20-@1-@1-ocI
]2cHoc4H9* * CH3 ■ 1- (25)? H3C8H1□0
-@-CH20 color X defense O child CH2 arrow. CHOC5Hn* TeH3 C8H1□o(YnaCH20(filter0CHCH2QC2H
5* CH3 * Not* T.

Cs + CH20m OCH2CHOCa Hl□* * 2− (49)                CH
3* * CH3 不 * CH3CH3 C■13  CH3 λT                  II閂 C6H130色F奈CH2(ト)分CH2O−CH2C
HOC8I]17* 2−(8”)(?1□3 C6HI3−■−@−CH20−◎りI(2CI]2O
−CH2CHOC8IJ17* 以下に一般式(3)を有する化合物について代表例を挙
げる。
Cs + CH20m OCH2CHOCa Hl□* * 2- (49) CH
3* * CH3 Not* CH3CH3 C■13 CH3 λT II C6H130 Color Fna CH2 (T) Minute CH2O-CH2C
HOC8I]17* 2-(8”)(?1□3 C6HI3-■-@-CH20-◎riI(2CI]2O
-CH2CHOC8IJ17* Representative examples of compounds having general formula (3) are listed below.

化合物No。Compound No.

3− (3)      〒■13 C8I]I?埒8究0CH3−忰0CHCa H+3* 3−(4)ocH3 II    1 CI2 H25埒8)OCH2舎C0CH2CHC2H
5* 3−(5)       CH3 CI6 ’ 33埒;pcH20−忰OC■]2CHC
2H5* * 本 * * * * * * * * * 不 * * * 不 N N 不 φ不 * 〜 H3 λ■1 T。
3- (3) 〒■13 C8I] I?埒8 柒 0CH3-忰0CHCa H+3* 3-(4)ocH3 II 1 CI2 H25 埒8) OCH2-sha C0CH2CHC2H
5* 3-(5) CH3 CI6' 33埒;pcH20-忰OC■]2CHC
2H5* * Book* * * * * * * * * * Not* * * Not N N NotφNot* ~ H3 λ■1 T.

C6H13o(司FCH2(ト)忰CH2O−CH2C
HC2H5* 以下に一般式(4)を有する化合物について代表例を挙
げる。
C6H13o(TSUKASHIFCH2(g)忰CH2O-CH2C
HC2H5* Representative examples of compounds having general formula (4) are listed below.

化合物No。Compound no.

4−(1)F C2H5−4かOCH2% OCH2CHC4H9* C41−19−忰C1(20−@−@−CCI(2CI
(C51(、。
4-(1)F C2H5-4 or OCH2% OCH2CHC4H9* C41-19-忰C1(20-@-@-CCI(2CI
(C51(,.

* C8■]1□(か(沢0CH2−忰0CH2C11C6
H33* ■ CI2 H25% OCH2((濾OC■(2CI−I
C7H75* ■ C,6H33−@−+濾CH2o(濾0CH2CHC8
■(17* ■ C4H9−@−OCH2−@−@−OCH2CHC,o
H2゜* ■ C6H130−@/−CH2鎮伽や沖CH2CHC6H
33* * Cto H210+ OCH2M OCH2CHCe 
H13* 不 1]1 c 、6H320C−@−ocr−■2−@−@−OC
H2CHCH2CH(CT−I 3) 2* 不 CI−I3  0 02F■5C1−■ClI20C(濾ocn2−4か一
@−OCH2CH−C3H7* 本 4〜 (28) * 4−(3]) * * * 081、。O−@)−@)−CH20(桝CH2CHC
6H13* 4〜 (37) 本 * * * 0(J! 08HI7(シ伊ΣOCH2沓0% CH2)。cHc
2H5* * 4−(55)F 4、−(57) 4、−(64) 113F 本 岑 hT                 ICI ■ WT                1番 Ce H+30@1−o−CH20−忰CH2CH20
CH2Cl−IC6H13* 次に本発明で用いる液晶性化合物の代表的な合成例を下
記に記す。
*C8■]1□(ka(sawa0CH2-忰0CH2C11C6
H33* ■ CI2 H25% OCH2 ((filtration OC ■ (2CI-I
C7H75* ■ C,6H33-@-+filtration CH2o (filtration 0CH2CHC8
■(17* ■ C4H9-@-OCH2-@-@-OCH2CHC, o
H2゜* ■ C6H130-@/-CH2 Chinkaya Oki CH2CHC6H
33* * Cto H210+ OCH2M OCH2CHCe
H13* No 1] 1 c, 6H320C-@-ocr-■2-@-@-OC
H2CHCH2CH (CT-I 3) 2* Non-CI-I3 0 02F■5C1-■ClI20C (filter ocn2-4 or one @-OCH2CH-C3H7* Book 4~ (28) * 4-(3)) * * * 081 ,.O-@)-@)-CH20(masu CH2CHC
6H13* 4~ (37) Book * * * 0 (J! 08HI7 (SIΣOCH2 0% CH2).cHc
2H5* * 4-(55)F 4,-(57) 4,-(64) 113F Honsho hT ICI ■ WT 1st Ce H+30@1-o-CH20-忰CH2CH20
CH2Cl-IC6H13* Next, a typical synthesis example of the liquid crystal compound used in the present invention will be described below.

合成例1〜1(前記例示化合物No、 2−7の合成)
30 m lナスフラスコに下記アルコール誘導体1、
Og (3,05mmoA )を入れ、冷却下、塩化チ
オニル3m、ffを加え、撹拌しながら室温まで昇温さ
せ、さらに冷却管を取りつけ、外浴7000〜80℃で
4時間加熱環流を行った。反応後過剰の塩化チオニルを
留去し、塩化物を得た。これをトルエン15mAに溶解
した。
Synthesis Examples 1 to 1 (Synthesis of Exemplary Compound No. 2-7)
In a 30 ml eggplant flask, add the following alcohol derivative 1,
Og (3.05 mmoA) was added thereto, 3 m of thionyl chloride, ff was added under cooling, and the temperature was raised to room temperature while stirring.Furthermore, a cooling tube was attached, and heating and reflux was performed at an external bath temperature of 7000 to 80°C for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 mA of toluene.

次に200 m jl’の三つロフラスコに60%油性
水素化ナトリウム0.31gを入れ乾燥n−ヘキサンで
数回洗った後、下記フェノール誘導体0.60g (3
,05mmon )HO()OC6H13 のT HF溶液15m、f2を室温下部下し、さらにD
MSOを20rrl加え1時間撹拌した。これに、先に
述べた塩化物のトルエン溶液をゆっくりと滴下し、滴下
終了後さらに室温にて16時間撹拌を続けた。
Next, 0.31 g of 60% oily sodium hydride was placed in a 200 m jl' three-necked flask, washed several times with dry n-hexane, and then 0.60 g of the following phenol derivative (3
,05mmon)HO()OC6H13 in THF solution (15m), f2 was lowered to the bottom of room temperature, and then D
20rrl of MSO was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200mj!の氷水にあけ、有機層を分離
し、さらに水層をベンゼン50 m 12にて2回抽出
を行い、先に分離した有機層と共に5%塩酸水溶液で2
回洗った後、イオン交換水で1回、さらに5%NaOH
水溶液で1回洗い、その後、水層のpH値が中性を示す
までイオン交換水で有機層を水洗した。
Approximately 200 mj after the reaction is completed! The organic layer was separated, and the aqueous layer was extracted twice with 50 m 12 of benzene, and the organic layer was extracted with 5% aqueous hydrochloric acid for 2
After washing twice, once with ion-exchanged water, and then with 5% NaOH.
The organic layer was washed once with an aqueous solution, and then the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し、硫酸マグネシウムを用いて乾燥し、
溶媒留去して粗製物を得た。これを展開液n−ヘキサン
/ジクロロメタン、3/10を用いて、シリカゲルカラ
ムクロマトグラフィーにて精製を行った。
The organic layer was removed and dried using magnesium sulfate.
The solvent was distilled off to obtain a crude product. This was purified by silica gel column chromatography using a developing solution of n-hexane/dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
、最終精製目的物を0 、45 g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, drying was performed under reduced pressure at room temperature to obtain 0.45 g of the final purified target product.

収率は29.3%であった。The yield was 29.3%.

CHN分析値(W t%)CHN 計算値 78.53 8.79  0 測定値 78.96 8.95  0.02相転位温度 IRスペクトル  2970,2930,2855,1
610゜1515、 1400. 1385. 1,2
90゜1275、 1240. 1220. 1120
゜1020、830.825   cm’合成合成−1
(前記例示化合物No、 2−28の合成)30mAナ
スフラスコに下記アルコール誘導体1.25g (4,
01mmoA )を入れ、冷却下、塩化チオニル4. 
m 12を加え、撹拌しながら室温まで昇温させ、さら
に冷却管を取りつけ、外温708C〜80℃で4時間加
熱環流を行った。反応後過剰の塩化チオニルを留去し、
塩化物を得た。これをトルエン15mj?に溶解した。
CHN analysis value (W t%) CHN calculated value 78.53 8.79 0 Measured value 78.96 8.95 0.02 Phase transition temperature IR spectrum 2970, 2930, 2855, 1
610°1515, 1400. 1385. 1,2
90°1275, 1240. 1220. 1120
゜1020, 830.825 cm' Synthesis Synthesis-1
(Synthesis of Exemplified Compound No. 2-28) 1.25 g of the following alcohol derivative (4,
01mmoA) and, under cooling, thionyl chloride 4.
m 12 was added, the temperature was raised to room temperature while stirring, a cooling tube was attached, and heating and reflux was performed at an external temperature of 708C to 80C for 4 hours. After the reaction, excess thionyl chloride is distilled off,
Obtained chloride. This is 15mj of toluene? dissolved in.

