JPH04247076A - Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same - Google Patents

Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same

Info

Publication number
JPH04247076A
JPH04247076A JP1209491A JP1209491A JPH04247076A JP H04247076 A JPH04247076 A JP H04247076A JP 1209491 A JP1209491 A JP 1209491A JP 1209491 A JP1209491 A JP 1209491A JP H04247076 A JPH04247076 A JP H04247076A
Authority
JP
Japan
Prior art keywords
liquid crystal
outside
compound represented
crystal composition
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1209491A
Other languages
Japanese (ja)
Inventor
Takao Takiguchi
隆雄 滝口
Takashi Iwaki
孝志 岩城
Gouji Tokanou
門叶 剛司
Yoko Yamada
容子 山田
Shinichi Nakamura
真一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1209491A priority Critical patent/JPH04247076A/en
Publication of JPH04247076A publication Critical patent/JPH04247076A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a new liquid crystal compound having improved response characteristic to electric field and useful as liquid crystal display element, etc. CONSTITUTION:The compound of formula I [R1 is 1-16C alkyl; R2 is 1-16C alkyl, halogen, trifluoromethyl, etc.; X1 is single bond, etc.; X2 is single bond, O, etc. ; A1 is group of formula II (X3 and X4 are H, halogen, methyl, etc.); A2 is group of formula III (X5 and X6 are same as X3), etc.], e.g. 2-(4- carboxyphenyl)-5-heptylpyrimidine. The compound can be produced by using a compound of formula IV (R1 is CH3, C2H5, etc.) as a starting compound. A liquid crystal composition containing at least one kind of the above compound is placed between a pair of electrode substrates to obtain a display device, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、新規な液晶性化合物、
それを含有する液晶組成物およびそれを使用した液晶素
子並びに表示装置に関し、さらに詳しくは電界に対する
応答特性が改善された新規な液晶組成物、およびそれを
使用した液晶表示素子や液晶−光シャッター等に利用さ
れる液晶素子並びに該液晶素子を表示に使用した表示装
置に関するものである。
[Industrial Application Field] The present invention relates to a novel liquid crystal compound,
Regarding liquid crystal compositions containing the same, and liquid crystal elements and display devices using the same, more specifically, novel liquid crystal compositions with improved response characteristics to electric fields, and liquid crystal display elements and liquid crystal-optical shutters using the same. The present invention relates to a liquid crystal element used in , and a display device using the liquid crystal element for display.

【0002】0002

【従来の技術】従来より、液晶は電気光学素子として種
々の分野で応用されている。現在実用化されている液晶
素子はほとんどが、例えばエム  シャット(M.Sc
hadt)とダブリュ  ヘルフリッヒ(W.Helf
rich)著“アプライド  フィジックス  レター
ズ”(“Applied  Physics  Let
ters”)Vo.18,  No.4(1971.2
.15)P.127〜128の“Voltage  D
ependent  Optical  Activi
ty  of  aTwisted  Nematic
  liquid  Crystal”に示されたTN
(Twisted  Nematic)型の液晶を用い
たものである。
2. Description of the Related Art Conventionally, liquid crystals have been applied as electro-optical elements in various fields. Most of the liquid crystal elements currently in practical use are, for example, M.Sc.
hadt) and W. Helf
“Applied Physics Letters” by Rich
ters”) Vo.18, No.4 (1971.2
.. 15) P. 127-128 “Voltage D
ependent Optical Activities
Ty of a Twisted Nematic
TN shown in “liquid Crystal”
(Twisted Nematic) type liquid crystal is used.

【0003】これらは、液晶の誘電的配列効果に基づい
ており、液晶分子の誘電異方性のために平均分子軸方向
が、加えられた電場により特定の方向に向く効果を利用
している。これらの素子の光学的な応答速度の限界はミ
リ秒であるといわれ、多くの応用のためには遅すぎる。
These methods are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the dielectric anisotropy of liquid crystal molecules causes the average molecular axis direction to be oriented in a specific direction by an applied electric field. The optical response speed limit of these devices is said to be milliseconds, which is too slow for many applications.

【0004】一方、大型平面ディスプレイへの応用では
、価格、生産性などを考え合せると単純マトリクス方式
による駆動が最も有力である。単純マトリクス方式にお
いては、走査電極群と信号電極群をマトリクス状に構成
した電極構成が採用され、その駆動のためには、走査電
極群に順次周期的にアドレス信号を選択印加し、信号電
極群には所定の情報信号をアドレス信号と同期させて並
列的に選択印加する時分割駆動方式が採用されている。
On the other hand, for application to large flat displays, driving by a simple matrix method is most effective in consideration of cost, productivity, etc. In the simple matrix method, an electrode configuration in which a scanning electrode group and a signal electrode group are arranged in a matrix is adopted, and in order to drive the electrode group, an address signal is selectively and periodically applied to the scanning electrode group, and the signal electrode group is A time division driving method is adopted in which a predetermined information signal is selectively applied in parallel in synchronization with an address signal.

【0005】しかし、この様な駆動方式の素子に前述し
たTN型の液晶を採用すると走査電極が選択され、信号
電極が選択されない領域、或いは走査電極が選択されず
、信号電極が選択される領域(所謂“半選択点”)にも
有限に電界がかかってしまう。
However, when the above-mentioned TN type liquid crystal is adopted as an element of such a driving method, there are areas where the scanning electrode is selected and the signal electrode is not selected, or an area where the scanning electrode is not selected and the signal electrode is selected. A finite electric field is also applied to the so-called "half-selected point".

【0006】選択点にかかる電圧と、半選択点にかかる
電圧の差が充分に大きく、液晶分子を電界に垂直に配列
させるのに要する電圧閾値がこの中間の電圧値に設定さ
れるならば、表示素子は正常に動作するわけであるが、
走査線数(N)を増加して行った場合、画面全体(1フ
レーム)を走査する間に一つの選択点に有効な電界がか
かっている時間(duty比)が1/Nの割合で減少し
てしまう。
If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value, then Although the display element operates normally,
When increasing the number of scanning lines (N), the time during which an effective electric field is applied to one selected point while scanning the entire screen (one frame) (duty ratio) decreases by 1/N. Resulting in.

【0007】このために、くり返し走査を行った場合の
選択点と非選択点にかかる実効値としての電圧差は、走
査線数が増えれば増える程小さくなり、結果的には画像
コントラストの低下やクロストークが避け難い欠点とな
っている。
For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and Crosstalk is an unavoidable drawback.

【0008】この様な現象は、双安定性を有さない液晶
(電極面に対し、液晶分子が水平に配向しているのが安
定状態であり、電界が有効に印加されている間のみ垂直
に配向する)を時間的蓄積効果を利用して駆動する(即
ち、繰り返し走査する)ときに生ずる本質的には避け難
い問題点である。
This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are oriented horizontally with respect to the electrode surface, and the liquid crystal molecules are oriented vertically only while an electric field is effectively applied). This is essentially an unavoidable problem that arises when driving (i.e., repeatedly scanning) an image (orientated to

【0009】この点を改良するために、電圧平均化法、
2周波駆動法や、多重マトリクス法等が既に提案されて
いるが、いずれの方法でも不充分であり、表示素子の大
画面化や高密度化は、走査線数が充分に増やせないこと
によって頭打ちになっているのが現状である。
In order to improve this point, a voltage averaging method,
Dual-frequency drive methods and multiplex matrix methods have already been proposed, but none of these methods are sufficient, and the ability to increase the screen size and density of display devices has reached a plateau because the number of scanning lines cannot be increased sufficiently. The current situation is that

【0010】この様な従来型の液晶素子の欠点を改善す
るものとして、双安定性を有する液晶素子の使用がクラ
ーク(Clark)およびラガウェル(Lagerwa
ll)により提案されている(特開昭56−10721
6号公報、米国特許第4367924号明細書等)。
In order to improve the drawbacks of conventional liquid crystal devices, the use of a bistable liquid crystal device has been proposed by Clark and Lagerwa.
ll) (Japanese Patent Application Laid-open No. 56-10721
6, U.S. Pat. No. 4,367,924, etc.).

【0011】双安定性液晶としては、一般にカイラルス
メクティックC相(SmC*相)又はH相(SmH*相
)を有する強誘電性液晶が用いられる。
As the bistable liquid crystal, a ferroelectric liquid crystal having a chiral smectic C phase (SmC* phase) or H phase (SmH* phase) is generally used.

【0012】この強誘電性液晶は電界に対して第1の光
学的安定状態と第2の光学的安定状態からなる双安定状
態を有し、従って前述のTN型の液晶で用いられた光学
変調素子とは異なり、例えば一方の電界ベクトルに対し
て第1の光学的安定状態に液晶が配向し、他方の電界ベ
クトルに対しては第2の光学的安定状態に液晶が配向さ
れている。また、この型の液晶は、加えられる電界に応
答して、上記2つの安定状態のいずれかを取り、且つ電
界の印加のないときはその状態を維持する性質(双安定
性)を有する。
[0012] This ferroelectric liquid crystal has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field. Unlike the elements, for example, the liquid crystal is oriented in a first optically stable state with respect to one electric field vector, and the liquid crystal is oriented in a second optically stable state with respect to the other electric field vector. Further, this type of liquid crystal has a property (bistability) of taking one of the above two stable states in response to an applied electric field and maintaining that state when no electric field is applied.

【0013】以上の様な双安定性を有する特徴に加えて
、強誘電性液晶は高速応答性であるという優れた特徴を
持つ。それは強誘電性液晶の持つ自発分極と印加電場が
直接作用して配向状態の転移を誘起するためであり、誘
電率異方性と電場の作用による応答速度より3〜4オー
ダー速い。
In addition to the above-mentioned feature of bistability, ferroelectric liquid crystals have an excellent feature of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce a transition in the orientation state, which is 3 to 4 orders of magnitude faster than the response speed due to the effect of the dielectric anisotropy and the electric field.

【0014】この様に強誘電性液晶はきわめて優れた特
性を潜在的に有しており、このような性質を利用するこ
とにより、上述した従来のTN型素子の問題点の多くに
対して、かなり本質的な改善が得られる。特に、高速光
学光シャッターや高密度,大画面ディスプレイへの応用
が期待される。このため強誘電性を持つ液晶材料に関し
ては広く研究がなされているが、現在までに開発された
強誘電性液晶材料は、低温作動特性、高速応答性等を含
めて液晶素子に用いる十分な特性を備えているとは言い
難い。
As described above, ferroelectric liquid crystals potentially have extremely excellent properties, and by utilizing these properties, many of the problems of the conventional TN type elements mentioned above can be solved. A fairly substantial improvement can be obtained. In particular, it is expected to be applied to high-speed optical shutters and high-density, large-screen displays. For this reason, extensive research has been conducted on liquid crystal materials with ferroelectric properties, but the ferroelectric liquid crystal materials developed to date have sufficient characteristics for use in liquid crystal devices, including low-temperature operation characteristics and high-speed response. It is difficult to say that it is equipped with the following.

【0015】応答時間τと自発分極の大きさPsおよび
粘度ηの間には、下記の式[II]
The relationship between the response time τ, the magnitude of spontaneous polarization Ps, and the viscosity η is expressed by the following formula [II]

【0016】[0016]

【外24】 (ただし、Eは印加電界である)の関係が存在する。し
たがって応答速度を速くするには、 (ア)自発分極の大きさPsを大きくする(イ)粘度η
を小さくする (ウ)印加電界Eを大きくする 方法がある。しかし印加電界は、IC等で駆動するため
上限があり、出来るだけ低い方が望ましい。よって、実
際には粘度ηを小さくするか、自発分極の大きさPsの
値を大きくする必要がある。
The following relationship exists, where E is the applied electric field. Therefore, in order to increase the response speed, (a) increase the magnitude of spontaneous polarization Ps (b) viscosity η
(c) There is a method of increasing the applied electric field E. However, since the applied electric field is driven by an IC or the like, there is an upper limit, and it is desirable that the applied electric field be as low as possible. Therefore, it is actually necessary to reduce the viscosity η or increase the value of the spontaneous polarization Ps.

