JPS63253503A - Perpendicular magnetic field impressing device - Google Patents

Perpendicular magnetic field impressing device

Info

Publication number
JPS63253503A
JPS63253503A JP8715487A JP8715487A JPS63253503A JP S63253503 A JPS63253503 A JP S63253503A JP 8715487 A JP8715487 A JP 8715487A JP 8715487 A JP8715487 A JP 8715487A JP S63253503 A JPS63253503 A JP S63253503A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
films
layered
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8715487A
Other languages
Japanese (ja)
Inventor
Osamu Ishii
修 石井
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8715487A priority Critical patent/JPS63253503A/en
Publication of JPS63253503A publication Critical patent/JPS63253503A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To substantially obviate a decrease in a perpendicular magnetic component and to decrease eddy current loss by using a multi-layered structural body consisting of thin magnetic films and nonmagnetic films having an insulating characteristic as a magnetic pole and disposing the magnetic pole in such a manner that a horizontal magnetic field is perpendicular to the multi-layered films of the multi-layered structural body. CONSTITUTION:The magnetic pole consisting of the multi-layered structure is disposed to a perpendicularly magnetized medium 5. This multi-layered structural body is laminated with plural layers of the soft magnetic films 1 and the nonmagnetic layers 2. The multi-layered films of this multi-layered structural body face the perpendicularly magnetized medium 5. A coil 3 is wound around the magnetic pole consisting of the multi-layered structural body. The soft magnetic films 1 are formed of amorphous Zr-Co and the nonmagnetic layers of SiO2 by a sputtering method. The horizontal magnetic field 4 is impressed to the multi-layered film planes of unidirectional multi-layered structural body so that the film planes are held perpendicular to the horizontal magnetic field. A self-demagnetizing field acts in the direction perpendicular to the film plane and the inclination of a spin in the direction HM when a DC magnetic field HM is applied to the films is suppressed and, therefore, the perpendicular magnetic field component is hardly decreased. Since the magnetic films are thin, the eddy current loss is decreased.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は磁場変調方式の光磁気記録におけろ磁場印加装
置や、垂直磁気記録における磁気ヘッドの高性能化に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application> The present invention relates to improving the performance of a magnetic field applying device in magneto-optical recording using a magnetic field modulation method and a magnetic head in perpendicular magnetic recording.

〈従来の技術と問題点〉 光磁気記録は現在の磁気ディスクを凌ぐ高い記録密度が
期待できろこと、光ディスクと比べ情報の書替えが可能
などの理由から盛んに研究が行われている。この光磁気
記録及び再生の原理は、垂直磁化膜にあって、記録した
い方向に直流の外部磁界を印加しておき、次に書き込み
をしたいところにレーザを当てて熱を加えると、このレ
ーザ照射面の温度がキューリ一温度に近ずき垂直磁気異
方性エネルギーが小さくなるため、外部磁界の方向に磁
化は反転する。この反転を保持することにより記録が行
なわれる。また、再生を行なう場合、カー効果により磁
化の向きの違いをカー回転角(θK)の違いで読み出す
。すなわち、反射光(偏光)の偏光面のかたむきの違い
を検光子に通すことで、光強度の差として媒体の磁化方
向が検出できろ。
<Conventional Technologies and Problems> Magneto-optical recording has been actively researched because it promises higher recording density than current magnetic disks, and because information can be rewritten compared to optical disks. The principle of magneto-optical recording and reproducing is that a perpendicularly magnetized film is applied with a direct current external magnetic field in the direction you want to record, and then a laser is applied to the area where you want to write and heat is applied. As the temperature of the surface approaches the Curie temperature and the perpendicular magnetic anisotropy energy decreases, the magnetization is reversed in the direction of the external magnetic field. Recording is performed by maintaining this inversion. Further, when performing reproduction, the difference in magnetization direction due to the Kerr effect is read out by the difference in Kerr rotation angle (θK). That is, by passing the difference in the polarization plane of the reflected light (polarized light) through an analyzer, the magnetization direction of the medium can be detected as a difference in light intensity.

光磁気記録の原理は、以上の如(であるが、この光磁気
記録では、光と磁界とで記録を行なう点は共通するもの
の、更に変調の対象の違いにより光変調方式と磁場変調
方式とに分けられる。すなわち、第5図に示すように、
一定方向にあらかじめ磁化しである媒体に対し、外部磁
場(バイアス磁場)を逆向きに印加しつつ、光の点滅と
して情報を変換し、光が当った部分の磁化を反転させて
記録する光変調方式と、レーザー光は連続照射しておき
、通常の磁気記録同様、情報をバイアス磁場の反転とし
て加え、媒体が冷えてくる過程で、バイアス磁場の向き
に応じた磁化反転の列として記録する磁場変調方式とが
ある。
The principle of magneto-optical recording is as described above (however, in magneto-optical recording, recording is performed using light and a magnetic field, but there are also differences between the optical modulation method and the magnetic field modulation method due to the difference in the object of modulation. In other words, as shown in Figure 5,
Optical modulation involves applying an external magnetic field (bias magnetic field) in the opposite direction to a medium that has already been magnetized in a certain direction, converting information as flashing light, and recording by reversing the magnetization of the area that is hit by the light. In this method, laser light is continuously irradiated, and information is added as a reversal of the bias magnetic field, as in normal magnetic recording, and as the medium cools, the magnetic field is recorded as a sequence of magnetization reversals according to the direction of the bias magnetic field. There is a modulation method.