次に200 m jl’の三つロフラスコに60%油性
水素化ナトリウム0.31gを入れ乾燥n−ヘキサンで
数回洗った後、下記フェノール誘導体0.79g(4,
01mmoIりのTHF溶液15mjl!を室温下部下
し、さらにDMSOを20mA加え1時間撹拌した。こ
れに、先に述べた塩化物のトルエン溶液をゆっくりと滴
下し、滴下終了後さらに室温にて16時間撹拌を続けた
Next, 0.31 g of 60% oily sodium hydride was placed in a 200 m jl' three-necked flask, washed several times with dry n-hexane, and then 0.79 g of the following phenol derivative (4,
01 mmol of THF solution 15 mjl! The temperature was lowered to room temperature, and 20 mA of DMSO was added thereto, followed by stirring for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200mAの氷水にあけ、有機層を分離し
さらに水層をベンゼン50 m nにて2回抽出を行い
、先に分離した有機層と共に5%塩酸水溶液で2回洗っ
た後、イオン交換水で1回、さらに5%NaOH水溶液
で1回洗いその後、水層のpH値が中性を示すまでイオ
ン交換水て有機層を水洗した。
After the reaction was completed, the organic layer was poured into ice water at about 200 mA, the organic layer was separated, and the aqueous layer was extracted twice with 50 μm of benzene. After washing with the previously separated organic layer twice with 5% aqueous hydrochloric acid solution, the ions were extracted. After washing once with exchanged water and once with 5% NaOH aqueous solution, the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/lOを用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/1O.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.51g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.51 g of the final purified target product.

収率は26.0%であった。The yield was 26.0%.

CHN分析値(w t%)CHN 計算値  78.33  8.63 0.00理論値 
 78.62  8.86 0.02相転位 S2+”3未同定 IRスペクトル  2975. 2925,2850.
 1610゜1510、 1470. 1380. 1
295゜1280、 1240. 1220. 113
0゜1020、 1000.810   cm’合成例
1−3(前記例示化合物No、 2−59の合成)30
 m Aナスフラスコに下記アルコール誘導体1.0g
 (3,57mmoj! )を入れ、冷却下、塩化チオ
ニル3 m 41’を加え、撹拌しながら室温まで昇温
させ、さらに冷却管を取りつけ、外温70°C〜80℃
で4時間加熱環流を行った。反応後過剰の塩化チオニル
を留去し、塩化物を得た。これをトルエン15mAに溶
解した。
CHN analysis value (w t%) CHN calculated value 78.33 8.63 0.00 Theoretical value
78.62 8.86 0.02 phase dislocation S2+”3 unidentified IR spectrum 2975. 2925,2850.
1610°1510, 1470. 1380. 1
295°1280, 1240. 1220. 113
0°1020, 1000.810 cm' Synthesis Example 1-3 (Synthesis of Exemplary Compound No. 2-59) 30
m A 1.0 g of the following alcohol derivative in an eggplant flask
(3,57 mmoj!), add 3 m 41' of thionyl chloride under cooling, raise the temperature to room temperature while stirring, and then attach a cooling tube and reduce the external temperature to 70°C to 80°C.
The mixture was heated under reflux for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 mA of toluene.

次に200mI!の三つロフラスコに60%油性水素化
ナトリウム0.32 gを入れ乾燥n−ヘキサンで数回
洗った後、下記フェノール誘導体1.11g(3,57
mmoj? )のT HF溶液15 m I!を室温下
部下し、さらにDMSOを20 m I!加え1時間撹
拌した。これに、先に述べた塩化物のトルエン溶液をゆ
っくりと滴下し、滴下終了後さらに室温にて16時間撹
拌を続けた。
Next is 200mI! Put 0.32 g of 60% oily sodium hydride into a three-necked flask, wash it several times with dry n-hexane, and then add 1.11 g (3,57 g) of the following phenol derivative.
mmoj? ) of THF solution 15 m I! was lowered to room temperature, and then added 20 mI! of DMSO! The mixture was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200 m I!の氷水にあけ、有機層を
分離しさらに水層をベンゼン50 m A’にて2回抽
出を行い、先に分離した有機層と共に5%塩酸水溶液で
2回洗った後、イオン交換水で1回、さらに5%NaO
H水溶液で1回洗いその後、水層のpH値が中性を示す
までイオン交換水で有機層を水洗した。
Approximately 200 m after the completion of the reaction! The mixture was poured into ice water, the organic layer was separated, and the aqueous layer was extracted twice with 50 mA' of benzene. After washing with the previously separated organic layer twice with a 5% aqueous hydrochloric acid solution, it was extracted once with ion-exchanged water. times, and an additional 5% NaO
After washing once with an aqueous H solution, the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/10を用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.39g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.39 g of the final purified target product.

収率は18.9%であった。The yield was 18.9%.

CHN分析値(wt%)CHN 計算値 77.319.47  4.87測定値 77
.92  9.53  4.90合成例以外の例示化合
物についても、全(同様の手法で一般式(2)式を有す
る化合物を容易に製造することができる。
CHN analysis value (wt%) CHN calculated value 77.319.47 4.87 measured value 77
.. 92 9.53 4.90 Regarding exemplified compounds other than the synthesis examples, compounds having general formula (2) can be easily produced using the same method.

合成例2−1(前記例示化合物No、 3−28の合成
)30r+1ナスフラスコに下記アルコール誘導体1.
0g (4,81mmoA )を入れ、冷却下、塩化チ
オニル3 m lを加え、撹拌しながら室温まで昇温さ
せ、さらに冷却管を取りつけ、外温70°C〜80℃で
4時間加熱環流を行った。反応後過剰の塩化チオニルを
留去し、塩化物を得た。これをトルエン15mA’に溶
解した。
Synthesis Example 2-1 (Synthesis of Exemplified Compound No. 3-28) The following alcohol derivative 1.
0 g (4.81 mmoA), 3 ml of thionyl chloride was added under cooling, the temperature was raised to room temperature while stirring, a cooling tube was attached, and the mixture was heated under reflux at an external temperature of 70°C to 80°C for 4 hours. Ta. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 mA' of toluene.

次に200mI!の三つロフラスコに60%油性水素化
ナトリウム0.35 gを入れ乾燥n−ヘキサンで数回
洗った後、下記フェノール誘導体1.36g(4,81
mmoA )のTHFHF溶液15登A温下部下し、さ
らにDMSOを20 m R加え1時間撹拌した。これ
に、先に述べた塩化物のトルエン溶液をゆっ(りと滴下
し、滴下終了後さらに室温にて16時間撹拌を続けた。
Next is 200mI! 0.35 g of 60% oily sodium hydride was placed in a three-necked flask, washed several times with dry n-hexane, and then 1.36 g of the following phenol derivative (4,81
A THFHF solution of mmoA) was lowered to a temperature of 15°C, and 20 mR of DMSO was added thereto, followed by stirring for 1 hour. To this, the aforementioned toluene solution of chloride was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200mAの氷水にあけ、有機層を分離し
さらに水層をベンゼン50m Iにて2回抽出を行い、
先に分離した有機層と共に5%塩酸水溶液で2回洗った
後、イオン交換水で1回、さらに5%NaOH水溶液で
1回洗いその後、水層のpH値が中性を示すまでイオン
交換水で有機層を水洗した。
After the reaction was completed, the mixture was poured into ice water at about 200 mA, the organic layer was separated, and the aqueous layer was extracted twice with 50 mI of benzene.
The previously separated organic layer was washed twice with a 5% aqueous hydrochloric acid solution, then once with ion-exchanged water, and then once with a 5% aqueous NaOH solution, and then washed with ion-exchanged water until the pH value of the aqueous layer became neutral. The organic layer was washed with water.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/lOを用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/1O.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.51g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.51 g of the final purified target product.

収率は22.6%であった。The yield was 22.6%.

元素分析値(wt%)CHN 計算値 75.91  8.07 5.90測定値 7
6.23  8.39 6.16合成例2−2(前記例
示化合物No、 3−40の合成)30mjl’ナスフ
ラスコに下記アルコール誘導体1.0g (3,38m
moA )を入れ、冷却下、塩化チオニル3 m Rを
加え、撹拌しながら室温まで昇温させ、さらに冷却管を
取りつけ、外温70℃〜80℃で4時間加熱環流を行っ
た。反応後過剰の塩化チオニルを留去し、塩化物を得た
。これをトルエン15mA’に溶解した。
Elemental analysis value (wt%) CHN Calculated value 75.91 8.07 5.90 Measured value 7
6.23 8.39 6.16 Synthesis Example 2-2 (Synthesis of Exemplified Compound No. 3-40) 1.0 g of the following alcohol derivative (3.38 m
moA) was added thereto, 3 mR of thionyl chloride was added under cooling, and the temperature was raised to room temperature while stirring.Furthermore, a cooling tube was attached, and heating and reflux was performed at an external temperature of 70°C to 80°C for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 mA' of toluene.

次に200 m I!の三つロフラスコに60%油性水
素化ナトリウム0.35 gを入れ乾燥n−ヘキサンで
数回洗った後、下記フェノール誘導体0.61 g (
3,38m mo ji! )のTHFHF溶液15奮
A温下滴下し、さらにDMSOを20mjl!加え1時
間撹拌した。これに、先に述べた塩化物のトルエン溶液
をゆっくりと滴下し、滴下終了後さらに室温にて16時
間撹拌を続けた。
Next 200 m I! Put 0.35 g of 60% oily sodium hydride into a three-neck flask, wash it several times with dry n-hexane, and then add 0.61 g of the following phenol derivative (
3,38m mo ji! ) of THFHF solution (15 cm) was added dropwise under heating, and then 20 mjl of DMSO was added! The mixture was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200mAの氷水にあけ、有機層を分離し
さらに水層をベンゼン50 m 、f!にて2回抽出を
行い、先に分離した有機層と共に5%塩酸水溶液で2回
洗った後、イオン交換水で1回、さらに5%N a O
H水溶液で1回洗いその後、水層のpH値が中性を示す
までイオン交換水で有機層を水洗した。
After the reaction was completed, the organic layer was poured into ice water at about 200 mA, the organic layer was separated, and the aqueous layer was mixed with benzene at 50 m, f! After extracting twice with 5% NaO and washing with 5% aqueous hydrochloric acid solution together with the previously separated organic layer, once with ion-exchanged water and then with 5% NaO
After washing once with an aqueous H solution, the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/10を用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.37g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.37 g of the final purified target product.

収率は23.8%であった。The yield was 23.8%.