【0017】一般的に自発分極の大きい強誘電性カイラ
ルスメクチック液晶化合物においては、自発分極のもた
らすセルの内部電界も大きく、双安定状態をとり得る素
子構成への制約が多くなる傾向にある。又、いたずらに
自発分極を大きくしても、それにつれて粘度も大きくな
る傾向にあり、結果的には応答速度はあまり速くならな
いことが考えられる。
In general, in ferroelectric chiral smectic liquid crystal compounds that have a large spontaneous polarization, the internal electric field of the cell caused by the spontaneous polarization is also large, and there tends to be more restrictions on the device configuration that can take a bistable state. Moreover, even if the spontaneous polarization is increased unnecessarily, the viscosity tends to increase accordingly, and as a result, it is conceivable that the response speed will not become very fast.

【0018】また、実際のディスプレイとしての使用温
度範囲が例えば5〜40℃程度とした場合、応答速度の
変化が一般に20倍程もあり、駆動電圧および周波数に
よる調節の限界を越えているのが現状である。
Furthermore, when the actual operating temperature range for a display is, for example, about 5 to 40°C, the response speed generally changes by about 20 times, which exceeds the limits of adjustment by drive voltage and frequency. This is the current situation.

【0019】以上述べたように、強誘電性液晶素子を実
用化するためには、大きな自発分極と低い粘性による高
速応答性を有し、かつ応答速度の温度依存性の小さなカ
イラルスメクチック相を示す液晶組成物が要求される。
As described above, in order to put a ferroelectric liquid crystal element into practical use, it is necessary to have a high-speed response due to large spontaneous polarization and low viscosity, and exhibit a chiral smectic phase with small temperature dependence of response speed. A liquid crystal composition is required.

【0020】[0020]

【発明が解決しようとする問題点】本発明の目的は、前
述の強誘電性液晶素子を実用できるようにするために、
応答速度を速く、しかもしの応答速度の温度依存性を軽
減させるのに効果的な液晶性化合物、これを含む液晶組
成物、特に強誘電性カイラルスメクチツク相を示す液晶
組成物、および該液晶組成物を使用する液晶素子,表示
装置を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to make the above-mentioned ferroelectric liquid crystal device practical.
A liquid crystal compound effective in increasing the response speed and reducing the temperature dependence of the response speed, a liquid crystal composition containing the same, particularly a liquid crystal composition exhibiting a ferroelectric chiral smectic phase, and An object of the present invention is to provide a liquid crystal element and a display device using a liquid crystal composition.

【0021】[0021]

【問題を解決するための手段】本発明は下記一般式〔I
[Means for solving the problem] The present invention is based on the following general formula [I
]

【0022】[0022]

【外25】 で示される液晶化合物、該液晶性化合物の少なくとも1
種を含有する液晶組成物、および該液晶組成物を1対の
電極基板間に配置してなる液晶素子、並びに表示装置を
提供するものである。
A liquid crystal compound represented by [25], at least one of the liquid crystal compounds
The present invention provides a liquid crystal composition containing a seed, a liquid crystal element in which the liquid crystal composition is disposed between a pair of electrode substrates, and a display device.

【0023】〔I〕式で示される液晶性化合物のうち好
ましい化合物としては〔Ia〕〜〔Ii〕が上げられる
Among the liquid crystalline compounds represented by the formula [I], preferred compounds include [Ia] to [Ii].

【0024】[0024]

【外26】 〔Ia〕〜〔Ii〕式で示される液晶性化合物のうちさ
らに好ましい化合物として次に示す〔Iaa〕〜〔Ii
b〕が上げられる。
[Ia] to [Ii] More preferable compounds among the liquid crystalline compounds represented by the formulas [Ia] to [Ii] are as follows: [Iaa] to [Ii]
b] is raised.

【0025】[0025]

【外27】[Outside 27]

【0026】[0026]

【外28】[Outside 28]

【0027】[0027]

【外29】 は−O−である。X3,X4,X5,X6は好ましくは
それぞれ水素原子,ハロゲン原子,またはトリフルオロ
メチル基であり、より好ましくは水素原子,フッ素原子
,塩素原子またはトリフルオロメチル基である。
[29] is -O-. X3, X4, X5, and X6 are each preferably a hydrogen atom, a halogen atom, or a trifluoromethyl group, and more preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a trifluoromethyl group.

【0028】また、好ましいR1は下記(i)〜(iv
)から選ばれる。 (i)炭素原子数3〜12のn−アルキル基。 (ii)
Further, preferable R1 is the following (i) to (iv)
) is selected from. (i) n-alkyl group having 3 to 12 carbon atoms. (ii)

【0029】[0029]

【外30】 (ただし、mは0〜6の整数、nは1〜8の整数を示す
。また、光学活性であってもよい。)(iii)
(However, m is an integer of 0 to 6, and n is an integer of 1 to 8. It may also be optically active.) (iii)

【0030】[0030]

【外31】 (ただし、rは0〜6の整数、sは0または1、tは1
〜12の整数を示す。また、光学活性であってもよい。 ) (iv)
[31] (where r is an integer from 0 to 6, s is 0 or 1, t is 1
Indicates an integer between ~12. It may also be optically active. ) (iv)

【0031】[0031]

【外32】 (ただし、yは0または1で、xは1〜14の整数であ
る。)
[Example 32] (However, y is 0 or 1, and x is an integer from 1 to 14.)

【0032】また、好ましいR2は下記(i)〜(v)
から選ばれる。 (i)炭素原子数3〜12のn−アルキル基。 (ii)
[0032] Preferred R2 are the following (i) to (v).
selected from. (i) n-alkyl group having 3 to 12 carbon atoms. (ii)

【0033】[0033]

【外33】 (ただし、mは0〜6の整数、nは1〜8の整数を示す
。また、光学活性であってもよい。)(iii)
[33] (However, m is an integer of 0 to 6, and n is an integer of 1 to 8. Also, it may be optically active.) (iii)

【0034】[0034]

【外34】 (ただし、rは0〜6の整数、sは0または1、tは1
〜12の整数を示す。また、光学活性であってもよい。 ) (iv)
[34] (where r is an integer from 0 to 6, s is 0 or 1, t is 1
Indicates an integer between ~12. It may also be optically active. ) (iv)

【0035】[0035]

【外35】 (v)フッ素原子,塩素原子,トリフルオロメチル基ま
たはシアノ基,より好ましくはフッ素原子またはトリフ
ルオロメチル基。
(v) A fluorine atom, a chlorine atom, a trifluoromethyl group or a cyano group, more preferably a fluorine atom or a trifluoromethyl group.

【0036】現在までチアゾール環を有する液晶化合物
については、H.Zaschkeet  al.,J.
prake.Chem.,321,643−654(1
979)および国際出願88/08019で記載されて
いる。しかしながら、前者には本発明の一般式〔I〕で
示されるチアゾール−2,5−ジイル誘導体の記載はな
く、後者においてはチアジルゾールおよびチアジゾール
−2,4−ジイル誘導体の具体的例示はあるものの、チ
アゾール−2,5−ジイル誘導体の具体的例示は全くな
い。本発明者らは一般式〔I〕で示されるチアゾ−ル−
2,5−ジイル誘導体が後に実施例で示されるように、
国際出願88/08019で開示されている1,3,4
−チアジアゾール−2,5−ジイル誘導体に比べて粘性
が低く、高速応答性を有する強誘電性カイラルスメクチ
ック液晶組成物を与えることを見い出した。
Until now, liquid crystal compounds having a thiazole ring have been described by H. Zaschkeet al. , J.
prake. Chem. , 321, 643-654 (1
979) and International Application No. 88/08019. However, in the former, there is no description of the thiazole-2,5-diyl derivative represented by the general formula [I] of the present invention, and in the latter, although there are specific examples of thiazole-2,4-diyl derivatives, There are no specific examples of thiazole-2,5-diyl derivatives. The present inventors have discovered that the thiazole represented by the general formula [I]
As the 2,5-diyl derivative is shown later in the examples,
1, 3, 4 disclosed in international application 88/08019
It has been found that a ferroelectric chiral smectic liquid crystal composition having lower viscosity than -thiadiazole-2,5-diyl derivatives and having high-speed response can be provided.

【0037】また、液晶組成物の誘電率ε′⊥が大きく
なると液晶パネルの容量が大きくなり、パネルを駆動さ
せるICにかかる負荷が増大してICの発熱が大きくな
ってしまう。その結果としてICの誤動作や耐久性の低
下などの重大な問題が生じ、液晶パネルの実用化を困難
にする。これら問題を解決するためにはε′⊥をあまり
大きくしない液晶化合物が望まれる。ここで本発明者ら
はさらに一般式〔I〕で示されるチアゾール−2,5−
ジイル誘導体が1,3,4−チアジアゾール−2,5−
ジイル誘導体に比べてε′⊥が小さい強誘電性カイラル
スメクチック液晶組成物を与えることを見い出した。こ
のことから駆動ICの負荷を軽減できることが期待でき
る。
Furthermore, as the dielectric constant ε'⊥ of the liquid crystal composition increases, the capacitance of the liquid crystal panel increases, the load applied to the IC that drives the panel increases, and the heat generated by the IC increases. As a result, serious problems such as IC malfunction and reduced durability occur, making it difficult to put liquid crystal panels into practical use. In order to solve these problems, a liquid crystal compound in which ε′⊥ is not too large is desired. Here, the present inventors further discovered that thiazole-2,5- represented by the general formula [I]
The diyl derivative is 1,3,4-thiadiazole-2,5-
It has been found that a ferroelectric chiral smectic liquid crystal composition having a smaller ε'⊥ than diyl derivatives can be obtained. From this, it can be expected that the load on the drive IC can be reduced.

【0038】次に、前記一般式〔I〕で表わされる液晶
性化合物の一般的な合成例を以下に示す。
Next, a general synthesis example of the liquid crystalline compound represented by the general formula [I] will be shown below.

【0039】[0039]

【外36】[Outside 36]

【0040】次に前記一般式〔I〕で示される液晶性化
合物の具体的な構造式を以下に示す。
Next, a specific structural formula of the liquid crystal compound represented by the general formula [I] is shown below.

【0041】[0041]

【外37】[Outside 37]

【0042】[0042]

【外38】[Outside 38]

【0043】[0043]

【外39】[Outside 39]

【0044】[0044]

【外40】[Outside 40]

【0045】[0045]

【外41】[Outside 41]

【0046】[0046]

【外42】[Outside 42]

【0047】[0047]

【外43】[Outside 43]

【0048】[0048]

【外44】[Outside 44]

【0049】[0049]

【外45】[Outside 45]

【0050】[0050]

【外46】[Outside 46]

【0051】[0051]

【外47】[Outside 47]

【0052】[0052]

【外48】[Outside 48]

【0053】[0053]

【外49】[Outside 49]

【0054】[0054]

【外50】[Outside 50]

【0055】[0055]

【外51】[Outside 51]

【0056】[0056]

【外52】[Outside 52]

【0057】[0057]

【外53】[Outside 53]

【0058】[0058]

【外54】[Outside 54]

【0059】[0059]

【外55】[Outside 55]

【0060】[0060]

【外56】[Outside 56]

【0061】[0061]

【外57】[Outside 57]

【0062】[0062]

【外58】[Outside 58]

【0063】[0063]

【外59】[Outside 59]

【0064】[0064]

【外60】[Outside 60]

【0065】[0065]

【外61】[Outside 61]

【0066】[0066]

【外62】[Outside 62]

【0067】[0067]

【外63】[Outside 63]

【0068】[0068]

【外64】[Outside 64]

【0069】[0069]

【外65】[Outside 65]

【0070】[0070]

【外66】[Outside 66]

【0071】[0071]

【外67】[Outside 67]

【0072】[0072]

【外68】[Outside 68]

【0073】[0073]

【外69】[Outside 69]

【0074】[0074]

【外70】[Outside 70]

【0075】[0075]

【外71】[Outside 71]

【0076】[0076]

【外72】[Outside 72]

【0077】[0077]

【外73】[Outside 73]

【0078】[0078]

【外74】[Outside 74]

【0079】[0079]

【外75】[Outside 75]

【0080】[0080]

【外76】[Outside 76]

【0081】[0081]

【外77】[Outside 77]

【0082】[0082]

【外78】[Outside 78]

【0083】本発明の液晶組成物は前記一般式(I)で
示される液晶性化合物の少なくとも1種を有する。
The liquid crystal composition of the present invention contains at least one liquid crystal compound represented by the general formula (I).