これら光変調方式及び磁場変調方式では、膜厚方向にか
なり大きな磁場を作る必要があり、殊に磁場変調方式で
は数十から数百01の大きな磁場が必要で書込み速度を
あげるため高周波が必要となる。具体的には、磁場変調
方式で記録のために用いる磁場印加用のヘッドは、媒体
面に垂直に交流磁場(記録信号磁場)を得るためのコイ
ルあるいは磁心を有するコイルで構成されている。そし
て、媒体面とヘッドの間隔を数百−以上とし、媒体面上
には数+0以上の磁場を印加しようとすると、ヘッドの
断面積は平方ミリメートルのオーダーの大きさが必要と
なり、且っMn−Z、フェライト等の高透磁率の磁心を
用いる必要がある。
In these optical modulation methods and magnetic field modulation methods, it is necessary to create a fairly large magnetic field in the film thickness direction. In particular, the magnetic field modulation method requires a large magnetic field of tens to hundreds of 01, and a high frequency is required to increase the writing speed. Become. Specifically, a head for applying a magnetic field used for recording using the magnetic field modulation method is composed of a coil or a coil having a magnetic core for obtaining an alternating magnetic field (recording signal magnetic field) perpendicular to the medium surface. If the distance between the medium surface and the head is set to be several hundred or more, and a magnetic field of several +0 or more is applied to the medium surface, the cross-sectional area of the head must be on the order of square millimeters, and Mn -Z, it is necessary to use a magnetic core with high magnetic permeability such as ferrite.

そして、5ツドのインピーダンスはサイズの増加や高透
磁率磁心の使用によって増大するため交流駆動に際して
、駆動電流の増加及びそれに伴なう発熱や、記録磁場が
空間的に広く放出されるためサーボ用のボイスコイルに
影響してヘッドの位置決定が不完全になる等の問題があ
った。
The impedance of the 5-wire increases due to the increase in size and the use of a high permeability magnetic core, so when driving with AC, the drive current increases and the heat generated due to it, and the recording magnetic field is emitted spatially widely, so it is not suitable for servo drives. There were problems such as incomplete head position determination due to the effect on the voice coil of the head.

つまり、外部から印加する垂直磁場は光変調方式にせよ
磁場変調方式にせよ大きな値が必要で、殊に磁場変調方
式では装M構成上の困難性をもたらす。
In other words, the perpendicular magnetic field applied from the outside requires a large value regardless of whether the optical modulation method or the magnetic field modulation method is used, and the magnetic field modulation method in particular poses difficulties in terms of M configuration.

このような垂直磁場の大きさを減少するため、水平磁場
の利用が考えられている。すなわち、光磁気媒体のよう
な膜面に垂直方向に一軸性の磁気異方性を有する膜の、
磁化の反転はスピンが整って一斎に回転する、いわゆる
−前回転モードに従うと考えられている。
In order to reduce the magnitude of such a vertical magnetic field, the use of a horizontal magnetic field has been considered. In other words, for a film that has uniaxial magnetic anisotropy in the direction perpendicular to the film surface, such as a magneto-optical medium,
The reversal of magnetization is thought to follow the so-called -pre-rotation mode, in which the spins are aligned and rotate in one stroke.

(Kobayasbi、’r、Jpn、J  人pp 
1. phy、 20.1981. pp2089)こ
のような膜においては膜面に平行にも磁場 1を加えた
方が、垂直方向の磁化の反転に要する磁場は少なくてす
むことが提案されている。
(Kobayasbi, 'r, Jpn, J people pp
1. phy, 20.1981. pp. 2089) It has been proposed that in such a film, if a magnetic field 1 is also applied parallel to the film surface, the magnetic field required to reverse the magnetization in the perpendicular direction can be reduced.

しかしながら、磁場印加装置としてみた場合、膜面に平
行方向と垂直方向に同時に磁場を印加するような構成の
ヘッドは、従来、考案されていなかった。というのは、
磁極として用いられる軟磁性材料自身も、媒体面に平行
な磁場を加えた場合にその磁場の方向に磁化され、実質
的に磁極の透磁率を低下させる、。
However, when viewed as a magnetic field applying device, a head configured to apply a magnetic field simultaneously in parallel and perpendicular directions to the film surface has not been devised in the past. I mean,
The soft magnetic material itself used as the magnetic pole is also magnetized in the direction of the magnetic field when a magnetic field parallel to the medium surface is applied, substantially reducing the magnetic permeability of the magnetic pole.