元素分析値(wt%)CHN 計算値 78.67  8.80  6.12測定値 
79.18  8.98  6.32合成例以外の化合
物についても一般的に、アルコール誘導体を常法により
ハロゲン化物あるいはトルシ化物とし、対応するアルコ
ール誘導体とアルカリ存在下反応させる手法で一般式(
3)を有する化合物を容易に製造することができる。
Elemental analysis value (wt%) CHN Calculated value 78.67 8.80 6.12 Measured value
79.18 8.98 6.32 Compounds other than the synthesis examples are generally synthesized by the general formula (
3) can be easily produced.

合成例3−1(前記例示化合物No、 4−7の合成)
30+r+42ナスフラスコに下記アルコール誘導体1
.0g (4,81mmoA )を入れ、冷却下、塩化
チオニル3mlを加え、撹拌しながら室温まで昇温させ
、さらに冷却管を取りつけ、外温70℃〜80℃で4時
間加熱環流を行った。反応後過剰の塩化チオニルを留去
し、塩化物を得た。これをトルエン15 m lに溶解
した。
Synthesis Example 3-1 (Synthesis of Exemplary Compound No. 4-7)
30+r+42 Add the following alcohol derivative 1 to an eggplant flask.
.. 0 g (4.81 mmoA) was added thereto, 3 ml of thionyl chloride was added under cooling, the temperature was raised to room temperature while stirring, a cooling tube was attached, and the mixture was heated under reflux at an external temperature of 70° C. to 80° C. for 4 hours. After the reaction, excess thionyl chloride was distilled off to obtain a chloride. This was dissolved in 15 ml of toluene.

次に200 m lの三つロフラスコに60%油性水素
化ナトリウム0.33 gを入れ乾燥n−ヘキサンで数
回洗った後、下記フェノール誘導体1.52g (4,
81m mo 1! )のTHF溶液15mj?を室温
下滴下し、さらにDMSOを20mjl’加え1時間撹
拌した。これに、先に述べた塩化物のトルエン溶液をゆ
っくりと滴下し、滴下終了後さらに室温にて16時間撹
拌を続けた。
Next, 0.33 g of 60% oily sodium hydride was placed in a 200 ml three-necked flask, washed several times with dry n-hexane, and 1.52 g of the following phenol derivative (4,
81m mo 1! ) THF solution 15mj? was added dropwise at room temperature, and further 20 mjl' of DMSO was added and stirred for 1 hour. To this, the toluene solution of the chloride mentioned above was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200mj?の氷水にあけ、有機層を分離
しさらに水層をベンゼン50m!!にて2回抽出を行い
、先に分離した有機層と共に5%塩酸水溶液で2回洗っ
た後、イオン交換水で1回、さらに5%N a OH水
溶液で1回洗いその後、水層のpH値が中性を示すまで
イオン交換水で有機層を水洗した。
Approximately 200 mj after the reaction is completed? Pour into ice water, separate the organic layer, and add 50 m of benzene to the aqueous layer! ! After extraction was performed twice with the previously separated organic layer, the pH of the aqueous layer was The organic layer was washed with ion-exchanged water until the value showed neutrality.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n −ヘキサン
/ジクロロメタン、3/10を用いて、シリカゲルカラ
ムクロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. This was purified by silica gel column chromatography using a developing solution of n-hexane/dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物をO、’69 g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 69 g of the final purified target product.

収率は28.5%であった。The yield was 28.5%.

元素分析値(wt%)CHN 計算値 78.33  8.57  0.00測定値 
78.96  8.69  0.02相転位 合成例3−2(前記例示化合物No、4−58の合成)
30mA’ナスフラスコに下記アルコール誘導体1.0
g (3,94mmojl! )を入れ、冷却下、塩化
チオニル3m12を加え、撹拌しながら室温まで昇温さ
せ、さらに冷却管を取りつけ、外温70°C〜80℃で
4時間加熱環流を行った。反応後過剰の塩化チオニルを
留去し、塩化物を得た。これをトルエン15m1!に溶
解した。
Elemental analysis value (wt%) CHN Calculated value 78.33 8.57 0.00 Measured value
78.96 8.69 0.02 Phase rearrangement synthesis example 3-2 (synthesis of exemplified compound No. 4-58)
1.0 of the following alcohol derivative in a 30 mA' eggplant flask.
g (3.94 mmojl!), added 3 m12 of thionyl chloride under cooling, and raised the temperature to room temperature while stirring.Furthermore, a cooling tube was attached, and heating and reflux was performed for 4 hours at an external temperature of 70 ° C to 80 ° C. . After the reaction, excess thionyl chloride was distilled off to obtain a chloride. Add this to 15ml of toluene! dissolved in.

次に200m1の三つロフラスコに60%油性水素化ナ
トリウム0.31gを入れ乾燥n−ヘキサンで数回洗っ
た後、下記フェノール誘導体1.18g(3,94m 
mo j! )のTHF溶液15 m l!を室温上演
下し、さらにDMSOを20mA加え1時間撹拌した。
Next, 0.31 g of 60% oily sodium hydride was placed in a 200 ml three-necked flask, washed several times with dry n-hexane, and then 1.18 g (3.94 m
mo j! ) THF solution 15 ml! The temperature was lowered to room temperature, and DMSO was further added at 20 mA and stirred for 1 hour.

これに、先に述べた塩化物のトルエン溶液をゆっ(りと
滴下し、滴下終了後さらに室温にて16時間撹拌を続け
た。
To this, the aforementioned toluene solution of chloride was slowly added dropwise, and after the dropwise addition was completed, stirring was continued for 16 hours at room temperature.

反応終了後約200 m I!の氷水にあけ、有機層を
分離しさらに水層をベンゼン50m1にて2回抽出を行
い、先に分離した有機層と共に5%塩酸水溶液で2回洗
った後、イオン交換水で1回、さらに5%N a OH
水溶液で1回洗いその後、水層のpH値が中性を示すま
でイオン交換水で有機層を水洗した。
Approximately 200 m after the completion of the reaction! The organic layer was separated, and the aqueous layer was extracted twice with 50 ml of benzene. The organic layer was washed with 5% aqueous hydrochloric acid twice, then once with ion-exchanged water, and then the organic layer was extracted twice with 50 ml of benzene. 5% NaOH
After washing once with an aqueous solution, the organic layer was washed with ion-exchanged water until the pH value of the aqueous layer became neutral.

有機層を取り出し硫酸マグネシウムを用いて乾燥し、溶
媒留去して粗製物を得た。これを展開液n−ヘキサン/
ジクロロメタン、3/10を用いて、シリカゲルカラム
クロマトグラフィーにて精製を行った。
The organic layer was taken out, dried using magnesium sulfate, and the solvent was distilled off to obtain a crude product. Add this to the developing solution n-hexane/
Purification was performed by silica gel column chromatography using dichloromethane, 3/10.

溶媒留去して得た結晶を、n−ヘキサンを用いて再結晶
して精製目的物を得た。さらに室温にて減圧乾燥を行い
最終精製目的物を0.51g得た。
The crystals obtained by distilling off the solvent were recrystallized using n-hexane to obtain the purified target product. Further, the product was dried under reduced pressure at room temperature to obtain 0.51 g of the final purified target product.

収率は24.3%であった。The yield was 24.3%.

元素分析値(wt%)CHN 計算値 78.43  9.21 5.23測定値 7
8.92  9.42 5,46相転位温度 合成側以外の化合物についても一般的に、アルコール誘
導体を常法によりハロゲン化物あるいはトルシ化物とし
、対応するアルコール誘導体とアルカリ存在下反応させ
る手法で一般式(4)を有する化合物を容易に製造する
ことができる。
Elemental analysis value (wt%) CHN Calculated value 78.43 9.21 5.23 Measured value 7
8.92 9.42 Compounds other than those on the 5,46 phase transition temperature synthesis side are also generally converted into halides or torsicates of alcohol derivatives by a conventional method, and then reacted with the corresponding alcohol derivative in the presence of an alkali to form the general formula. A compound having (4) can be easily produced.

本発明による強誘電性素子における強誘電性液晶層は前
記一般式(1)で示される液晶性化合物1種以上と他の
強誘電性液晶化合物1種以上とを適当な割合で混合せし
め、これを真空中、等方性液体温度まで加熱し、素子セ
ル中に封入し、徐々に冷却し、液晶層を形成させ、常圧
にもどすことが好ましい。
The ferroelectric liquid crystal layer in the ferroelectric element according to the present invention is prepared by mixing one or more liquid crystal compounds represented by the general formula (1) with one or more other ferroelectric liquid crystal compounds in an appropriate ratio. It is preferable to heat the material in vacuum to an isotropic liquid temperature, encapsulate it in an element cell, gradually cool it to form a liquid crystal layer, and return it to normal pressure.

本発明に用いる他の強誘電性液晶化合物として、下記の
化合物をあげることができる。
Other ferroelectric liquid crystal compounds used in the present invention include the following compounds.

(1)CH3 覆 (2)cI(3 ■ C9H390,−@−COO舎o−cH2cHc2H5
* (3)CH3 C3゜H2,0−o−COO@−o−cH2cHc2H
5* (4)CH3 (5)               、  CH3(
6)        〒I]3 C1゜H2、o−@−coo−@−o−e CH2E)
−3CHC2H6* ■ (8)   CH3 C2H50CI(C■1□o−@−coo −@−@−
cooc 、。■(2、* (9)  CH3 C31、□0CHCH20−@−COO−q死@−co
oc 61、3* (10)〒H3 c 8H、□0CHCH20−@−Coo −@−@−
C00C、oH□。
(1) CH3 cover (2) cI (3 ■ C9H390, -@-COOshao-cH2cHc2H5
* (3) CH3 C3゜H2,0-o-COO@-o-cH2cHc2H
5* (4) CH3 (5) , CH3(
6)〒I]3 C1゜H2, o-@-coo-@-o-e CH2E)
-3CHC2H6* ■ (8) CH3 C2H50CI (C■1□o-@-coo -@-@-
cooc,. ■(2, * (9) CH3 C31, □0CHCH20-@-COO-qdeath@-co
oc 61, 3* (10)〒H3 c 8H, □0CHCH20-@-Coo -@-@-
C00C, oH□.