【0084】また、本発明による液晶組成物はカイラル
スメクチック相を示す液晶組成物が好ましい。
The liquid crystal composition according to the present invention is preferably a liquid crystal composition exhibiting a chiral smectic phase.

【0085】本発明で用いる他の液晶性化合物を一般式
(III)〜(XII)で次に示す。
Other liquid crystalline compounds used in the present invention are shown in the following general formulas (III) to (XII).

【0086】[0086]

【外79】[Outside 79]

【0087】[0087]

【外80】[Outside 80]

【0088】[0088]

【外81】[Outside 81]

【0089】ただし、R1′またはR2′が1個のCH
2基を−CHハロゲン−で置き換えたハロゲン化アルキ
ルである場合、R1′またはR2′は環に対して単結合
で結合しない。
[0089] However, if R1' or R2' is one CH
In the case of a halogenated alkyl in which two groups are replaced with -CH halogen-, R1' or R2' is not bonded to the ring through a single bond.

【0090】R1′,R2′は好ましくは、i)  炭
素数1〜15の直鎖アルキル基
R1' and R2' are preferably i) a linear alkyl group having 1 to 15 carbon atoms;

【0091】[0091]

【外82】[Outside 82]

【0092】[0092]

【外83】[Outside 83]

【0093】[0093]

【外84】[Outside 84]

【0094】[0094]

【外85】[Outside 85]

【0095】[0095]

【外86】[Outside 86]

【0096】[0096]

【外87】[Outside 87]

【0097】[0097]

【外88】[Outside 88]

【0098】[0098]

【外89】[Outside 89]

【0099】0099

【外90】[Outside 90]

【0100】[0100]

【外91】[Outside 91]

【0101】[0101]

【外92】[Outside 92]

【0102】[0102]

【外93】[Outside 93]

【0103】[0103]

【外94】[Outside 94]

【0104】[0104]

【外95】[Outside 95]

【0105】液晶組成物中に占める本発明の液晶性化合
物の割合は1重量%〜80重量%、好ましくは1重量%
〜60重量%、さらに好ましくは1重量%〜40重量%
とすることが望ましい。
The proportion of the liquid crystal compound of the present invention in the liquid crystal composition is 1% to 80% by weight, preferably 1% by weight.
~60% by weight, more preferably 1% to 40% by weight
It is desirable to do so.

【0106】また、本発明の液晶性化合物を2種以上用
いる場合は、混合して得られた液晶組成物中に占める本
発明の液晶性化合物2種以上の混合物の割合は1重量%
〜80重量%、好ましくは1重量%〜60重量%、さら
に好ましくは1重量%〜40重量%とすることが望まし
い。
When two or more liquid crystal compounds of the present invention are used, the proportion of the mixture of two or more liquid crystal compounds of the present invention in the liquid crystal composition obtained by mixing is 1% by weight.
It is desirable that the content be 80% by weight, preferably 1% by weight - 60% by weight, and more preferably 1% by weight - 40% by weight.

【0107】さらに、本発明による強誘電性液晶素子に
おける強誘電性を示す液晶層は、先に示したようにして
作成したカイラルスメクチック相を示す液晶組成物を真
空中、等方性液体温度まで加熱し、素子セル中に封入し
、徐々に冷却して液晶層を形成させ常圧に戻すことが好
ましい。
Furthermore, the liquid crystal layer exhibiting ferroelectricity in the ferroelectric liquid crystal element according to the present invention can be obtained by heating the liquid crystal composition exhibiting a chiral smectic phase prepared as described above in vacuum to the isotropic liquid temperature. It is preferable to heat it, encapsulate it in an element cell, and gradually cool it to form a liquid crystal layer and return it to normal pressure.

【0108】図1は強誘電性を利用した結晶素子の構成
を説明するための、本発明のカイラルスメクチック液晶
層を有する液晶素子の一例の厚さ方向模式断面図である
FIG. 1 is a schematic cross-sectional view in the thickness direction of an example of a liquid crystal element having a chiral smectic liquid crystal layer of the present invention, for explaining the structure of a crystal element utilizing ferroelectricity.

【0109】図1を参照して、液晶表示素子は、それぞ
れ透明電極3および配向制御層4を設けた1対のガラス
基板2間にカイラルスメクチック相を示す液晶層1を配
置し、且つその層厚をスペーサー5で設定してなるもの
であり、1対の透明電極3間にリード線6を介して電源
7より電圧を印加可能に接続する。また、1対の基板2
は1対のクロスニコル偏光板8により挟持され、その一
方の外側には光源9が配置される。
Referring to FIG. 1, the liquid crystal display element has a liquid crystal layer 1 exhibiting a chiral smectic phase disposed between a pair of glass substrates 2 each provided with a transparent electrode 3 and an alignment control layer 4, and The thickness is set by a spacer 5, and a voltage can be applied from a power source 7 via a lead wire 6 between a pair of transparent electrodes 3. In addition, a pair of substrates 2
is sandwiched between a pair of crossed Nicol polarizing plates 8, and a light source 9 is arranged outside one of them.

【0110】すなわち、2枚のガラス基板2には、それ
ぞれIn2O3、SnO2あるいはITO(Indiu
m−Tin  Oxide)等の薄膜から成る透明電極
3が被覆されている。その上にポリイミドの様な高分子
の薄膜をガーゼやアセテート植毛布等でラビングして、
液晶をラビング方向に配列するための配向制御層4が形
成されている。また、配向制御層4としては、例えばシ
リコン窒化物、水素を含有するシリコン窒化物、シリコ
ン炭化物、水素を含有するシリコン炭化物、シリコン酸
化物、硼素窒化物、水素を含有する硼素窒化物、セリウ
ム酸化物、アルミニウム酸化物、ジルコニウム酸化物、
チタン酸化物やフッ化マグネシウムなどの無機物質絶縁
層を形成し、その上にポリビニルアルコール、ポリイミ
ド、ポリアミドイミド、ポリエステルイミド、ポリパラ
キシレン、ポリエステル、ポリカーボネート、ポリビニ
ルアセタール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリ
アミド、ポリスチレン、セルロース樹脂、メラミン樹脂
、ユリヤ樹脂、アクリル樹脂やフォトレジスト樹脂など
の有機物質を層形成した2層構造であってもよく、また
無機物質性配向制御層あるいは有機物質配向制御層単層
であっても良い。この配向制御膜4が無機系ならば蒸着
法などで形成でき、有機系ならば有機物質を溶解させた
溶液、またはその前駆体溶液(溶剤に0.1〜20重量
%、好ましくは0.2〜10重量%)を用いて、スピン
ナー塗布法、浸漬塗布法、スクリーン印刷法、スプレー
塗布法、ロール塗布法等で塗布し、所定の硬化条件下(
例えば加熱下)で硬化させ形成させることができる。
That is, the two glass substrates 2 are each coated with In2O3, SnO2 or ITO (Indium Oxide).
A transparent electrode 3 made of a thin film such as m-Tin Oxide is coated thereon. On top of that, a thin film of polymer such as polyimide is rubbed with gauze or acetate flocked cloth.
An alignment control layer 4 is formed to align liquid crystals in the rubbing direction. The orientation control layer 4 may be made of, for example, silicon nitride, hydrogen-containing silicon nitride, silicon carbide, hydrogen-containing silicon carbide, silicon oxide, boron nitride, hydrogen-containing boron nitride, or cerium oxide. aluminum oxide, zirconium oxide,
An inorganic insulating layer such as titanium oxide or magnesium fluoride is formed, and then polyvinyl alcohol, polyimide, polyamideimide, polyesterimide, polyparaxylene, polyester, polycarbonate, polyvinyl acetal, polyvinyl chloride, polyvinyl acetate, It may have a two-layer structure in which an organic material such as polyamide, polystyrene, cellulose resin, melamine resin, urea resin, acrylic resin or photoresist resin is formed, or an inorganic material orientation control layer or a single organic material orientation control layer may be used. It may be a layer. If the alignment control film 4 is inorganic, it can be formed by a vapor deposition method, or if it is organic, it can be formed using a solution in which an organic substance is dissolved or its precursor solution (0.1 to 20% by weight in a solvent, preferably 0.2% by weight, preferably 0.2% by weight in a solvent). ~10% by weight) using a spinner coating method, dip coating method, screen printing method, spray coating method, roll coating method, etc., and under predetermined curing conditions (
For example, under heating), it can be cured and formed.

【0111】絶縁性配向制御層の層厚は通常30Å〜1
μm、好ましくは30Å〜3000Å、さらに好ましく
は50Å〜1000Åが適している。
[0111] The thickness of the insulating orientation control layer is usually 30 Å to 1
μm, preferably 30 Å to 3000 Å, more preferably 50 Å to 1000 Å, is suitable.

【0112】この2枚のガラス基板2はスペーサー5に
よって任意の間隔に保たれている。例えば所定の直径を
持つシリカビーズ、アルミナビーズをスペーサーとして
ガラス基板2枚で挟持し、周囲をシール材、例えばエポ
キシ系接着材を用いて密封する方法がある。その他スぺ
ーサーとして高分子フィルムやガラスファイバーを使用
しても良い。この2枚のガラス基板の間にカイラルスメ
クチック相を示す液晶1が封入されている。一般には0
.5〜20μm、好ましくは1〜5μmの厚さに設定さ
れている。
[0112] These two glass substrates 2 are kept at an arbitrary distance by a spacer 5. For example, there is a method in which silica beads or alumina beads having a predetermined diameter are used as spacers and sandwiched between two glass substrates, and the periphery is sealed using a sealing material such as an epoxy adhesive. In addition, a polymer film or glass fiber may be used as a spacer. A liquid crystal 1 exhibiting a chiral smectic phase is sealed between these two glass substrates. Generally 0
.. The thickness is set to 5 to 20 μm, preferably 1 to 5 μm.

【0113】透明電極3はリード線によって外部電源7
に接続されている。また、ガラス基板2の外側には互い
の偏光軸を例えば直交クロスニコル状態とした1対の偏
光板8が貼り合わせてある。図1は透過型であり、光源
9を備えている。
[0113] The transparent electrode 3 is connected to an external power source 7 by a lead wire.
It is connected to the. Further, a pair of polarizing plates 8 are bonded to the outside of the glass substrate 2, with the polarization axes of each polarizing plate being in, for example, a crossed Nicols state orthogonal to each other. The device shown in FIG. 1 is of a transmissive type and includes a light source 9.

【0114】図2は強誘電性を利用した液晶素子の動作
説明のために、セルの例を模式的に描いたものである。 21aと21bはそれぞれIn2O3;SnO2あるい
はITO(Indium−Tin  Oxide)等の
薄膜からなる透明電極で被覆された基板(ガラス板)で
あり、その間に液晶分子層22がガラス面に垂直に成る
ように配向したSmC*相又はSmH*相の液晶が封入
されている。太線で示した線23が液晶分子を表わして
おり、この液晶分子23はその分子に直交した方向に双
極子モーメント(P⊥)14を有している。基板21a
と21b上の電極間に一定の閾値以上の電圧を印加する
と、液晶分子23のらせん構造がほどけ、双極子モーメ
ント(P⊥)24がすべて電界方向に向くよう、液晶分
子23は配向方向を変えることができる。液晶分子23
は細長い形状を有しており、その長軸方向と短軸方向で
屈折率異方性を示し、従って例えばガラス面の上下に互
いにクロスニコルの偏光子を置けば、電圧印加極性によ
って光学特性が変わる液晶光学変調素子となることは、
容易に理解される。
FIG. 2 schematically depicts an example of a cell for explaining the operation of a liquid crystal element using ferroelectricity. 21a and 21b are substrates (glass plates) covered with transparent electrodes made of thin films such as In2O3; SnO2 or ITO (Indium-Tin Oxide), and the liquid crystal molecular layer 22 is arranged perpendicularly to the glass surface between them. Oriented SmC* phase or SmH* phase liquid crystal is sealed. A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P⊥) 14 in a direction perpendicular to the molecule. Substrate 21a
When a voltage higher than a certain threshold is applied between the electrodes 21b and 21b, the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 change their alignment direction so that all the dipole moment (P⊥) 24 points in the direction of the electric field. be able to. liquid crystal molecule 23
has an elongated shape and exhibits refractive index anisotropy in its long and short axis directions. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the optical properties will change depending on the polarity of voltage application. The changing liquid crystal optical modulation element is
easily understood.