* c 、oH2□O−@−COO會ocn 2CHOC2
H5* (12)          テI]3c 、oH2,
o$ CH=N−@)−CH=CH−C00CH2CH
C2H5* (14)  CH3 c 2H5cH−+ CH2E)−3−@−@−COO
舎C7H15CH3 本発明の一般式(1)で示される液晶性化合物と1種以
上の上述強誘電性液晶化合物(以下、強誘電性液晶材料
と略す)との配合割合は、強誘電性液晶材料100重量
部当り、本発明液晶性化合物を1〜500重量部とする
ことが好ましい。
*c, oH2□O-@-COO ocn 2CHOC2
H5* (12) TeI]3c, oH2,
o$ CH=N-@)-CH=CH-C00CH2CH
C2H5* (14) CH3 c 2H5cH-+ CH2E)-3-@-@-COO
C7H15CH3 The compounding ratio of the liquid crystal compound represented by the general formula (1) of the present invention and one or more of the above-mentioned ferroelectric liquid crystal compounds (hereinafter abbreviated as ferroelectric liquid crystal material) is 100% of the ferroelectric liquid crystal material. It is preferable that the amount of the liquid crystalline compound of the present invention is 1 to 500 parts by weight per part by weight.

また本発明の液晶性化合物を2種以上用いる場合も強誘
電性液晶材料との配合割合は、前述した強誘電性液晶材
料100重量部当り、本発明の液晶性化合物の2種以上
の混合物を1〜500重量部とすることが好ましい。
Furthermore, when using two or more types of liquid crystal compounds of the present invention, the blending ratio with the ferroelectric liquid crystal material is such that a mixture of two or more types of liquid crystal compounds of the present invention is used per 100 parts by weight of the above-mentioned ferroelectric liquid crystal material. The amount is preferably 1 to 500 parts by weight.

第1図は、強誘電性液晶素子の構成の説明のために、強
誘電性液晶層を有する液晶表示素子の1例の断面概略図
である。第1図において付号1は強誘電性液晶層、2は
カラス基板、3は透明電極、4は絶縁性配向制御層、5
はスペーサー、6はリード線、7は電源、8は偏光板、
9は光源を示している。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal display element having a ferroelectric liquid crystal layer, for explaining the structure of the ferroelectric liquid crystal element. In FIG. 1, number 1 is a ferroelectric liquid crystal layer, 2 is a glass substrate, 3 is a transparent electrode, 4 is an insulating alignment control layer, and 5 is a ferroelectric liquid crystal layer.
is a spacer, 6 is a lead wire, 7 is a power supply, 8 is a polarizing plate,
9 indicates a light source.

2枚のガラス基板2には、それぞれ、In2O3。The two glass substrates 2 are each made of In2O3.

SnO2あるいはITO(Indiumu−Tin  
0xide)等の薄膜から成る透明電極が被覆されてい
る。その上にポリイミドの様な高分子の薄膜をガーゼや
アセテート植毛布等でラビングして、液晶をラビング方
向に並べる絶縁性配向制御層が形成されている。また、
絶縁層として例えばシリコン窒化物、水素を含有するシ
リコン炭化物、シリコン酸化物、硼素窒化物水素を含有
する硼素窒化物、セリウム酸化物、アルミニウム酸化物
、ジルコニウム酸化物、チタン酸化物やフッ化マグネシ
ウムなどの無機物質絶縁層を形成し、その上に、ポリビ
ニルアルコール、ポリイミド、ポリアミドイミド、ポリ
エステルイミド、ポリパラキシレン、ポリエステル、ポ
リカーボネート、ポリビニルアセクール、ポリ塩化ビニ
ル、ポリ酢酸ビニル、ポリアミド、ポリスチレン、セル
ロース樹脂、メラミン樹脂、ユリャ樹脂、アクリル樹脂
やフォトレジスト樹脂などの有機絶縁物質を配向制御層
として、2層で絶縁性配向制御層が形成されていてもよ
く、また無機物質絶縁性配向制御層あるいは有機物質絶
縁性配向制御層単層であっても良い。この絶縁性配向制
御膜が無機系ならば蒸着法などで形成でき、有機系なら
ば、有機絶縁物質を溶解させた溶液またはその前駆体溶
液(溶剤に0.1〜20重量%好ましくは0.2〜IO
重量%)を用いて、スピンナー塗布法、浸漬塗布法、ス
クリーン印刷法、スピレー塗布法、ロール塗布法等で塗
布し、所定の硬化条件下(例えば加熱)下で硬化させ形
成させることができる。
SnO2 or ITO (Indium-Tin
It is coated with a transparent electrode made of a thin film such as (Oxide) or the like. On top of this, a thin film of a polymer such as polyimide is rubbed with gauze or acetate flocked cloth to form an insulating alignment control layer that aligns the liquid crystals in the rubbing direction. Also,
Examples of insulating layers include silicon nitride, hydrogen-containing silicon carbide, silicon oxide, boron nitride, hydrogen-containing boron nitride, cerium oxide, aluminum oxide, zirconium oxide, titanium oxide, and magnesium fluoride. An inorganic material insulating layer of polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylene, polyester, polycarbonate, polyvinyl acecool, polyvinyl chloride, polyvinyl acetate, polyamide, polystyrene, cellulose resin is formed on the inorganic material insulating layer. An insulating orientation control layer may be formed of two layers, using an organic insulating material such as melamine resin, yurya resin, acrylic resin, or photoresist resin as the orientation control layer, or an insulating orientation control layer of an inorganic material or an organic insulating material. It may be a single layer of material insulating orientation control layer. If this insulating alignment control film is inorganic, it can be formed by a vapor deposition method, or if it is organic, it can be formed in a solution of an organic insulating substance or its precursor solution (0.1 to 20% by weight in a solvent, preferably 0.1 to 20% by weight in a solvent). 2~IO
% by weight) by a spinner coating method, dip coating method, screen printing method, spray coating method, roll coating method, etc., and can be cured and formed under predetermined curing conditions (for example, heating).

絶縁性配向制御層の層の厚みは通常50人〜1μ、好ま
しくは100人〜5000人さらに好ましくは500人
〜3000人が適している。 、 この2枚のガラス基板2はスペーサ−5によって任意の
間かくに保たれている。例えば、所定の直径を持つシリ
カビーズ、アルミナピーズをスペーサーとしてカラス基
板2枚で挾持し、周囲をシール材、例えばエポキシ系接
着剤を用いて密封する方法がある。その他、スペーサー
として高分子フィルムやガラスファイバー等を用いても
良い。この2枚のガラス基板の間に強誘電性液晶が封入
されている。
The thickness of the insulating orientation control layer is usually 50 to 1 μm, preferably 100 to 5,000, and more preferably 500 to 3,000. , These two glass substrates 2 are kept hidden for an arbitrary period of time by spacers 5. For example, there is a method in which silica beads or alumina beads having a predetermined diameter are used as spacers and are sandwiched between two glass substrates, and the periphery is sealed using a sealing material such as an epoxy adhesive. In addition, a polymer film, glass fiber, or the like may be used as a spacer. A ferroelectric liquid crystal is sealed between these two glass substrates.

強誘電性液晶が封入された強誘電性液晶層は、一般には
0.5〜20μ、好ましくは1μ〜5μである。
The ferroelectric liquid crystal layer in which the ferroelectric liquid crystal is encapsulated generally has a thickness of 0.5 to 20μ, preferably 1μ to 5μ.

透明電極3からはリード線によって外部電源7に接続さ
れている。またガラス基板2の外側には偏光板8が張り
合わせである。第1図は透過型なので、光源9を備えて
いる。
The transparent electrode 3 is connected to an external power source 7 by a lead wire. Further, a polarizing plate 8 is pasted on the outside of the glass substrate 2. Since the device shown in FIG. 1 is of a transmission type, it is equipped with a light source 9.

第2図は、強誘電性液晶素子の動作説明のために、セル
の例を模式的に描いたものである。21aと、21bは
、それぞれ■n203.SnO2あるいはITO(In
dium−Tin  0xide)等の薄膜からなる透
明電極で被覆された基板(ガラス板)であり、その間に
液晶分子層22がガラス面に垂直になるように配向した
SmC*層又はSmH*層の液晶が封入されている。太
線で示した線23が液晶分子を表わしており、この液晶
分子23はその分子に直交した方向に双極子モーメント
(P±)14を有している。基板21aと21b上の電
極間に一定の閾値以上の電圧を印加すると、液晶分子2
3のらせん構造がほどけ、双極子モーメント(P土)2
4がすべて電界方向に向(よう、液晶分子23は配向方
向を変えることが出来る。液晶分子23は、細長い形状
を有しており、その長軸方向と短軸方向で屈折率異方性
を示し、従って例えばガラス面の上下に互いにクロスニ
コルの偏光子を置けば、電圧印加極性によって光学特性
が変わる液晶光学変調素子となることは、容易に理解さ
れる。
FIG. 2 schematically depicts an example of a cell for explaining the operation of a ferroelectric liquid crystal element. 21a and 21b are respectively ■n203. SnO2 or ITO (In
A substrate (glass plate) coated with a transparent electrode made of a thin film such as dium-Tin oxide), between which a liquid crystal layer of SmC* layer or SmH* layer is oriented so that the liquid crystal molecular layer 22 is perpendicular to the glass surface. is included. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P±) 14 in a direction perpendicular to the molecule. When a voltage higher than a certain threshold is applied between the electrodes on the substrates 21a and 21b, the liquid crystal molecules 2
The helical structure of 3 unravels, and the dipole moment (P soil) 2
4 are all oriented in the direction of the electric field (so that the liquid crystal molecules 23 can change their orientation direction.The liquid crystal molecules 23 have an elongated shape, and have refractive index anisotropy in the long axis direction and the short axis direction. Therefore, it is easy to understand that, for example, if crossed nicol polarizers are placed above and below a glass surface, a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage can be obtained.