【0115】本発明における光学変調素子で、好ましく
用いられる液晶セルは、その厚さを充分に薄く(例えば
10μ以下)することができる。このように液晶層が薄
くなるにしたがい、図3に示すように電界を印加してい
ない状態でも液晶分子のらせん構造がほどけ、その双極
子モーメントPaまたはPbは上向き(34a)又は下
向き(34b)のどちらかの状態をとる。このようなセ
ルに、図3に示す如く一定の閾値以上の極性の異なる電
界Ea又はEbを電圧印加手段31aと31bにより付
与すると、双極子モーメントは電界Ea又はEbの電界
ベクトルに対応して上向き34a又は下向き34bと向
きを変え、それに応じて液晶分子は、第1の安定状態3
3aかあるいは第2の安定状態33bの何れか一方に配
向する。
The liquid crystal cell preferably used in the optical modulation element of the present invention can have a sufficiently thin thickness (for example, 10 μm or less). As the liquid crystal layer becomes thinner in this way, the helical structure of the liquid crystal molecules unravels even when no electric field is applied, as shown in FIG. 3, and the dipole moment Pa or Pb is directed upward (34a) or downward (34b). take either of the following states. When an electric field Ea or Eb of different polarity above a certain threshold value is applied to such a cell by the voltage applying means 31a and 31b as shown in FIG. 34a or downward 34b, and accordingly the liquid crystal molecules are in the first stable state 3.
3a or the second stable state 33b.

【0116】このような強誘電性液晶素子を光学変調素
子として用いることの利点は先にも述べたが2つある。
As mentioned above, there are two advantages to using such a ferroelectric liquid crystal element as an optical modulation element.

【0117】その第1は応答速度が極めて速いことであ
り、第2は液晶分子の配向が双安定性を有することであ
る。第2の点を例えば図3によって更に説明すると、電
界Eaを印加すると液晶分子は第1の安定状態33aに
配向するが、この状態は、電界を切っても安定である。 又、逆向きの電界Ebを印加すると、液晶分子は第2の
安定状態33bに配向してその分子の向きを変えるが、
やはり電界を切ってもこの状態に留っている。又、与え
る電界EaあるいはEbが一定の閾値を越えない限り、
それぞれ前の配向状態にやはり維持されている。
The first is that the response speed is extremely fast, and the second is that the alignment of liquid crystal molecules has bistability. To further explain the second point with reference to FIG. 3, for example, when the electric field Ea is applied, the liquid crystal molecules are aligned in the first stable state 33a, and this state remains stable even when the electric field is turned off. Moreover, when an electric field Eb in the opposite direction is applied, the liquid crystal molecules are aligned to the second stable state 33b and the orientation of the molecules is changed.
It remains in this state even if the electric field is turned off. Also, as long as the applied electric field Ea or Eb does not exceed a certain threshold,
Each is still maintained in its previous orientation.

【0118】本発明の液晶素子を表示パネル部に使用し
、図4及び図5に示した走査線アドレス情報をもつ画像
情報なるデータフォーマット及びSYNC信号による通
信同期手段をとることにより、液晶表示装置を実現する
[0118] By using the liquid crystal element of the present invention in a display panel section and providing a data format of image information having scanning line address information shown in FIGS. 4 and 5 and communication synchronization means using a SYNC signal, a liquid crystal display device can be obtained. Realize.

【0119】図中、符号はそれぞれ以下の通りである。 101  強誘電性液晶表示装置 102  グラフィックスコントローラ103  表示
パネル 104  走査線駆動回路 105  情報線駆動回路 106  デコーダ 107  走査信号発生回路 108  シフトレジスタ 109  ラインメモリ 110  情報信号発生回路 111  駆動制御回路 112  GCPU 113  ホストCPU 114  VRAM
[0119] In the figure, the symbols are as follows. 101 Ferroelectric liquid crystal display device 102 Graphics controller 103 Display panel 104 Scanning line drive circuit 105 Information line drive circuit 106 Decoder 107 Scanning signal generation circuit 108 Shift register 109 Line memory 110 Information signal generation circuit 111 Drive control circuit 112 GCPU 113 Host CPU 114 VRAM

【0120】画像情報の発生は、本体装置側のグラフィ
ックスコントローラ102にて行われ、図4及び図5に
示した信号転送手段にしたがって表示パネル103に転
送される。グラフィックスコントローラ102は、CP
U(中央演算処理装置、以下GCPU112と略す)及
びVRAM(画像情報格納用メモリ)114を核に、ホ
ストCPU113と液晶表示装置101間の画像情報の
管理や通信をつかさどっており、本発明の制御方法は主
にこのグラフィックスコントローラ102上で実現され
るものである。
Image information is generated by the graphics controller 102 on the main unit side, and is transferred to the display panel 103 according to the signal transfer means shown in FIGS. 4 and 5. The graphics controller 102 is a CP
U (Central Processing Unit, hereinafter abbreviated as GCPU 112) and VRAM (image information storage memory) 114 are responsible for management and communication of image information between the host CPU 113 and the liquid crystal display device 101, and control of the present invention The method is mainly implemented on this graphics controller 102.

【0121】なお、該表示パネルの裏面には、光源が配
置されている。
Note that a light source is arranged on the back side of the display panel.

【0122】以下実施例により本発明について更に詳細
に説明するが、本発明はこれらの実施例に限定されるも
のではない。下記の例において、「部」はいずれも「重
量部」を示す。
[0122] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In the following examples, all "parts" indicate "parts by weight."

【0123】[0123]

【実施例】実施例1(例示化合物1−68)J.Org
.Chem.,38,3571−3575(1973)
の方法に従って2−オキソデシルアミン・塩酸塩を合成
した。
[Example] Example 1 (Exemplary Compound 1-68) J. Org
.. Chem. , 38, 3571-3575 (1973)
2-oxodecylamine hydrochloride was synthesized according to the method of .

【0124】[0124]

【外96】 エチルイソシアノアセテート5.00g(44.2mm
ole)、テトラヒドロフラン60mlを200ml三
つ口フラスコに入れ、氷−食塩冷却撹拌下1,8−シア
ザビシクロ〔5,4,0〕−7−ウンデセン(DBU)
6.61ml(44.2mmole)を加えた。同温度
で冷却撹拌下ノナン酸無水物13.19g(44.2m
mole)をTHF15mlに溶かして滴下した。滴下
終了後5時間30分室温で撹拌し、その後4日間室温で
放置した。反応物を水にあけて酢酸エチルで抽出し、有
機層を芒硝乾燥後減圧乾固した。残渣をトルエン/酢酸
エチル:100/1混合溶媒を溶離液として用いたシリ
カゲルカラムクロマトで精製し、5−オクチルオキサゾ
ール−4−カルボン酸エチルエステルを得た。このエス
テルに6N−塩酸125mlを加えて5時間撹拌した。 反応終了後反応物を酢酸エチルで2回洗浄し、水層を減
圧乾固した。残渣にアセトンを加えて析出した結晶を瀘
取し、メタノール−イソプロピルエーテル混合溶媒で再
結晶し、2−オキソデシルアミン・塩酸塩を3.57g
(収率38.9%)得た。
[Outside 96] Ethyl isocyanoacetate 5.00g (44.2mm
Pour 60 ml of tetrahydrofuran into a 200 ml three-necked flask, and add 1,8-cyazabicyclo[5,4,0]-7-undecene (DBU) while stirring while cooling with ice and salt.
6.61 ml (44.2 mmole) was added. 13.19 g (44.2 m
mole) was dissolved in 15 ml of THF and added dropwise. After the dropwise addition was completed, the mixture was stirred at room temperature for 5 hours and 30 minutes, and then left at room temperature for 4 days. The reaction mixture was poured into water and extracted with ethyl acetate, and the organic layer was dried over sodium sulfate and then evaporated to dryness. The residue was purified by silica gel column chromatography using a 100/1 mixed solvent of toluene/ethyl acetate as an eluent to obtain 5-octyloxazole-4-carboxylic acid ethyl ester. 125 ml of 6N hydrochloric acid was added to this ester and stirred for 5 hours. After the reaction was completed, the reaction product was washed twice with ethyl acetate, and the aqueous layer was dried under reduced pressure. Acetone was added to the residue, the precipitated crystals were filtered and recrystallized with a methanol-isopropyl ether mixed solvent to obtain 3.57 g of 2-oxodecylamine hydrochloride.
(yield 38.9%).

【0125】[0125]

【外97】[Outside 97]

【0126】P−アセトキシ安息香酸0.95g(5.
27mmole)と塩化チオニルを用いて合成したP−
アセトキシ安息香酸塩化物と2−オキソデシルアミン・
塩酸塩1.00g(4.81mmole)とジオキサン
20mlを50ml三つ口フラスコに入れた。80℃付
近に加熱撹拌しながらピリジン7.1mlをゆっくり加
え、その後90−92℃で1時間加熱撹拌した。反応終
了後反応物を氷水100mlに注入し、析出した結晶を
瀘取水洗し、エタノールで再結晶して2−オキソデシル
−(4−アセトキシベンゾイル)アミン1.23g(収
率70.0%)を得た。
0.95 g of P-acetoxybenzoic acid (5.
P- synthesized using 27 mmole) and thionyl chloride
Acetoxybenzoic acid chloride and 2-oxodecylamine
1.00 g (4.81 mmole) of hydrochloride and 20 ml of dioxane were placed in a 50 ml three-necked flask. 7.1 ml of pyridine was slowly added to the mixture while heating and stirring at around 80°C, and then heating and stirring at 90-92°C for 1 hour. After the reaction was completed, the reaction product was poured into 100 ml of ice water, and the precipitated crystals were filtered, washed with water, and recrystallized with ethanol to obtain 1.23 g (yield: 70.0%) of 2-oxodecyl-(4-acetoxybenzoyl)amine. Obtained.

【0127】2−オキソデシル−(4−アセトキシベン
ゾイル)アミン1.20g(3.60mmole)、L
awesson’s試薬1.89g(4.67mmol
e)、テトラヒドロフラン20mlを50mlナスフラ
スコに入れ、1時間還流撹拌を行った。反応終了後反応
物を水酸化ナトリウム1.41gを氷水85mlに溶か
した中へあけ、析出した結晶を瀘取水洗し、メタノール
で再結晶して2−(4−アセトキシフェニル)−5−オ
クチルチアゾール0.97g(収率81.3%)を得た
2-oxodecyl-(4-acetoxybenzoyl)amine 1.20 g (3.60 mmole), L
awesson's reagent 1.89g (4.67mmol
e) 20 ml of tetrahydrofuran was placed in a 50 ml eggplant flask, and the mixture was stirred under reflux for 1 hour. After the reaction was completed, the reaction product was poured into 1.41 g of sodium hydroxide dissolved in 85 ml of ice water, and the precipitated crystals were filtered, washed with water, and recrystallized with methanol to give 2-(4-acetoxyphenyl)-5-octylthiazole. 0.97 g (yield 81.3%) was obtained.

【0128】エタノール15mlに水酸化カリウム0.
52gを溶かした中へ2−(4−アセトキシフェニル)
−5−オクチルチアゾール0.95g(2.87mmo
le)を入れ、60℃付近で20分間加熱撹拌を行った
。反応終了後溶媒を減圧留去し、残渣に水50mlを加
え、氷冷撹拌下塩酸0.75mlを加えた。析出した結
晶を瀘取水洗し、酢酸エチルに溶かして芒硝乾燥後溶媒
を減圧留去した。残渣にヘキサンを加えて析出した2−
(4−ヒドロキシフェニル)−5−オクチルチアゾール
の結晶を瀘取した。収量0.80g(収率96.4%)
[0128] Add 0.0% potassium hydroxide to 15ml of ethanol.
2-(4-acetoxyphenyl) into the dissolved 52g
-5-octylthiazole 0.95g (2.87mmo
le) and heated and stirred at around 60° C. for 20 minutes. After the reaction was completed, the solvent was distilled off under reduced pressure, 50 ml of water was added to the residue, and 0.75 ml of hydrochloric acid was added while stirring under ice cooling. The precipitated crystals were filtered, washed with water, dissolved in ethyl acetate, dried over sodium sulfate, and the solvent was distilled off under reduced pressure. 2- which was precipitated by adding hexane to the residue
Crystals of (4-hydroxyphenyl)-5-octylthiazole were filtered. Yield 0.80g (yield 96.4%)
.