本発明の光学変調素子で好ましく用いられる液晶セルは
、その厚さを充分に薄((例えばlOμ以下)すること
ができる。このように液晶層が薄くなるにしたがい、第
3図に示すように電界を印加していない状態でも液晶分
子のらせん構造がほどけ、その双極子モーメントPaま
たはpbは上向き(34a)又は下向き(34b)のど
ちらかの状態をとる。このようなセルに、第3図に示す
如く一定の閾値以上の極性の異る電界Ea又はEbを電
圧印加手段31aと31bにより付与すると、双極子モ
ーメントは、電界Ea又はEl)の電界ベクトルに対応
して上向き34 a又は下向き34bと向きを変え、そ
れに応じて液晶分子は、第1の安定状態33aかあるい
は第2の安定状態33bの何れか一方に配向する。
The thickness of the liquid crystal cell preferably used in the optical modulation element of the present invention can be made sufficiently thin (for example, 10μ or less).As the liquid crystal layer becomes thinner in this way, as shown in FIG. Even when no electric field is applied, the helical structure of the liquid crystal molecules unravels, and the dipole moment Pa or pb takes either an upward (34a) or downward (34b) state. When an electric field Ea or Eb of different polarity above a certain threshold value is applied by the voltage applying means 31a and 31b as shown in FIG. Accordingly, the liquid crystal molecules are oriented to either the first stable state 33a or the second stable state 33b.

このような強誘電性を光学変調素子として用いることの
利点は、先にも述べたが2つある。
As mentioned earlier, there are two advantages to using such ferroelectricity as an optical modulation element.

その第1は、応答速度が極めて速いことであり、第2は
液晶分子の配向が双安定性を有することである。第2の
点を、例えば第2図によって更に説明すると、電界Ea
を印加すると液晶分子は第1の安定状態33aに配向す
るが、この状態は電界を切っても安定である。又、逆向
きの電界Ebを印加すると、液晶分子は第2の安定状態
23bに配向してその分子の向きを変えるが、やはり電
界を切ってもこの状態に留っている。又、与える電界E
aあるいはEbが一定の閾値を越えない限り、それぞれ
前の配向状態にやはり維持されている。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point, for example with reference to FIG. 2, the electric field Ea
When the voltage is applied, the liquid crystal molecules are aligned in a first stable state 33a, and this state remains stable even when the electric field is turned off. Further, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are oriented to the second stable state 23b and change their orientation, but they remain in this state even after the electric field is turned off. Also, the electric field E
As long as a or Eb does not exceed a certain threshold, the respective previous orientations are maintained.

以下実施例により、本発明の化合物について、更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。
The compounds of the present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

実施例1−1 2枚の0.7m厚のガラス板を用意し、それぞれのガラ
ス板上にITO膜を形成し、電圧印加電極を作成し、さ
らにこの上にSiO2を蒸着させ絶縁層とした。ガラス
板上にシランカップリン剤[信越化学■製KBM−60
2] 0.2%、イソプロピルアルコール溶液を回転数
200Or、p、mのスピードで15秒間塗布し、表面
処理を施した。この後120℃にて20分間加熱乾燥処
理を施した。
Example 1-1 Two glass plates with a thickness of 0.7 m were prepared, an ITO film was formed on each glass plate, a voltage application electrode was created, and SiO2 was further deposited on this to form an insulating layer. . Silane coupling agent [KBM-60 manufactured by Shin-Etsu Chemical ■] on the glass plate
2] A 0.2% isopropyl alcohol solution was applied for 15 seconds at a rotational speed of 200 Or, p, m for surface treatment. Thereafter, a heat drying treatment was performed at 120° C. for 20 minutes.

さらに表面処理を行ったITO膜付きのガラス板上にポ
リイミド樹脂前駆体[東しくItO8P−51012%
ジメチルアセトアミド溶液を回転数200Or、p。
Furthermore, a polyimide resin precursor [Toshishiku ItO8P-51012%
The dimethylacetamide solution was rotated at 200 rpm.

mのスピンナーで15秒間塗布した。成膜後60分間、
300℃加熱縮合焼成処理を施した。この時塗膜の膜厚
は、約700人であった。
It was applied for 15 seconds using a spinner. 60 minutes after film formation,
A heating condensation firing treatment was performed at 300°C. At this time, the thickness of the coating film was about 700.

この焼成後の被膜には、アセテート植毛布によるラビン
グ処理がなされ、その後イソプロピルアルコール液で洗
浄し、平均粒径2μmのアルミナビーズを一方のガラス
板上に散布した後、それぞれのラビング処理軸が互いに
平行となる様にし、接着シール剤[リクソンポンド(チ
ッソ(掬)]を用いて、ガラス板をはり合わせ、60分
間100℃にて加熱乾燥しセルを作成した。このセルの
セル厚をベレツク位相板によって測定したところ約2μ
mであった。
This fired coating was rubbed with acetate flocked cloth, then washed with isopropyl alcohol solution, and alumina beads with an average particle size of 2 μm were sprinkled on one glass plate, so that the rubbing axes of each plate were aligned with each other. The glass plates were glued together using an adhesive sealant [Rixon Pond (Chisso)] and dried by heating at 100°C for 60 minutes to create a cell. Approximately 2μ when measured with a plate
It was m.

次に、前記例示化合物No、2−7と下記構造式で重量
部 例示化合物No、2−710 (以下、*印は不斉炭素を示す) 示される強誘電性液晶化合物を、下記の重量部で混合し
、等吉相下、均一混合液体状態で、前述の方法で作製し
たセル内に真空注入した。等吉相から、0.5°C/h
で25℃まで徐冷することにより、強誘電性液晶素子を
作成した。
Next, the above Exemplary Compound No. 2-7 and the ferroelectric liquid crystal compound shown in the following structural formula in parts by weight Exemplary Compound No. 2-710 (hereinafter, the * mark indicates an asymmetric carbon) were combined in the following parts by weight. The mixture was mixed in a uniformly mixed liquid state under the Tokichi phase and vacuum injected into the cell prepared by the method described above. From Tokichi phase, 0.5°C/h
A ferroelectric liquid crystal element was prepared by slowly cooling the mixture to 25°C.

この強誘電性液晶素子を使って、ピーク・トウ・ピーク
電圧20Vの電圧印加により直交ニコル下での光学的な
応答(透過光量変化O〜90%)を検知して応答速度(
以後光学応答速度という)を測定した。その結果を次に
示す。
Using this ferroelectric liquid crystal element, the optical response under crossed Nicols (transmitted light amount change 0 ~ 90%) is detected by applying a voltage of 20 V peak-to-peak, and the response speed (
(hereinafter referred to as optical response speed) was measured. The results are shown below.

15°C20°C40°C 360μsec   310 μsec   205 
p sec実施例1−2 実施例1−1で使用した強誘電性液晶化合物2種に代え
て、下記構造式で示す強誘電性液晶化合物を各重量部で
用いたほかは、実施例1−1と同様の方法で強誘電性液
晶素子を作成し、実施例1−1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
15°C20°C40°C 360μsec 310μsec 205
p sec Example 1-2 Example 1-2 except that each part by weight of a ferroelectric liquid crystal compound represented by the following structural formula was used in place of the two ferroelectric liquid crystal compounds used in Example 1-1. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1-1, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

15°C25°C35°C50°C 860μsec   560μsec   325μs
ec   95μsec実施例1−3 実施例1−1で使用した強誘電性液晶化合物2種に代え
て、下記構造式で示す強誘電性液晶化合物を各重量部で
用いたほかは、実施例1−1と同様の方法で強誘電性液
晶素子を作成し、実施例1−1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
15°C25°C35°C50°C 860μsec 560μsec 325μs
ec 95 μsec Example 1-3 Example 1-3 except that each part by weight of a ferroelectric liquid crystal compound represented by the following structural formula was used in place of the two ferroelectric liquid crystal compounds used in Example 1-1. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1-1, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

10°C25°0    35℃ 4500 μsec   2600 μsec   1
900 、czsec実施例1−4 実施例1−1、で使用した強誘電性液晶化合物2種に代
えて、下記構造式で示す強誘電性液晶化合物を各重量部
で用いたほかは、実施例1−1と同様の方法で強誘電性
液晶素子を作成し、実施例1−1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
10°C25°0 35°C 4500 μsec 2600 μsec 1
900, czsec Example 1-4 In place of the two ferroelectric liquid crystal compounds used in Example 1-1, each part by weight of a ferroelectric liquid crystal compound represented by the following structural formula was used. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1-1, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

重量部 100 55°C65°C75°C lO3μsec    90 p sec    75
 p sec実施例1−5 実施例1−1で使用した強誘電性液晶化合物2種に代え
て、下記構造式で示す強誘電性液晶化合物を各重量部で
用いた他は、実施例1−1と同様の方法で強誘電性液晶
素子を作成し、実施例1−1と同様の方法で光学応答速
度を測定した。その結果を次に示す。
Weight part 100 55°C65°C75°C lO3μsec 90 psec 75
p sec Example 1-5 Example 1-5 except that each part by weight of a ferroelectric liquid crystal compound represented by the following structural formula was used in place of the two ferroelectric liquid crystal compounds used in Example 1-1. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1-1, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

25°C35°C45°C l350μsec   1100μsec   750
μsec実施例1−6 実施例1−1で使用した強誘電性液晶化合物2種に代え
て、下記構造式で示す強誘電性液晶化合物を各重量部で
用いたほかは、実施例1−1と同様の方法で強誘電性液
晶素子を作成し、実施例1−1と同様の方法で光学応答
速度を測定した。その結果を次に示す。
25°C35°C45°C l350μsec 1100μsec 750
μsec Example 1-6 Example 1-1 except that each part by weight of a ferroelectric liquid crystal compound represented by the following structural formula was used in place of the two ferroelectric liquid crystal compounds used in Example 1-1. A ferroelectric liquid crystal element was prepared in the same manner as in Example 1-1, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

0°C5°C20°C 910μsec   780 μsec   435 
μsec実施例1−7 実施例1−1で使用したポリイミド樹脂前駆体2%ジメ
チルアセトアミド溶液に代えて、ポリビニルアルコール
樹脂〔クラレ曲製PUA−11732%水溶液を用いた
ほかは全く同様の方法で強誘電性液晶素子を作成し、実
施例1−1と同様の方法で光学応答速度を測定した。そ
の結果を次に示す。
0°C5°C20°C 910μsec 780μsec 435
μsec Example 1-7 Polyimide resin precursor 2% dimethylacetamide solution used in Example 1-1 was replaced with polyvinyl alcohol resin [PUA-11732% aqueous solution made by Kuraray Kyoku Co., Ltd.]. A dielectric liquid crystal element was prepared, and its optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

15°C20°C40°C 365μsec   315 μsec   220 
μsec実施例1−8 実施例1−1で使用したSiO2を用いずにポリイミド
樹脂だけで絶縁性配向制御層を作成した以外は全〈実施
例1−1と同様の方法で強誘電性液晶素子を作成し、実
施例1−1と同様の方法で光学応答速度を測定した。そ
の結果を次に示す。
15°C20°C40°C 365μsec 315μsec 220
μsec Example 1-8 A ferroelectric liquid crystal element was fabricated in the same manner as in Example 1-1, except that the insulating alignment control layer was made only of polyimide resin without using the SiO2 used in Example 1-1. was prepared, and the optical response speed was measured in the same manner as in Example 1-1. The results are shown below.

15°C20°C4o0C 350μsec   295 μsec   200μ
sec実施例1−9〜1−29 実施例1−2で用いた例示化合物No、2−7に代えて
、表1に示す例示化合物No、の液晶性化合物を表1に
示す重量部で使用した以外は、実施例1−2と全く同様
の方法で強誘電性液晶素子を作成し光学応答速度を測定
した。その結果を表1に示す。
15°C20°C4o0C 350μsec 295μsec 200μ
sec Examples 1-9 to 1-29 In place of Exemplified Compound No. 2-7 used in Example 1-2, the liquid crystal compound of Exemplified Compound No. shown in Table 1 was used in the parts by weight shown in Table 1. A ferroelectric liquid crystal element was prepared in exactly the same manner as in Example 1-2 except for the above, and the optical response speed was measured. The results are shown in Table 1.

表  1 実施例2−1 実施例1−1の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
Table 1 Example 2-1 Exemplary compound No. of Example 1-1, No. 2-7, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C20°C4,0°C 360μsec   315 μsec   215 
μsec実施例2−2 実施例1−2の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
15°C20°C4,0°C 360μsec 315μsec 215
μsec Example 2-2 Example compound No. 2-7 of Example 1-2, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15℃    25°C35°C50°C930μse
c  570 μsec  340 μsec  12
5μsec実施例2−3 実施例1−3の例示化合物N012−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
15℃ 25℃35℃50℃930μse
c 570 μsec 340 μsec 12
5 μsec Example 2-3 Exemplary compound No. 12-7 of Example 1-3 was used as No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C25°C45°C 5100μsec  2750 μsec  1200
 μsec実施例2−4 実施例1−4の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
15°C25°C45°C 5100μsec 2750 μsec 1200
μsec Example 2-4 Exemplary compound No. of Example 1-4, No. 2-7, 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

55°C65°C75°C 115μsec   98μsec   80μsec
実施例2−5 実施例1−5の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
55°C65°C75°C 115μsec 98μsec 80μsec
Example 2-5 Example compound No. 2-7 of Example 1-5, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

25°C35°C45°C 1480μsec   1050 μsec   85
0 p see実施例2−6 実施例1−6の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
25°C35°C45°C 1480μsec 1050μsec 85
0 p see Example 2-6 Exemplary compound No. of Example 1-6, No. 2-7, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

0℃     5°C2o0C 890μsec   650μsec   420μs
ec実施例2−7 実施例1−7の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
0℃ 5℃2o0C 890μsec 650μsec 420μs
ec Example 2-7 Example compound No. 2-7 of Example 1-7, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C20°C40°C 355μsec    300 μsec    20
0 μSeC実施例2−8 実施例1−8の例示化合物No、2−7をNo、3−2
8で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
15°C20°C40°C 355μsec 300μsec 20
0 μSeC Example 2-8 Example compound No. 2-7 of Example 1-8, No. 3-2
A ferroelectric liquid crystal element was prepared using the same weight parts except that the ferroelectric liquid crystal compound represented by No. 8 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°0     20℃    40°C350μs
ec   290 μsec   190 B sec
実施例2−9〜2−31 実施例2−2で用いた例示化合物No、3−28に代え
て、表2に示す例示化合物No、の化合物を表2に示す
重量部で使用した以外は、実施例2−2と全く同様の方
法で強誘電性液晶素子を作成し光学応答速度を測定した
。その結果を表2に示す。
15°0 20°C 40°C350μs
ec 290 μsec 190 B sec
Examples 2-9 to 2-31 Except that the compound No. 3 shown in Table 2 was used in the parts by weight shown in Table 2 in place of Exemplary Compound No. 3-28 used in Example 2-2. A ferroelectric liquid crystal device was prepared in exactly the same manner as in Example 2-2, and its optical response speed was measured. The results are shown in Table 2.

表  2 実施例3−1 実施例1−1の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
Table 2 Example 3-1 Example compound No. 2-7 of Example 1-1, No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C20°C40°C 340μsec   290 p sec   195
 μsec実施例3−2 実施例1−2の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
15°C20°C40°C 340 μsec 290 p sec 195
μsec Example 3-2 Example compound No. 2-7 of Example 1-2 No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C25°C35°C50’C 830p sec  530 μsec  295 μ
sec  100μsec実施例3−3 実施例1−3の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
15°C25°C35°C50'C 830p sec 530 μsec 295 μ
sec 100 μsec Example 3-3 Example compound No. 2-7 of Example 1-3 No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15℃     25℃    35°C33007z
sec   2250μsec   1650μsec
実施例3−4 実施例1−4の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
15℃ 25℃ 35℃33007z
sec 2250μsec 1650μsec
Example 3-4 Example compound No. 2-7 of Example 1-4 No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

55°C65℃     75°C 100μsec、  80μsec   65μsec
実施例3−5 実施例1−5の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
55°C65°C 75°C 100μsec, 80μsec 65μsec
Example 3-5 Example compound No. 2-7 of Example 1-5 No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

25°C35°0     45°C l250 μsec   1050 μsec   8
50 p sec実施例3−6 実施例1−6の例示化合物N082−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
25°C35°0 45°C l250 μsec 1050 μsec 8
50 p sec Example 3-6 Exemplified compound N082-7 of Example 1-6 as No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

0°C5°C20°C 795μsec    580 μsec    39
0 μsec実施例3−7 実施例1−7の例示化合物No、2−7をNOo、4−
7で示される強誘電性液晶化合物に代えた他は、重量部
も同様にして同じ強誘電性液晶素子を作成し、光学応答
速度を測定した。
0°C5°C20°C 795μsec 580μsec 39
0 μsec Example 3-7 Exemplary compound No. of Example 1-7, 2-7 as NOo, 4-
A ferroelectric liquid crystal device was prepared using the same parts by weight except that the ferroelectric liquid crystal compound shown in No. 7 was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°0        20℃        40
°C330p sec     285 μsec  
   190 p sec実施例3−8 実施例1−8の例示化合物No、2−7をNo、4−7
で示される強誘電性液晶化合物に代えた他は、重量部も
同様にして同じ強誘電性液晶素子を作成し、光学応答速
度を測定した。
15°0 20°C 40
°C330p sec 285 μsec
190 p sec Example 3-8 Example compound No. 2-7 of Example 1-8 No. 4-7
A ferroelectric liquid crystal element was prepared using the same parts by weight except that the ferroelectric liquid crystal compound represented by was used, and the optical response speed was measured.

その結果を次に示す。The results are shown below.

15°C20°C400C 325p sec   280 μsec   185
 p sec実施例3−9〜3−30 実施例3−2で用いた例示化合物No、4−7に代えて
、表3に示す例示化合物No、の液晶性化合物を表3に
示す重量部で使用した以外は、実施例3−2と全く同様
の方法で強誘電性液晶素子を作成し光学応答速度を測定
した。その結果を表3に示す。
15°C20°C400C 325p sec 280 μsec 185
p sec Examples 3-9 to 3-30 In place of Exemplified Compound No. 4-7 used in Example 3-2, a liquid crystal compound of Exemplified Compound No. shown in Table 3 was used in the parts by weight shown in Table 3. A ferroelectric liquid crystal device was prepared in exactly the same manner as in Example 3-2, except that the device was used, and the optical response speed was measured. The results are shown in Table 3.

表  3 比較例1 実施例1で使用した例示化合物No、7を強誘電性液晶
層に含有させなかった以外は全〈実施例1と同様の方法
で強誘電性液晶素子を作成し、光学応答速度を測定した
。その結果を次に示す。
Table 3 Comparative Example 1 A ferroelectric liquid crystal element was prepared in the same manner as in Example 1, except that the exemplified compounds No. 7 used in Example 1 were not contained in the ferroelectric liquid crystal layer, and the optical response was The speed was measured. The results are shown below.

20°C30°C40°C 4,20μsec   380 μsec   325
μsec比較例2 実施例2で使用した例示化合物No、7を強誘電性液晶
層に含有させなかった他は実施例2と同様の方法で強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
20°C30°C40°C 4,20 μsec 380 μsec 325
μsec Comparative Example 2 A ferroelectric liquid crystal element was prepared in the same manner as in Example 2, except that the exemplified compound No. 7 used in Example 2 was not contained in the ferroelectric liquid crystal layer, and the same as in Example 1. The optical response speed was measured using the method described above. The results are shown below.

20℃  25℃   35°G   50℃  60
°C80℃1100μsec  730μsec  5
10μsec  230μsec  170μsec 
 100μsec比較例3 実施例3で使用した例示化合物No、7を強誘電性液晶
層に含有させなかった他は実施例3と同様の方法で強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
20°C 25°C 35°G 50°C 60
°C80℃1100μsec 730μsec 5
10μsec 230μsec 170μsec
100 μsec Comparative Example 3 A ferroelectric liquid crystal element was prepared in the same manner as in Example 3, except that the exemplified compound No. 7 used in Example 3 was not contained in the ferroelectric liquid crystal layer, and the same method as in Example 1 was made. The optical response speed was measured using the method described above. The results are shown below.