【0129】2−(4ヒドロキシフェニル)−5−オク
チルチアゾール0.40g(1.38mmole)、ト
ランス−4−ペンチルシクロヘキサンカルボン酸0.3
0g(1.51mmole)、ジクロルメタン10ml
を30mlナスフラスコに入れ、室温撹拌下N,N′−
ジシクロヘキシルカルボジイミド0.29g(1.41
mmole)、4−ジメチルアミノピリジン0.04g
を順次加え、その後室温で4時間還拌した。反応物を1
晩室温で放置後析出したN,N′−ジシクロヘキシルウ
レアを瀘去し、瀘液を減圧乾固した。残渣をシリカゲル
カラムクロマト(溶離液:トルエン/酢酸エチル:10
0/1)で精製し、アセトンで2回再結晶して2−〔4
−(トランス−4−ペンチルシクロヘキシルカルボニル
オキシ)フェニル〕−5−オクチルチアゾール0.54
g(収率83.2%)を得た。この化合物の相転移温度
を次に示す。
2-(4hydroxyphenyl)-5-octylthiazole 0.40 g (1.38 mmole), trans-4-pentylcyclohexanecarboxylic acid 0.3
0g (1.51mmole), dichloromethane 10ml
was placed in a 30 ml eggplant flask, and N,N'- was added under stirring at room temperature.
Dicyclohexylcarbodiimide 0.29g (1.41
mmole), 4-dimethylaminopyridine 0.04g
were added one after another, and then the mixture was stirred at room temperature for 4 hours. 1 reactant
After standing overnight at room temperature, the precipitated N,N'-dicyclohexylurea was filtered off, and the filtrate was dried under reduced pressure. The residue was purified by silica gel column chromatography (eluent: toluene/ethyl acetate: 10
0/1) and recrystallized twice with acetone to obtain 2-[4
-(trans-4-pentylcyclohexylcarbonyloxy)phenyl]-5-octylthiazole 0.54
g (yield: 83.2%). The phase transition temperature of this compound is shown below.

【0130】[0130]

【外98】 (Sm3はSmA,SmC以外の高次のスメクチック相
であり、未同定。)
[Sm3 is a higher-order smectic phase other than SmA and SmC, and is unidentified.]

【0131】実施例2(例示化合物1−28)実施例1
で合成した2−(4−ヒドロキシフェニル)−5−オク
チルチアゾールを用い、同様にして2−〔4−(4−フ
ルオロベンゾイルオキシ)フェニル〕−5−オクチルチ
アゾールを合成した。
Example 2 (Exemplary Compound 1-28) Example 1
2-[4-(4-fluorobenzoyloxy)phenyl]-5-octylthiazole was synthesized in the same manner using 2-(4-hydroxyphenyl)-5-octylthiazole synthesized in .

【0132】[0132]

【外99】[Outside 99]

【0133】この化合物は次の様な相転移温度を示した
This compound showed the following phase transition temperature.

【0134】[0134]

【外100】[Outside 100]

【0135】実施例3(例示化合物1−93)次に示す
経路で合成した2−(4−カルボキシフェニル)−5−
ヘプチルピリミジン
Example 3 (Exemplified Compound 1-93) 2-(4-carboxyphenyl)-5- synthesized by the following route
heptylpyrimidine

【0136】[0136]

【外101】 2.00g(6.70mmole)を塩化チオニルで酸
塩化物とし、実施例1と同様にして合成した2−オキソ
オクチルアミン・塩酸塩1.20g(6.68mmol
e)、ジオキサン30mlを加え、80℃付近に加熱撹
拌しながらピリジン9.8mlをゆっくり加え、その後
90℃付近で1時間加熱撹拌した。反応終了後反応物を
氷水200ml中にあけ、析出した結晶を瀘取水洗し、
メタノールで再結晶して2−オキソオクチル−〔4−(
5−ヘプチルピリミジン−2−イル)ベンゾイル〕アミ
ン2.63g(収率93.0%)を得た。
[Example 101] 1.20 g (6.68 mmol) of 2-oxooctylamine hydrochloride was synthesized in the same manner as in Example 1 by converting 2.00 g (6.70 mmole) into acid chloride with thionyl chloride.
e), 30 ml of dioxane was added, and 9.8 ml of pyridine was slowly added while stirring at around 80°C, followed by heating and stirring at around 90°C for 1 hour. After the reaction was completed, the reaction product was poured into 200 ml of ice water, and the precipitated crystals were filtered and washed with water.
Recrystallize from methanol to obtain 2-oxooctyl-[4-(
2.63 g (yield 93.0%) of 5-heptylpyrimidin-2-yl)benzoyl]amine was obtained.

【0137】2−オキソオクチル−〔4−(5−ヘプチ
ルピリミジン−2−イル)ベンゾイル〕アミン2.60
g(6.14mmole)、Lawesson’s試薬
3.10g(7.66mmole)、テトラヒドロフラ
ン40mlを100mlナスフラスコに入れ、50分間
還流撹拌を行った、反応終了後反応物を水酸化ナトリウ
ム2.28gを氷水300mlに溶かした中へあけ、析
出した結晶を瀘取水洗し、トルエンに溶かす。トルエン
溶液を芒硝乾燥後減圧乾固し、残渣をシリカゲルカラム
クロマト(溶離液トルエン/酢酸エチル:100/1)
で精製し、トルエン−メタノール混合溶媒で2回再結晶
し、2−〔4−(5−ヘプチルピリミジン−2−イル)
フェニル〕−5−ヘキシルチアゾール2.06g(収率
79.6%)を得た。この化合物の相転移温度を次に示
す。
2-oxooctyl-[4-(5-heptylpyrimidin-2-yl)benzoyl]amine 2.60
g (6.14 mmole), 3.10 g (7.66 mmole) of Lawesson's reagent, and 40 ml of tetrahydrofuran were placed in a 100 ml eggplant flask, and stirred under reflux for 50 minutes. After the reaction was completed, 2.28 g of sodium hydroxide was added to the reaction product. Pour into 300 ml of ice water, filter the precipitated crystals, wash with water, and dissolve in toluene. After drying the toluene solution with Glauber's salt, it was evaporated to dryness under reduced pressure, and the residue was subjected to silica gel column chromatography (eluent: toluene/ethyl acetate: 100/1).
and recrystallized twice with a toluene-methanol mixed solvent to give 2-[4-(5-heptylpyrimidin-2-yl)
2.06 g (yield 79.6%) of phenyl]-5-hexylthiazole was obtained. The phase transition temperature of this compound is shown below.

【0138】[0138]

【外102】[Outside 102]

【0139】実施例4〜実施例13 実施例3と同様にして表Iに示す化合物を合成した。こ
れら化合物の相転移温度も合わせて表Iに示す
Examples 4 to 13 The compounds shown in Table I were synthesized in the same manner as in Example 3. The phase transition temperatures of these compounds are also shown in Table I.

【014
0】
014
0]

【表1】[Table 1]

【0141】実施例14(例示化合物1−10)実施例
3と同様にして次に示す経路で2−(4′−デシルオキ
シ−4−ビフェニル)−5−ヘキシルチアゾールを得た
Example 14 (Exemplified Compounds 1-10) 2-(4'-decyloxy-4-biphenyl)-5-hexylthiazole was obtained in the same manner as in Example 3 by the route shown below.

【0142】[0142]

【外103】[Outside 103]

【0143】この化合物は次の様な相転移温度を示した
This compound showed the following phase transition temperature.

【0144】[0144]

【外104】[Outside 104]

【0145】実施例15(例示化合物1−39)実施例
3と同様にして次に示す経路で2−〔4−(トランス−
4−ペンチルシクロヘキシル)フェニル〕−5−ヘキシ
ルチアゾールを得た。
Example 15 (Exemplified Compound 1-39) 2-[4-(trans-
4-pentylcyclohexyl)phenyl]-5-hexylthiazole was obtained.

【0146】[0146]

【外105】[Outside 105]

【0147】この化合物の相転移温度を次に示す。The phase transition temperature of this compound is shown below.

【0148】[0148]

【外106】[Outside 106]

【0149】実施例16(例示化合物1−191)次に
示す経路で2−〔5−(4−デシルオキシフェニル)ピ
ラジン−2−イル〕−5−ヘキシルチアゾールを合成し
た。
Example 16 (Exemplified Compound 1-191) 2-[5-(4-decyloxyphenyl)pyrazin-2-yl]-5-hexylthiazole was synthesized by the following route.

【0150】[0150]

【外107】[Outside 107]

【0151】この化合物の相転移温度を次に示す。The phase transition temperature of this compound is shown below.

【0152】[0152]

【外108】[Outside 108]

【0153】実施例17 下記化合物を下記の重量部で混合し、液晶組成物Aを作
成した。
Example 17 Liquid crystal composition A was prepared by mixing the following compounds in the following parts by weight.

【0154】[0154]

【外109】[Outside 109]

【0155】さらに、この液晶組成物Aに対して、例示
化合物1−109を以下に示す重量部で混合し、液晶組
成物Bを作成した。
Further, to this liquid crystal composition A, exemplified compound 1-109 was mixed in the following parts by weight to prepare a liquid crystal composition B.

【0156】[0156]

【外110】[Outside 110]

【0157】これは下記の相転移温度を示す。This shows the following phase transition temperature.

【0158】[0158]

【外111】[Outside 111]

【0159】2枚の0.7mm厚のガラス板を用意し、
それぞれのガラス板上にITO膜を形成し、電圧印加電
極を作成し、さらにこの上にSiO2を蒸着させ絶縁層
とした。ガラス板上にシランカップリング剤[信越化学
(株)製KBM−602]0.2%イソプロピルアルコ
ール溶液を回転数2000r.p.mのスピンナーで1
5秒間塗布し、表面処理を施した。この後120℃にて
20分間加熱乾燥処理を施した。
[0159] Prepare two 0.7 mm thick glass plates,
An ITO film was formed on each glass plate to create a voltage application electrode, and SiO2 was further deposited thereon to form an insulating layer. A silane coupling agent [KBM-602 manufactured by Shin-Etsu Chemical Co., Ltd.] 0.2% isopropyl alcohol solution was applied onto a glass plate at a rotational speed of 2000 rpm. p. 1 with m spinner
It was applied for 5 seconds to perform surface treatment. Thereafter, a heat drying treatment was performed at 120° C. for 20 minutes.

【0160】さらに表面処理を行なったITO膜付きの
ガラス板上にポリイミド樹脂前駆体[東レ(株)SP−
510]1.5%ジメチルアセトアミド溶液を、回転数
2000r.p.mのスピンナーで15秒間塗布した。 成膜後、60分間、300℃で加熱縮合焼成処理を施し
た。この時の塗膜の膜厚は約250Åであった。
[0160] Further, a polyimide resin precursor [Toray Industries, Inc. SP-
510] 1.5% dimethylacetamide solution at a rotation speed of 2000 rpm. p. It was applied for 15 seconds using a spinner. After the film was formed, a heating condensation firing process was performed at 300° C. for 60 minutes. The thickness of the coating film at this time was about 250 Å.

【0161】この焼成後の被膜にはアセテート植毛布に
よるラビング処理がなされ、その後、イソプロピルアル
コール液で洗浄し、平均粒径2μmのアルミナビーズを
一方のガラス板上に散布した後、それぞれのラビング処
理軸が互いに平行となる様にし、接着シール剤[リクソ
ンボンド(チッソ(株))]を用いてガラス板をはり合
わせ、60分間、100℃にて加熱乾燥しセルを作成し
た。
[0161] This fired coating was subjected to a rubbing treatment with an acetate flocked cloth, then washed with an isopropyl alcohol solution, and alumina beads with an average particle size of 2 μm were sprinkled on one glass plate, and then subjected to each rubbing treatment. The glass plates were glued together using an adhesive sealant [Rixon Bond (Chisso Corporation)] so that their axes were parallel to each other, and dried by heating at 100° C. for 60 minutes to create a cell.

【0162】このセルに液晶組成物Bを等方性液体状態
で注入し、等方相から20℃/hで25℃まで徐冷する
ことにより、強誘電性液晶素子を作成した。このセルの
セル厚をベレツク位相板によって測定したところ、約2
μmであった。
[0162] Liquid crystal composition B was injected into this cell in an isotropic liquid state and slowly cooled from the isotropic phase to 25°C at a rate of 20°C/h to produce a ferroelectric liquid crystal element. The cell thickness of this cell was measured using a Bereck phase plate and was found to be approximately 2.
It was μm.

【0163】この強誘電性液晶素子を使って、自発分極
の大きさPsとピーク・トゥ・ピーク電圧Vpp=20
Vの電圧印加により直交ニコル下での光学的な応答(透
過光量変化0〜90%)を検知して応答速度(以後光学
応答速度という)を測定した。その結果を次に示す。
Using this ferroelectric liquid crystal element, the magnitude of spontaneous polarization Ps and the peak-to-peak voltage Vpp=20
The response speed (hereinafter referred to as optical response speed) was measured by detecting the optical response (change in amount of transmitted light from 0 to 90%) under crossed Nicols by applying a voltage of V. The results are shown below.

【0164】[0164]

【外112】[Outside 112]

【0165】Tc:SmC*からSmAへの転移温度(
℃) T:応答速度およびPsの測定温度(℃)
Tc: transition temperature from SmC* to SmA (
℃) T: Measurement temperature of response speed and Ps (℃)

【0166】
さらにLCRメーター(横河ヒューレット・パーカード
社製YHP−4192A)を用いて30℃,20KHz
,±0.5Vsin波の条件で誘電率(ε′⊥)を測定
した。 ε′⊥=3.15
[0166]
Furthermore, using an LCR meter (YHP-4192A manufactured by Yokogawa Hewlett-Parkard), the temperature was 30°C and 20KHz.
, the dielectric constant (ε′⊥) was measured under the conditions of ±0.5V sin wave. ε′⊥=3.15

【0167】比較例1 以下に示す経路で2−〔4−(5−デシルピリミジン−
2−イル)フェニル〕−5−オクチル−1,3,4−チ
アジアゾールを合成した。
Comparative Example 1 2-[4-(5-decylpyrimidine-
2-yl)phenyl]-5-octyl-1,3,4-thiadiazole was synthesized.

【0168】[0168]

【外113】[Outside 113]

【0169】この化合物は次の相転移温度を示した。This compound exhibited the following phase transition temperature.

【0170】[0170]

【外114】[Outside 114]

【0171】実施例17で混合した液晶組成物Aに対し
てこの化合物を以下に示す重量部で混合し、液晶組成物
Cを作成した。
[0171] This compound was mixed with the liquid crystal composition A mixed in Example 17 in the weight parts shown below to prepare a liquid crystal composition C.

【0172】[0172]

【外115】[Outside 115]

【0173】これは下記の相転移温度を示す。This shows the following phase transition temperature.

【0174】[0174]

【外116】[Outside 116]

【0175】液晶組成物Cをセルに注入する以外は全く
実施例17と同様の方法で強誘電性液晶素子を作成し、
PS,光学応答速度、誘電率(ε′⊥)を測定した。そ
の結果を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that liquid crystal composition C was injected into the cell.
PS, optical response speed, and dielectric constant (ε′⊥) were measured. The results are shown below.

【0176】[0176]

【外117】[Outside 117]

【0177】実施例17と比較例1から本発明のチアゾ
ール−2,5−ジイル誘導体が1,3,4−チアジアゾ
ール−2,5−ジイル誘導体に比べてSm*C相を狭く
することなく、粘性が低くて高速応答性を有し、ε′⊥
が小さい強誘電性カイラルスメクチック液晶組成物を与
えることがわかった。
From Example 17 and Comparative Example 1, the thiazole-2,5-diyl derivative of the present invention does not narrow the Sm*C phase compared to the 1,3,4-thiadiazole-2,5-diyl derivative. Has low viscosity and fast response, ε′⊥
was found to yield small ferroelectric chiral smectic liquid crystal compositions.

【0178】実施例18 下記化合物を下記の重量部で混合し、液晶組成物Dを作
成した。
Example 18 Liquid crystal composition D was prepared by mixing the following compounds in the following parts by weight.

【0179】[0179]

【外118】[Outside 118]

【0180】[0180]

【外119】[Outside 119]

【0181】さらに、この液晶組成物Dに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Eを作成した。
Further, to this liquid crystal composition D, the following exemplified compounds were mixed in the weight parts shown below to prepare a liquid crystal composition E.

【0182】[0182]

【外120】[Outside 120]

【0183】液晶組成物Eをセル内に注入する以外は全
く実施例17と同様の方法で強誘電性液晶素子を作成し
、10℃,25℃,40℃各温度で実施例17と同様の
方法で光学応答速度を測定した。その結果を次に示す。
[0183] A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that liquid crystal composition E was injected into the cell. The optical response speed was measured by the method. The results are shown below.

【0184】[0184]

【外121】[Outside 121]

【0185】比較例2 実施例18で混合した液晶組成物Dをセル内に注入する
以外は全く実施例17と同様の方法で強誘電性液晶素子
を作成し、光学応答速度を測定した。その結果を次に示
す。
Comparative Example 2 A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that the liquid crystal composition D mixed in Example 18 was injected into the cell, and the optical response speed was measured. The results are shown below.

【0186】[0186]

【外122】[Outside 122]

【0187】実施例19 実施例18で使用した例示化合物1−22,1−93,
1−165のかわりに以下に示す例示化合物を各々以下
に示す重量部で混合し、液晶組成物Fを作成した。
Example 19 Exemplary compounds 1-22, 1-93, used in Example 18
Liquid crystal composition F was prepared by mixing the following exemplified compounds in the weight parts shown below in place of 1-165.

【0188】[0188]

【外123】[Outside 123]

【0189】この液晶組成物を用いた以外は全く実施例
17と同様の方法で強誘電性液晶素子を作成し、実施例
18と同様の方法で光学応答速度を測定した。測定結果
を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 18. The measurement results are shown below.

【0190】[0190]

【外124】[Outside 124]

【0191】実施例20 実施例19で使用した例示化合物1−27,1−41,
1−145のかわりに以下に示す例示化合物を各々以下
に示す重量部で混合し、液晶組成物Gを作成した。
Example 20 Exemplary compounds 1-27, 1-41, used in Example 19
Liquid crystal composition G was prepared by mixing the following exemplified compounds in the weight parts shown below in place of 1-145.

【0192】[0192]

【外125】[Outside 125]

【0193】この液晶組成物を用いた以外は全く実施例
17と同様の方法で強誘電性液晶素子を作成し、実施例
18と同様の方法で光学応答速度を測定した。測定結果
を次に示す。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 18. The measurement results are shown below.

【0194】[0194]

【外126】[Outside 126]

【0195】実施例21 下記化合物を下記の重量部で混合し、液晶組成物Hを作
成した。
Example 21 Liquid crystal composition H was prepared by mixing the following compounds in the following parts by weight.

【0196】[0196]

【外127】[Outside 127]

【0197】[0197]

【外128】[Outside 128]

【0198】さらに、この液晶組成物Hに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Iを作成した。
Further, the following exemplified compounds were mixed with this liquid crystal composition H in the weight parts shown below to prepare a liquid crystal composition I.

【0199】[0199]

【外129】[Outside 129]

【0200】液晶組成物Iをセル内に注入する以外は、
全く実施例17と同様の方法で強誘電性液晶素子を作成
し、実施例18と同様に光学応答速度を測定し、スイッ
チング状態等を観察した。
[0200] Except for injecting liquid crystal composition I into the cell,
A ferroelectric liquid crystal element was prepared in the same manner as in Example 17, and the optical response speed was measured in the same manner as in Example 18, and the switching state and the like were observed.

【0201】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0201] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0202】[0202]

【外130】[Outside 130]

【0203】また、駆動時には明瞭なスイッチング動作
が観察され、電圧印加を止めた際の双安定性も良好であ
った。
Further, a clear switching operation was observed during driving, and good bistability was observed when voltage application was stopped.

【0204】比較例3 実施例21で混合した液晶組成物Hをセル内に注入する
以外は全く実施例17と同様の方法で強誘電性液晶素子
を作成し、光学応答速度を測定した。その結果を次に示
す。
Comparative Example 3 A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that the liquid crystal composition H mixed in Example 21 was injected into the cell, and the optical response speed was measured. The results are shown below.

【0205】[0205]

【外131】[Outside 131]

【0206】実施例22 実施例21で使用した例示化合物1−21,1−75,
1−182のかわりに以下に示す例示化合物を各々以下
に示す重量部で混合し、液晶組成物Jを作成した。
Example 22 Exemplary compounds 1-21, 1-75, used in Example 21
Liquid crystal composition J was prepared by mixing the following exemplified compounds in the weight parts shown below instead of 1-182.

【0207】[0207]

【外132】[Outside 132]

【0208】この液晶組成物を用いた以外は、全く実施
例17と同様の方法で強誘電性液晶素子を作成し、実施
例18と同様に光学応答速度を測定し、スイッチング状
態等を観察した。
[0208] A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured and the switching state etc. was observed in the same manner as in Example 18. .

【0209】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0209] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0210】[0210]

【外133】[Outside 133]

【0211】実施例23 実施例22で使用した例示化合物1−30,1−107
,1−192のかわりに以下に示す例示化合物を各々以
下に示す重量部で混合し、液晶組成物Kを作成した。
Example 23 Exemplary compounds 1-30, 1-107 used in Example 22
, 1-192, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition K.

【0212】[0212]

【外134】[Outside 134]

【0213】この液晶組成物を用いた以外は、全く実施
例17と同様の方法で強誘電性液晶素子を作成し、実施
例18と同様に光学応答速度を測定し、スイッチング状
態等を観察した。
[0213] A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured and the switching state etc. was observed in the same manner as in Example 18. .

【0214】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0214] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0215】[0215]

【外135】[Outside 135]

【0216】実施例24 下記化合物を下記の重量部で混合し、液晶組成物Lを作
成した。
Example 24 The following compounds were mixed in the following parts by weight to prepare a liquid crystal composition L.

【0217】[0217]

【外136】[Outside 136]

【0218】[0218]

【外137】[Outside 137]

【0219】さらに、この液晶組成物Lに対して、以下
に示す例示化合物を各々以下に示す重量部で混合し、液
晶組成物Mを作成した。
Further, to this liquid crystal composition L, the following exemplified compounds were mixed in the weight parts shown below to prepare a liquid crystal composition M.

【0220】[0220]

【外138】[Outside 138]

【0221】この液晶組成物を用いた以外は、全く実施
例17と同様の方法で強誘電性液晶素子を作成し、実施
例18と同様に光学応答速度を測定し、スイッチング状
態等を観察した。
[0221] A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured and the switching state etc. was observed in the same manner as in Example 18. .

【0222】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0222] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0223】[0223]

【外139】[Outside 139]

【0224】比較例4 実施例24で混合した液晶組成物Lをセル内に注入する
以外は全く実施例17と同様の方法で強誘電性液晶素子
を作成し、実施例18と同様に光学応答速度を測定した
。その結果を次に示す。
Comparative Example 4 A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that the liquid crystal composition L mixed in Example 24 was injected into the cell, and the optical response was obtained in the same manner as in Example 18. The speed was measured. The results are shown below.

【0225】[0225]

【外140】[Outside 140]

【0226】実施例25 実施例24で使用した例示化合物1−24,1−120
,1−195のかわりに以下に示す例示化合物を各々以
下に示す重量部で混合し、液晶組成物Nを作成した。
Example 25 Exemplary compounds 1-24, 1-120 used in Example 24
, 1-195, the following exemplary compounds were mixed in the weight parts shown below to prepare a liquid crystal composition N.