20°C25°C35°C45℃ 5400 μsec  3600 μsec  290
0 μsec  1800μsec比較例4 実施例4で使用した例示化合物NO67を強誘電性液晶
層に含有させなかった他は実施例4と同様の方法で強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
20°C25°C35°C45°C 5400 μsec 3600 μsec 290
0 μsec 1800 μsec Comparative Example 4 A ferroelectric liquid crystal element was prepared in the same manner as in Example 4, except that the exemplified compound NO67 used in Example 4 was not included in the ferroelectric liquid crystal layer, and the same method as in Example 1 was made. The optical response speed was measured using the method described above. The results are shown below.

75℃ 100 μsec 比較例5 実施例5で使用した例示化合物N007を強誘電性液晶
層に含有させなかった他は実施例5と同様の方法で強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
75°C 100 μsec Comparative Example 5 A ferroelectric liquid crystal element was prepared in the same manner as in Example 5, except that the exemplified compound N007 used in Example 5 was not included in the ferroelectric liquid crystal layer. Optical response speed was measured in a similar manner. The results are shown below.

35°C45°C5o℃ 1500 p sec  1000 μsec  80
0 μsec比較例6 実施例6で使用した例示化合物No、7を強誘電性液晶
層に含有させなかった他は実施例6と同様の方法で強誘
電性液晶素子を作成し、実施例1と同様の方法で光学応
答速度を測定した。その結果を次に示す。
35°C45°C5o°C 1500 psec 1000 μsec 80
0 μsec Comparative Example 6 A ferroelectric liquid crystal element was prepared in the same manner as in Example 6, except that the exemplified compound No. 7 used in Example 6 was not included in the ferroelectric liquid crystal layer. Optical response speed was measured in a similar manner. The results are shown below.

5°0    20℃     35℃900 p s
ec   560 μsec   480 μsec以
上の結果からも明らかな様に、本発明による化合物は低
温作動特性、高速応答性を改善することができる液晶化
合物として有効であることが判る。
5°0 20℃ 35℃900 ps
As is clear from the results of ec 560 μsec 480 μsec or more, it is clear that the compound according to the present invention is effective as a liquid crystal compound capable of improving low-temperature operating characteristics and high-speed response.

〔発明の効果〕〔Effect of the invention〕

前述してきた実施例より明らかな様に、本発明によれば
低温作動特性、高速応答性の改善された強誘電性液晶素
子を実現できる。
As is clear from the embodiments described above, according to the present invention, a ferroelectric liquid crystal element with improved low-temperature operating characteristics and high-speed response can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強誘電性液晶を用いた、液晶素子の1例の断面
概略図。 第2図および第3図は強誘電液晶素子の動作説明のため
に素子セルの一例を模式的に表わす斜視図。 第1図において、 1 ・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・強誘電液晶層2・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・ガラス基板3・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・透明電極4 ・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・絶縁性配列制御膜5・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・スペーサー6 ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・リード線7・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・電源8・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・偏光板9・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・光源Io 
 ・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・入射光I・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・透過光第2
図において、 21a ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・基板2
1b ・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・基板2
2・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・−・・
・・・・・・・強誘電液晶層23・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・液晶分子24・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・双極子モーメ
ント(P±)第3図において、
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element using ferroelectric liquid crystal. 2 and 3 are perspective views schematically showing an example of an element cell for explaining the operation of a ferroelectric liquid crystal element. In Figure 1, 1 ・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
......Ferroelectric liquid crystal layer 2...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Glass substrate 3・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Transparent electrode 4 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
......Insulating alignment control film 5...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Spacer 6 ・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・Lead wire 7・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・Power supply 8・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・Polarizing plate 9・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・Light source Io
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・Incoming light I...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・Transmitted light 2nd
In the figure, 21a ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ Board 2
1b ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ Board 2
2・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・・・
...... Ferroelectric liquid crystal layer 23 ......
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・Liquid crystal molecule 24・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・Dipole moment (P±) In Figure 3,

Claims (8)

【特許請求の範囲】[Claims] (1)下記一般式(1) 一般式(1) R_1−A_1−X−A_2−R_2 で示される液晶性化合物を少なくとも1種以上含有した
ことを特徴とする強誘電性液晶素子。 〔但し、式中 A_1とA_2は置換基を有していても良い2価の含六
員環基を示し、Xは−(CH_2)−_lO−、−O−
(CH_2)−_mであり、l、mは1または2を示す
。 R_1とR_2は同じであっても異なっていても良く、
少なくともいずれか一方は不斉炭素を有している。R_
1とR_2が同じときは、R_1とR_2は下記一般式
(2)、(3)又は(4)のいずれかで示される。 一般式(2) ▲数式、化学式、表等があります▼ (但し、式中Y_1は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_1
は0〜8までの整数を示し、 Z_1は−(CH_2)−_n_2又は▲数式、化学式
、表等があります▼を示し、(n_2は0又は1を示す
。) R_3は置換基を有していても良い炭素数1〜18まで
の分岐または直鎖のアルキル基を示し、*印は不斉炭素
を示す。) 一般式(3) ▲数式、化学式、表等があります▼ (但し、式中Y_2は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_3
は0〜8までの整数を示し、 Z_2は−CH_3又はCNを示す。) R_4は置換基を有していても良い炭素数1〜18まで
の分岐または直鎖のアルキル基を示し、*印は不斉炭素
を示す。) 一般式(4) ▲数式、化学式、表等があります▼ (但し、式中Y_3は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_4
は0〜8までの整数を示し、 Z_3はハロゲン原子を示し、 R_5は置換基を有していても良い炭素数1〜18の分
岐または直鎖のアルキル基を示し、*印は不斉炭素を示
す。) 又、R_7とR_2が異るときは、R_1とR_2のい
ずれか一方は下記一般式(2)、(3)又は(4)のい
ずれかで示され、 一般式(2) ▲数式、化学式、表等があります▼ (但し、式中Y_1は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_1
は0〜8までの整数を示し、 Z_1は−(CH_2)_n_2−又は▲数式、化学式
、表等があります▼を示し、(n_2は0又は1を示す
。) R_3は置換基を有していても良い炭素数1〜18まで
の分岐または直鎖のアルキル基を示し、*印は不斉炭素
を示す。) 一般式(3) ▲数式、化学式、表等があります▼ (但し、式中Y_2は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_3
は0〜8までの整数を示し、 Z_2は−CH_3又はCNを示す。) R_4は置換基を有していても良い炭素数1〜18まで
の分岐または直鎖のアルキル基を示し、*印は不斉炭素
を示す。) 一般式(4) ▲数式、化学式、表等があります▼ (但し、式中Y_3は単結合、−O−、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、−CH_2O−、−CH_2C
H_2O−、▲数式、化学式、表等があります▼、▲数
式、化学式、表等があります▼、▲数式、化学式、表等
があります▼、▲数式、化学式、表等があります▼又は
▲数式、化学式、表等があります▼から選ばれ、n_4
は0〜8までの整数を示し、 Z_3はハロゲン原子を示し、 R_5は置換基を有していても良い炭素数1〜18の分
岐または直鎖のアルキル基を示し、*印は不斉炭素を示
す。) R_1とR_2の他方は、置換基を有していても良い炭
素数1〜18の分岐または直鎖のアルキル基または置換
基を有していても良い炭素数1〜18の分岐または直鎖
のアルキル基を有するアシル基、アシルオキシ基、アル
コキシ基、アルコキシカルボニル基、アルコキシカルボ
ニルオキシ基を示す。〕
(1) A ferroelectric liquid crystal element containing at least one liquid crystal compound represented by the following general formula (1) R_1-A_1-X-A_2-R_2. [However, in the formula, A_1 and A_2 represent a divalent six-membered ring group which may have a substituent, and X is -(CH_2)-_lO-, -O-
(CH_2)-_m, where l and m represent 1 or 2. R_1 and R_2 may be the same or different,
At least one of them has an asymmetric carbon. R_
When 1 and R_2 are the same, R_1 and R_2 are represented by any of the following general formulas (2), (3), or (4). General formula (2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, Y_1 is a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ , ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_1
represents an integer from 0 to 8, Z_1 represents -(CH_2)-_n_2 or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, (n_2 represents 0 or 1.) R_3 has a substituent. represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms, and the * mark represents an asymmetric carbon. ) General formula (3) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, Y_2 is a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_3
represents an integer from 0 to 8, and Z_2 represents -CH_3 or CN. ) R_4 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and the mark * represents an asymmetric carbon. ) General formula (4) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, Y_3 is a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_4
represents an integer from 0 to 8, Z_3 represents a halogen atom, R_5 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms, which may have a substituent, and * indicates an asymmetric carbon shows. ) Also, when R_7 and R_2 are different, either R_1 or R_2 is represented by one of the following general formulas (2), (3), or (4), and the general formula (2) ▲Mathematical formula, chemical formula , tables, etc. ▼ (However, in the formula, Y_1 is a single bond, -O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas, tables, etc. There are▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_1
represents an integer from 0 to 8, Z_1 represents -(CH_2)_n_2- or ▲There are mathematical formulas, chemical formulas, tables, etc.▼, (n_2 represents 0 or 1.) R_3 has a substituent. represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms, and the * mark represents an asymmetric carbon. ) General formula (3) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, Y_2 is a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_3
represents an integer from 0 to 8, and Z_2 represents -CH_3 or CN. ) R_4 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms which may have a substituent, and the mark * represents an asymmetric carbon. ) General formula (4) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, in the formula, Y_3 is a single bond, -O-, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, -CH_2O-, -CH_2C
H_2O-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ Mathematical formulas, There are chemical formulas, tables, etc. Selected from ▼, n_4
represents an integer from 0 to 8, Z_3 represents a halogen atom, R_5 represents a branched or straight-chain alkyl group having 1 to 18 carbon atoms, which may have a substituent, and * indicates an asymmetric carbon shows. ) The other of R_1 and R_2 is a branched or straight chain alkyl group having 1 to 18 carbon atoms which may have a substituent or a branched or straight chain having 1 to 18 carbon atoms which may have a substituent. represents an acyl group, acyloxy group, alkoxy group, alkoxycarbonyl group, or alkoxycarbonyloxy group having an alkyl group. ]
(2)特許請求の範囲第1項記載の一般式(1)におい
て、R_1及びR_2の少なくとも一方が一般式(2)
又は(4)を有する時A_1、A_2が下記一般式(5
)で示されることを特徴とする特許請求の範囲第1項記
載の強誘電性液晶素子。 一般式(5) −(A_3)−_p−(A_4)−_q (但し、式中A_3、A_4は ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、▲数式、化学式、表等がありま
す▼、 で表わされる置換基を有していても良い含六員環基であ
り、p、qは0、1又は2で示される。)
(2) In the general formula (1) described in claim 1, at least one of R_1 and R_2 corresponds to the general formula (2)
or (4), when A_1 and A_2 have the following general formula (5
) A ferroelectric liquid crystal element according to claim 1, characterized in that the ferroelectric liquid crystal element is represented by: General formula (5) -(A_3)-_p-(A_4)-_q (However, A_3 and A_4 in the formula are ▲mathematical formulas, chemical formulas, tables, etc.▼, ▲mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas, There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, It is a six-membered ring-containing group that may have a substituent represented by the following, and p and q are represented by 0, 1, or 2. )
(3)特許請求の範囲第1項記載の一般式(1)におい
てR_1及びR_2の少なくとも一方が一般式(3)を
有する時A_1、A_2が下記一般式(6)で示される
ことを特徴とする特許請求の範囲第1項記載の強誘電性
液晶素子。 一般式(6) −(A_5)−_r−(A_6)−_s (式中A_5とA_6は同じでも異なっていてもよく、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
、▲数式、化学式、表等があります▼、▲数式、化学式
、表等があります▼、▲数式、化学式、表等があります
▼、▲数式、化学式、表等があります▼、▲数式、化学
式、表等があります▼、 で表わされる置換基を有していても良い含六員環基であ
る。 但し、A_5とA_6が異なる時、いずれか一方が▲数
式、化学式、表等があります▼であってもよい。 r、sは0、1又は2で示される。)
(3) When at least one of R_1 and R_2 in general formula (1) described in claim 1 has general formula (3), A_1 and A_2 are represented by the following general formula (6). A ferroelectric liquid crystal device according to claim 1. General formula (6) -(A_5)-_r-(A_6)-_s (In the formula, A_5 and A_6 may be the same or different, ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ Mathematical formulas, chemical formulas, There are tables, etc. ▼, It is a six-membered ring-containing group that may have a substituent represented by. However, when A_5 and A_6 are different, either one may be ▲There is a mathematical formula, chemical formula, table, etc.▼. r and s are indicated by 0, 1 or 2. )
(4)特許請求の範囲第1項記載の一般式(1)、(2
)において、R_1とR_2が異なる時の一般式(2)
、(3)または(4)で示される以外のR_1、または
R_2の置換基がハロゲン原子、アルコキシ基、トリフ
ルオロメチル、シアノ基から選ばれることを特徴とする
特許請求の範囲第1項記載の強誘電性液晶素子。
(4) General formulas (1) and (2) described in claim 1
), general formula (2) when R_1 and R_2 are different
, (3) or (4), the substituent for R_1 or R_2 is selected from a halogen atom, an alkoxy group, a trifluoromethyl, and a cyano group. Ferroelectric liquid crystal element.
(5)特許請求の範囲第1項記載の一般式(4)におい
て、Zがフッ素、塩素から選ばれることを特徴とする特
許請求の範囲第1項記載の強誘電性液晶素子。
(5) The ferroelectric liquid crystal element according to claim 1, wherein in the general formula (4) described in claim 1, Z is selected from fluorine and chlorine.
(6)特許請求の範囲第1項記載の一般式(1)におい
てA_1、A_2の置換基がハロゲン原子、アルキル基
、アルコキシ基、トリフルオロメチル、シアノ基から選
ばれることを特徴とする特許請求の範囲第1項記載の強
誘電性液晶素子。
(6) A claim characterized in that in the general formula (1) described in claim 1, the substituents A_1 and A_2 are selected from a halogen atom, an alkyl group, an alkoxy group, trifluoromethyl, and a cyano group. The ferroelectric liquid crystal device according to item 1.
(7)特許請求の範囲第1項記載の強誘電性液晶素子が
液晶光学変調素子である特許請求の範囲第1項記載の強
誘電性液晶素子。
(7) The ferroelectric liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal device according to claim 1 is a liquid crystal optical modulation device.
(8)特許請求の範囲第1項記載の強誘電性液晶素子が
液晶表示素子である特許請求の範囲第1項記載の強誘電
性液晶素子。
(8) The ferroelectric liquid crystal device according to claim 1, wherein the ferroelectric liquid crystal device according to claim 1 is a liquid crystal display device.
JP62088097A 1987-04-10 1987-04-10 Ferroelectric liquid crystal element Pending JPS63254182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62088097A JPS63254182A (en) 1987-04-10 1987-04-10 Ferroelectric liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62088097A JPS63254182A (en) 1987-04-10 1987-04-10 Ferroelectric liquid crystal element