【0227】[0227]

【外141】[Outside 141]

【0228】この液晶組成物を用いた以外は、全く実施
例17と同様の方法で強誘電性液晶素子を作成し、実施
例18と同様に光学応答速度を測定し、スイッチング状
態等を観察した。
[0228] A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured and the switching state etc. was observed in the same manner as in Example 18. .

【0229】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0229] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0230】[0230]

【外142】[Outside 142]

【0231】実施例26 実施例25で使用した例示化合物1−7,1−60,1
−186のかわりに以下に示す例示化合物を各々以下に
示す重量部で混合し、液晶組成物Oを作成した。
Example 26 Exemplary compounds 1-7, 1-60, 1 used in Example 25
Liquid crystal composition O was prepared by mixing the following exemplified compounds in the weight parts shown below in place of -186.

【0232】[0232]

【外143】[Outside 143]

【0233】この液晶組成物を用いた以外は全く実施例
17と同様の方法で強誘電性液晶素子を作成し、実施例
18と同様の方法で光学応答速度を測定した。
A ferroelectric liquid crystal element was prepared in the same manner as in Example 17 except that this liquid crystal composition was used, and the optical response speed was measured in the same manner as in Example 18.

【0234】この液晶素子内の均一配向性は良好であり
、モノドメイン状態が得られた。測定結果を次に示す。
[0234] The uniform alignment within this liquid crystal element was good, and a monodomain state was obtained. The measurement results are shown below.

【0235】[0235]

【外144】[Outside 144]

【0236】実施例18〜26より明らかなように、本
発明による液晶組成物E,F,G,I,J,K,M,N
およびOを含有する強誘電性液晶素子は、低温における
作動特性、高速応答性が改善され、また応答速度の温度
依存性も軽減されたものとなっている。
As is clear from Examples 18 to 26, liquid crystal compositions E, F, G, I, J, K, M, N according to the present invention
A ferroelectric liquid crystal element containing O and O has improved operating characteristics and high-speed response at low temperatures, and also has reduced temperature dependence of response speed.

【0237】実施例27 実施例18で使用したポリイミド樹脂前駆体1.5%ジ
メチルアセトアミド溶液に代えて、ポリビニルアルコー
ル樹脂[クラレ(株)製PUA−117」2%水溶液を
用いた他は全く同様の方法で強誘電性液晶素子を作成し
、実施例18と同様の方法で光学応答速度を測定した。 その結果を次に示す。
Example 27 Completely the same except that a 2% aqueous solution of polyvinyl alcohol resin [PUA-117 manufactured by Kuraray Co., Ltd.] was used in place of the 1.5% dimethylacetamide solution of the polyimide resin precursor used in Example 18. A ferroelectric liquid crystal element was prepared by the method described in (1), and the optical response speed was measured in the same manner as in Example 18. The results are shown below.

【0238】[0238]

【外145】[Outside 145]

【0239】実施例28 実施例18で使用したSiO2を用いずに、ポリイミド
樹脂だけで配向制御層を作成した以外は全く実施例17
と同様の方法で強誘電性液晶素子を作成し、実施例18
と同様の方法で光学応答速度を測定した。その結果を次
に示す。
Example 28 Completely the same as Example 17 except that the orientation control layer was made only of polyimide resin without using SiO2 used in Example 18.
A ferroelectric liquid crystal element was prepared in the same manner as in Example 18.
The optical response speed was measured in the same manner. The results are shown below.

【0240】[0240]

【外146】[Outside 146]

【0241】実施例27,28より明らかな様に、素子
構成を変えた場合でも本発明に係わる強誘電性液晶組成
物を含有する素子は、実施例18と同様に、低温作動特
性が非常に改善され、かつ、応答速度の温度依存性の軽
減されたものとなっている。
[0241] As is clear from Examples 27 and 28, even when the element configuration is changed, the element containing the ferroelectric liquid crystal composition according to the present invention has excellent low-temperature operating characteristics as in Example 18. This has been improved, and the temperature dependence of the response speed has been reduced.

【0242】[0242]

【発明の効果】本発明の化合物はそれ自体でカイラルス
メクチック相を示せば、強誘電性を利用した素子に有効
に適用できる材料となる。また、本発明の化合物を有し
た液晶組成物がカイラルスメクチック相を示す場合は、
該液晶組成物を含有する素子は、該液晶組成物が示す強
誘電性を利用して動作させることができる。このように
して利用されうる強誘電性液晶素子は、スイッチング特
性が良好で、低温作動特性の改善された液晶素子、及び
応答速度の温度依存性の軽減された液晶素子とすること
ができる。
[Effects of the Invention] If the compound of the present invention exhibits a chiral smectic phase by itself, it becomes a material that can be effectively applied to elements utilizing ferroelectricity. Furthermore, when the liquid crystal composition containing the compound of the present invention exhibits a chiral smectic phase,
A device containing the liquid crystal composition can be operated by utilizing the ferroelectricity exhibited by the liquid crystal composition. The ferroelectric liquid crystal element that can be used in this manner can be a liquid crystal element with good switching characteristics, improved low-temperature operation characteristics, and a liquid crystal element with reduced temperature dependence of response speed.

【0243】なお、本発明の液晶素子を表示素子として
光源、駆動回路等と組み合わせた表示装置は良好な装置
となる。
[0243] A display device in which the liquid crystal element of the present invention is used as a display element in combination with a light source, a driving circuit, etc. is a good device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】カイラルスメクチック相を示す液晶を用いた液
晶素子の一例の断面概略図である。
FIG. 1 is a schematic cross-sectional view of an example of a liquid crystal element using a liquid crystal exhibiting a chiral smectic phase.

【図2】液晶のもつ強誘電性を利用した液晶素子の動作
説明のために素子セルの一例を模式的に表わす斜視図で
ある。
FIG. 2 is a perspective view schematically showing an example of an element cell to explain the operation of a liquid crystal element that utilizes the ferroelectricity of liquid crystal.

【図3】液晶のもつ強誘電性を利用した液晶素子の動作
説明のために素子セルの一例を模式的に表わす斜視図で
ある。
FIG. 3 is a perspective view schematically showing an example of an element cell to explain the operation of a liquid crystal element that utilizes the ferroelectricity of liquid crystal.

【図4】強誘電性を利用した液晶素子を有する液晶表示
装置とグラフィックスコントローラを示すブロック構成
図である。
FIG. 4 is a block configuration diagram showing a liquid crystal display device having a liquid crystal element using ferroelectricity and a graphics controller.

【図5】液晶表示装置とグラフィックスコントローラと
の間の画像情報通信タイミングチャート図である。
FIG. 5 is a timing chart of image information communication between a liquid crystal display device and a graphics controller.

【符号の説明】[Explanation of symbols]

1  カイラルスメクチック相を有する液晶層2  ガ
ラス基板 3  透明電極 4  絶縁性配向制御層 5  スぺーサー 6  リード線 7  電源 8  偏光板 9  光源 Io  入射光 I  透過光 21a  基板 21b  基板 22  カイラルスメクチック相を有する液晶層23 
 液晶分子 24  双極子モーメント(P⊥) 31a  電圧印加手段 31b  電圧印加手段 33a  第1の安定状態 33b  第2の安定状態 34a  上向きの双極子モーメント 34b  下向きの双極子モーメント Ea  上向きの電界 Eb  下向きの電界 101  強誘電性液晶表示装置 102  グラフィックスコントローラ103  表示
パネル 104  走査線駆動回路 105  情報線駆動回路 106  デコーダ 107  走査信号発生回路 108  シフトレジスタ 109  ラインメモリ 110  情報信号発生回路 111  駆動制御回路 112  GCPU 113  ホストCPU 114  VRAM
1 Liquid crystal layer 2 having a chiral smectic phase Glass substrate 3 Transparent electrode 4 Insulating alignment control layer 5 Spacer 6 Lead wire 7 Power source 8 Polarizing plate 9 Light source Io Incident light I Transmitted light 21a Substrate 21b Substrate 22 Having a chiral smectic phase liquid crystal layer 23
Liquid crystal molecule 24 Dipole moment (P⊥) 31a Voltage application means 31b Voltage application means 33a First stable state 33b Second stable state 34a Upward dipole moment 34b Downward dipole moment Ea Upward electric field Eb Downward electric field 101 Ferroelectric liquid crystal display device 102 Graphics controller 103 Display panel 104 Scanning line drive circuit 105 Information line drive circuit 106 Decoder 107 Scanning signal generation circuit 108 Shift register 109 Line memory 110 Information signal generation circuit 111 Drive control circuit 112 GCPU 113 Host CPU 114 VRAM

Claims (38)

【特許請求の範囲】[Claims] 【請求項1】下記一般式〔I〕で示される液晶性化合物
。 【外1】
[Claim 1] A liquid crystalline compound represented by the following general formula [I]. [Outside 1]
【請求項2】前記〔I〕式で示される液晶性化合物が〔
Ib〕〜〔Ii〕のいずれかである請求項1記載の液晶
性化合物。 【外2】 【外3】
[Claim 2] The liquid crystalline compound represented by the formula [I] is [
The liquid crystal compound according to claim 1, which is any one of [Ib] to [Ii]. [Outside 2] [Outside 3]
【請求項3】前記〔I〕式で示される液晶性化合物が下
記〔Ia〕で示される化合物である請求項1記載の液晶
性化合物。 【外4】
3. The liquid crystal compound according to claim 1, wherein the liquid crystal compound represented by the formula [I] is a compound represented by the following [Ia]. [Outside 4]
【請求項4】前記〔I〕式で示される液晶性化合物が下
記〔Iba〕〜〔Iib〕式のいずれかで示される化合
物である請求項1記載の液晶性化合物。 【外5】 【外6】
4. The liquid crystal compound according to claim 1, wherein the liquid crystal compound represented by the formula [I] is a compound represented by any one of the following formulas [Iba] to [Iib]. [Outside 5] [Outside 6]
【請求項5】前記〔I〕式で示される液晶性化合物が下
記〔Iaa〕である請求項1記載の液晶性化合物。 【外7】
5. The liquid crystal compound according to claim 1, wherein the liquid crystal compound represented by the formula [I] is the following [Iaa]. [Outside 7]
【請求項6】前記〔I〕式で示される液晶性化合物が下
記〔Iab〕である請求項1記載の液晶性化合物。 【外8】
6. The liquid crystal compound according to claim 1, wherein the liquid crystal compound represented by the formula [I] is the following [Iab]. [Outside 8]
【請求項7】前記一般式〔I〕中、R1が下記(i)〜
(iv)のいずれかであり、R2が下記(i)〜(v)
のいずれかである請求項1記載の液晶性化合物。 (i)炭素原子数3〜12のn−アルキル基。 (ii) 【外9】 (ただし、mは0〜6の整数、nは1〜8の整数を示す
。また、光学活性であってもよい。)(iii) 【外10】 (ただし、rは0〜6の整数、sは0または1、tは1
〜12の整数を示す。また、光学活性であってもよい。 ) (iv) 【外11】 (ただし、yは0または1で、xは1〜14の整数であ
る。) (v)フッ素原子またはトリフルオロメチル基。
7. In the general formula [I], R1 is the following (i) -
(iv), and R2 is one of the following (i) to (v)
The liquid crystal compound according to claim 1, which is any one of the following. (i) n-alkyl group having 3 to 12 carbon atoms. (ii) [Example 9] (However, m is an integer from 0 to 6, and n is an integer from 1 to 8. It may also be optically active.) (iii) [Example 10] (However, r is an integer from 0 to 6, s is 0 or 1, t is 1
Indicates an integer between ~12. It may also be optically active. ) (iv) (However, y is 0 or 1, and x is an integer of 1 to 14.) (v) A fluorine atom or a trifluoromethyl group.
【請求項8】  前記一般式〔I〕の化合物が光学活性
な化合物である請求項1記載の液晶性化合物。
8. The liquid crystal compound according to claim 1, wherein the compound of general formula [I] is an optically active compound.
【請求項9】  前記一般式〔I〕の化合物が非光学活
性な化合物である請求項1記載の液晶性化合物。
9. The liquid crystalline compound according to claim 1, wherein the compound of general formula [I] is a non-optically active compound.
【請求項10】  請求項1記載の液晶性化合物の少な
くとも1種を含有することを特徴とする液晶組成物。
10. A liquid crystal composition comprising at least one liquid crystal compound according to claim 1.
【請求項11】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜80重量%含有する請
求項10記載の液晶組成物。
11. The liquid crystal composition according to claim 10, which contains the liquid crystal compound represented by general formula [I] in an amount of 1 to 80% by weight based on the liquid crystal composition.
【請求項12】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜60重量%含有する請
求項10記載の液晶組成物。
12. The liquid crystal composition according to claim 10, which contains the liquid crystal compound represented by the general formula [I] in an amount of 1 to 60% by weight based on the liquid crystal composition.
【請求項13】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜40重量%含有する請
求項10記載の液晶組成物。
13. The liquid crystal composition according to claim 10, wherein the liquid crystal compound represented by general formula [I] is contained in an amount of 1 to 40% by weight based on the liquid crystal composition.
【請求項14】  前記液晶組成物がカイラルスメクチ
ック相を有する請求項10記載の液晶組成物。
14. The liquid crystal composition according to claim 10, wherein the liquid crystal composition has a chiral smectic phase.
【請求項15】  請求項10記載の液晶組成物を1対
の電極基板間に配置してなることを特徴とする液晶素子
15. A liquid crystal element comprising a liquid crystal composition according to claim 10 disposed between a pair of electrode substrates.
【請求項16】  前記電極基板上にさらに配向制御層
が設けられている請求項15記載の液晶素子。
16. The liquid crystal device according to claim 15, further comprising an alignment control layer provided on the electrode substrate.
【請求項17】  前記配向制御層がラビング処理され
た層である請求項16記載の液晶素子。
17. The liquid crystal element according to claim 16, wherein the alignment control layer is a layer subjected to a rubbing treatment.
【請求項18】  液晶分子のらせんが解除された膜厚
で前記1対の電極基板を配置する請求項15記載の液晶
素子。
18. The liquid crystal element according to claim 15, wherein the pair of electrode substrates is arranged to have a thickness such that the helix of liquid crystal molecules is released.
【請求項19】  請求項15記載の液晶素子を有する
表示装置。
19. A display device comprising the liquid crystal element according to claim 15.
【請求項20】  液晶組成物が示す強誘電性を利用し
て液晶分子をスイッチングさせて表示を行なう請求項1
9記載の表示装置。
Claim 20: Claim 1, wherein display is performed by switching liquid crystal molecules using ferroelectricity exhibited by the liquid crystal composition.
9. The display device according to 9.
【請求項21】  さらに光源を有する請求項19記載
の表示装置。
21. The display device according to claim 19, further comprising a light source.
【請求項22】  下記一般式〔I〕で示される液晶性
化合物を含有する液晶組成物を表示に使用する使用方法
。 【外12】
22. A method of using a liquid crystal composition containing a liquid crystal compound represented by the following general formula [I] for display purposes. [Outer 12]
【請求項23】前記〔I〕式で示される液晶性化合物が
〔Ib〕〜〔Ii〕のいずれかである請求項22記載の
使用方法。 【外13】 【外14】
23. The method according to claim 22, wherein the liquid crystalline compound represented by formula [I] is any one of [Ib] to [Ii]. [Outer 13] [Outer 14]
【請求項24】前記〔I〕式で示される液晶性化合物が
下記〔Ia〕である請求項22記載の使用方法。 【外15】
24. The method according to claim 22, wherein the liquid crystalline compound represented by the formula [I] is the following [Ia]. [Outside 15]
【請求項25】前記〔I〕式で示される液晶性化合物が
下記〔Iba〕〜〔Iib〕式のいずれかである請求項
22記載の使用方法。 【外16】 【外17】
25. The method according to claim 22, wherein the liquid crystalline compound represented by formula [I] is one of the following formulas [Iba] to [Iib]. [Outer 16] [Outer 17]
【請求項26】前記〔I〕式で示される液晶性化合物が
下記〔Iaa〕である請求項22記載の使用方法。 【外18】
26. The method according to claim 22, wherein the liquid crystal compound represented by formula [I] is the following [Iaa]. [Outside 18]
【請求項27】前記〔I〕式で示される液晶性化合物が
下記〔Iab〕である請求項22記載の使用方法。 【外19】
27. The method according to claim 22, wherein the liquid crystalline compound represented by formula [I] is the following [Iab]. [Outside 19]
【請求項28】前記一般式〔I〕中、R1が下記(i)
〜(iv)のいずれかであり、R2が下記(i)〜(v
)のいずれかである請求項22記載の使用方法。 (i)炭素原子数3〜12のn−アルキル基。 (ii) 【外20】 (ただし、mは0〜6の整数、nは1〜8の整数を示す
。また、光学活性であってもよい。)(iii) 【外21】 (ただし、rは0〜6の整数、sは0または1、tは1
〜12の整数を示す。また、光学活性であってもよい。 ) (iv) 【外22】 (ただし、yは0または1で、xは1〜14の整数であ
る。) (v)フッ素原子またはトリフルオロメチル基。
28. In the general formula [I], R1 is the following (i):
~(iv), and R2 is any of the following (i)~(v)
) The method according to claim 22. (i) n-alkyl group having 3 to 12 carbon atoms. (ii) [20] (However, m is an integer of 0 to 6, n is an integer of 1 to 8. It may also be optically active.) (iii) [21] (However, r is an integer from 0 to 6, s is 0 or 1, t is 1
Indicates an integer between ~12. It may also be optically active. ) (iv) (However, y is 0 or 1, and x is an integer of 1 to 14.) (v) A fluorine atom or a trifluoromethyl group.
【請求項29】  前記一般式〔I〕の化合物が光学活
性な化合物である請求項22記載の使用方法。
29. The method of use according to claim 22, wherein the compound of general formula [I] is an optically active compound.
【請求項30】  前記一般式〔I〕の化合物が非光学
活性な化合物である請求項22記載の使用方法。
30. The method of use according to claim 22, wherein the compound of general formula [I] is a non-optically active compound.
【請求項31】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜80重量%含有する請
求項22記載の使用方法。
31. The method according to claim 22, wherein the liquid crystal compound represented by formula [I] is contained in an amount of 1 to 80% by weight based on the liquid crystal composition.
【請求項32】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜60重量%含有する請
求項22記載の使用方法。
32. The method according to claim 22, wherein the liquid crystal compound represented by formula [I] is contained in an amount of 1 to 60% by weight based on the liquid crystal composition.
【請求項33】  一般式〔I〕で示される液晶性化合
物を前記液晶組成物に対し、1〜40重量%含有する請
求項22記載の使用方法。
33. The method according to claim 22, wherein the liquid crystal compound represented by general formula [I] is contained in an amount of 1 to 40% by weight based on the liquid crystal composition.
【請求項34】  前記液晶組成物がカイラルスメクチ
ック相を有する請求項22記載の使用方法。
34. The method of use according to claim 22, wherein the liquid crystal composition has a chiral smectic phase.
【請求項35】  下記の一般式〔I〕で示される液晶
性化合物を含有する液晶組成物を1対の電極基板間に配
置してなる液晶素子を表示に使用する使用方法。 【外23】
35. A method of using a liquid crystal element for display, in which a liquid crystal composition containing a liquid crystal compound represented by the following general formula [I] is disposed between a pair of electrode substrates. [Outer 23]
【請求項36】  前記電極基板上にさらに配向制御層
が設けられている請求項35記載の使用方法。
36. The method of use according to claim 35, further comprising an alignment control layer provided on the electrode substrate.
【請求項37】  前記配向制御層がラビング処理され
た層である請求項36記載の使用方法。
37. The method of use according to claim 36, wherein the orientation control layer is a rubbed layer.
【請求項38】  液晶分子のらせんが解除された膜厚
で前記1対の電極基板を配置する請求項35記載の使用
方法。
38. The method of use according to claim 35, wherein the pair of electrode substrates is arranged to have a thickness such that the helix of liquid crystal molecules is released.
JP1209491A 1991-02-01 1991-02-01 Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same Pending JPH04247076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1209491A JPH04247076A (en) 1991-02-01 1991-02-01 Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1209491A JPH04247076A (en) 1991-02-01 1991-02-01 Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same

Publications (1)

Publication Number Publication Date
JPH04247076A true JPH04247076A (en) 1992-09-03

Family

ID=11795989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1209491A Pending JPH04247076A (en) 1991-02-01 1991-02-01 Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same

Country Status (1)

Country Link
JP (1) JPH04247076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539888A (en) * 2006-06-13 2009-11-19 中国科学院上海薬物研究所 Heterocyclic non-nucleoside compounds and methods for their preparation, pharmaceutical compositions and their use as antiviral agents
US8236835B2 (en) 2006-09-22 2012-08-07 Novartis Ag Heterocyclic inhibitors of stearoyl-CoA desaturase
US8258160B2 (en) 2006-12-20 2012-09-04 Novartis Ag SCD1 inhibitors triazole and tetrazole compounds
US8314138B2 (en) 2006-08-24 2012-11-20 Novartis Ag Pyrazole derivative as SCD1 inhibitors for the treatment of diabetes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539888A (en) * 2006-06-13 2009-11-19 中国科学院上海薬物研究所 Heterocyclic non-nucleoside compounds and methods for their preparation, pharmaceutical compositions and their use as antiviral agents
US8314138B2 (en) 2006-08-24 2012-11-20 Novartis Ag Pyrazole derivative as SCD1 inhibitors for the treatment of diabetes
US8236835B2 (en) 2006-09-22 2012-08-07 Novartis Ag Heterocyclic inhibitors of stearoyl-CoA desaturase
US8258160B2 (en) 2006-12-20 2012-09-04 Novartis Ag SCD1 inhibitors triazole and tetrazole compounds

Similar Documents

Publication Publication Date Title
JP2801279B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
US5116530A (en) Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
JP2801269B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
JPH0269440A (en) Optically active liquid-crystallizable compound, liquid crystal composition containing the same compound and liquid crystal element
JP2952053B2 (en) Optically active compound, liquid crystal composition containing the same, method of using the same, liquid crystal element using the same, and display device
JP3176073B2 (en) Liquid crystal element
JP2832028B2 (en) Compound, liquid crystal composition containing the same, and liquid crystal device using the same
US5139697A (en) Liquid crystal composition and liquid crystal device using same
EP0467260B1 (en) Mesomorphic compound and liquid crystal composition containing same for use in liquid crystal device and display apparatus
US5217644A (en) Mesomorphic compound, liquid crystal composition containing same, liquid crystal device using same and display apparatus
JPH07309850A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and displaying method and displaying apparatus using the same
JPH09151179A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the composition, liquid crystal apparatus and displaying method using them
EP0326086B1 (en) Liquid crystal composition and liquid crystal device using same
JPH04247076A (en) Liquid crystal compound, liquid crystal composition containing the same, its use and liquid crystal element and display produced by using the same
JP3171370B2 (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same, liquid crystal device using them and display method
JP3093507B2 (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, display method and display device using them
JPH05239069A (en) Liquid crystal compound, liquid crystal composition containing the same, liquid crystal element having the same, displaying method and display unit using the same
JPH0629424B2 (en) Ferroelectric chiral smectic liquid crystal composition and liquid crystal device containing the same
JPH04300871A (en) Optically active compound, liquid crystal composition containing the compound, liquid crystal element containing the composition and display and display device using the element or the like
JPH04272989A (en) Liquid crystal composition, liquid crystal element containing same, and display method and display device using same
JPH04264052A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same and method for display and display device using the same
JP3213780B2 (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element using the liquid crystal composition, display method and display device using the same
JPH07118255A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal element having the same composition, display device using the same element and display method using the same composition
JPH0770113A (en) Optically active compound, liquid crystal composition containing the same, liquid crystal device containing the same and display and display device respectively using them
JPH03220183A (en) Liquid crystal compound, liquid crystal composition containing the same and liquid crystal element produced by using the same