Publications (1)

Publication Number Publication Date
JPS63254182A true JPS63254182A (en) 1988-10-20

Family

ID=13933366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62088097A Pending JPS63254182A (en) 1987-04-10 1987-04-10 Ferroelectric liquid crystal element

Country Status (1)

Country Link
JP (1) JPS63254182A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450835A (en) * 1987-08-21 1989-02-27 Takasago Perfumery Co Ltd Liquid crystal compound
EP0350937A2 (en) * 1988-07-14 1990-01-17 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
EP0355314A2 (en) * 1988-06-24 1990-02-28 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
JPH02279665A (en) * 1989-04-19 1990-11-15 Mitsui Toatsu Chem Inc Production of phthalonitrile compound and its production
JPH0324036A (en) * 1989-06-20 1991-02-01 Wako Pure Chem Ind Ltd Optically active compound and liquid crystal composition
DE4034122A1 (en) * 1990-10-26 1992-04-30 Merck Patent Gmbh Optically active 5-hydroxy-pyridin-2-yl derivs. - useful as components of liq. crystal media, e.g. ferroelectric IC media
US5167862A (en) * 1984-11-13 1992-12-01 Chan Lawrence K M Alpha-hydroxy carboxylic acid derivates suitable for use in liquid crystal materials and devices
US5366656A (en) * 1992-01-31 1994-11-22 Industrial Technology Research Institute Optically active alcohol and derivatives thereof, liquid crystal composition containing same and liquid crystal device
US5958837A (en) * 1995-01-13 1999-09-28 Basf Aktiengesellschaft Substituted 2-phenylpyridines
WO2016133035A1 (en) * 2015-02-17 2016-08-25 Jnc株式会社 Compound having saturated six-membered ring and alkoxy group or alkoxyalkyl group, liquid crystal composition and liquid crystal display element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167862A (en) * 1984-11-13 1992-12-01 Chan Lawrence K M Alpha-hydroxy carboxylic acid derivates suitable for use in liquid crystal materials and devices
JPS6450835A (en) * 1987-08-21 1989-02-27 Takasago Perfumery Co Ltd Liquid crystal compound
EP0355314A2 (en) * 1988-06-24 1990-02-28 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
EP0350937A2 (en) * 1988-07-14 1990-01-17 Canon Kabushiki Kaisha Ferroelectric chiral smectic liquid crystal composition and liquid crystal device using same
JPH02279665A (en) * 1989-04-19 1990-11-15 Mitsui Toatsu Chem Inc Production of phthalonitrile compound and its production
JPH0819077B2 (en) * 1989-04-19 1996-02-28 三井東圧化学株式会社 Phthalonitrile compound and method for producing the same
JPH0324036A (en) * 1989-06-20 1991-02-01 Wako Pure Chem Ind Ltd Optically active compound and liquid crystal composition
DE4034122A1 (en) * 1990-10-26 1992-04-30 Merck Patent Gmbh Optically active 5-hydroxy-pyridin-2-yl derivs. - useful as components of liq. crystal media, e.g. ferroelectric IC media
US5366656A (en) * 1992-01-31 1994-11-22 Industrial Technology Research Institute Optically active alcohol and derivatives thereof, liquid crystal composition containing same and liquid crystal device
US5958837A (en) * 1995-01-13 1999-09-28 Basf Aktiengesellschaft Substituted 2-phenylpyridines
WO2016133035A1 (en) * 2015-02-17 2016-08-25 Jnc株式会社 Compound having saturated six-membered ring and alkoxy group or alkoxyalkyl group, liquid crystal composition and liquid crystal display element
JPWO2016133035A1 (en) * 2015-02-17 2017-11-30 Jnc株式会社 Compound, liquid crystal composition and liquid crystal display device having alkoxy group or alkoxyalkyl group and saturated 6-membered ring

Similar Documents

Publication Publication Date Title
JP3187611B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
US5482652A (en) Chiral smectic liquid crystal composition and device using the same
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JPS63254182A (en) Ferroelectric liquid crystal element
JP2832028B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JP2692947B2 (en) Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0429993A (en) Liquid crystalline compound, liquid crystal composition containing the same and liquid crystal element using the same
JP3176073B2 (en) Liquid crystal element
JPS63137986A (en) Ferroelectric liquid crystal device
JP2819332B2 (en) Liquid crystal compound and liquid crystal composition containing the same
US5151214A (en) Ferroelectric liquid crystal device
JPS63172788A (en) Liquid crystal composition and liquid crystal element containing the same
JP3060313B2 (en) Liquid crystal compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH06104827B2 (en) Ferroelectric liquid crystal element
JPH0629424B2 (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal device containing the same
JPS63135346A (en) Optically active compound and liquid crystal composition and ferroelectric liquid crystal element containing said compound
JPH0426679A (en) Liquid crystalline compound, liquid crystal composition containing the same and liquid crystal element using the same
JPS63137985A (en) Ferroelectric liquid crystal device
JPH0358980A (en) Liquid crystal compound, liquid crystal composition containing the compound and liquid crystal element using the same composition
JP2692986B2 (en) Liquid crystalline compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPS63291980A (en) Ferroelectric liquid crystal element
JP3230024B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element using the liquid crystal composition, display method using the same, and display device
JPH04247076A (en) Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JP3005064B2 (en) Liquid crystal composition, liquid crystal element having the same, display method and display device using the same