即ち、垂直方向磁場が励起されにくくなるからである。In other words, the vertical magnetic field is less likely to be excited.

同様の状況は、光を用いない磁気記録において媒体を膜
面に垂直方向に磁化する、いわゆる垂直磁気記録用のヘ
ッドにおいても成立する。
A similar situation also holds true in so-called perpendicular magnetic recording heads, which magnetize the medium in a direction perpendicular to the film surface in magnetic recording that does not use light.

そこで、本発明は上述の問題に鑑み膜面に対し水平方向
の磁場を印加しつつ、垂直方向の磁場を加えるようにし
た情報書き込み用の垂直磁場印加装置を提供する。
In view of the above-mentioned problems, the present invention provides a vertical magnetic field applying device for information writing, which applies a vertical magnetic field while applying a horizontal magnetic field to a film surface.

(問題点を解決するための手段〉 上述の目的を達成する本発明は、垂直磁気記録媒体の膜
面に対し平行な水平磁界内に存在して上記膜面に垂直方
向に垂直磁場を印加する垂直磁場印加装置において、 磁性薄膜と絶縁性の非磁性膜との多層構造体を磁極とし
、上記水平磁界が上記多層構造体での多層の膜面に垂直
になるように上記磁極を配置したことを特徴とする。
(Means for Solving the Problems) The present invention achieves the above object by applying a perpendicular magnetic field in a direction perpendicular to the film surface of a perpendicular magnetic recording medium by existing in a horizontal magnetic field parallel to the film surface. In the vertical magnetic field applying device, a multilayer structure of a magnetic thin film and an insulating nonmagnetic film is used as a magnetic pole, and the magnetic pole is arranged so that the horizontal magnetic field is perpendicular to the surface of the multilayer in the multilayer structure. It is characterized by

く実 施 例〉 ここで、第1図ないし第4図を参照して本発明の詳細な
説明する。
EMBODIMENTS> The present invention will now be described in detail with reference to FIGS. 1 to 4.

第1図において、垂直磁化媒体4に対しては、多層構造
体よりなる磁極が配置されている。この多層構造体は軟
磁性膜1と非磁性層2とが多数枚積層された多層構造を
有している。そして、垂直磁化媒体4にはこの多層構造
体の多層膜が面している。そして、この多層構造体であ
る磁極にはコイル3が巻回されろ。この場合、軟磁性膜
としては0.5μ厚の8%Zr−92%COの非晶質膜
な、非磁性層としては1μ厚のS i O2膜をスパッ
タリング法で各々100層形成し、コイルは50回巻く
ものが例示される。
In FIG. 1, a magnetic pole made of a multilayer structure is arranged for a perpendicularly magnetized medium 4. This multilayer structure has a multilayer structure in which a large number of soft magnetic films 1 and nonmagnetic layers 2 are laminated. The multilayer film of this multilayer structure faces the perpendicular magnetization medium 4. A coil 3 is wound around this multilayered magnetic pole. In this case, 100 layers of an 8% Zr-92% CO amorphous film with a thickness of 0.5μ as the soft magnetic film and an SiO2 film with a thickness of 1μ as the nonmagnetic layer were formed by sputtering, and the coil was An example is one in which the wire is wound 50 times.

一方、多層構造体の多層の膜面に垂直に水平磁界が印加
される。すなわち、膜面が水平磁界に対し直角となるよ
うに多層構造体が配若される。この場合、水平磁界であ
る外部磁場は均一な直流磁場であれば何でも良く、永久
磁石あるいはへルムホルツコイルによって発生した磁場
が用いられる。ここにおいて、水平磁界を膜面に直角に
印加するのは、軟磁性膜1の膜厚方向での磁化及び自己
減磁が相殺して、外部磁界による磁気モーメントのスピ
ンの回転を抑えるようにし、外部磁界の影響を極めて少
なくするためである。
On the other hand, a horizontal magnetic field is applied perpendicularly to the film surfaces of the multilayers of the multilayer structure. That is, the multilayer structure is arranged so that the film surface is perpendicular to the horizontal magnetic field. In this case, the external magnetic field, which is a horizontal magnetic field, may be any uniform DC magnetic field, and a magnetic field generated by a permanent magnet or a Helmholtz coil is used. Here, the horizontal magnetic field is applied perpendicularly to the film surface so that the magnetization and self-demagnetization in the film thickness direction of the soft magnetic film 1 cancel each other out, suppressing the spin rotation of the magnetic moment caused by the external magnetic field. This is to minimize the influence of external magnetic fields.

ここで、媒体5と磁極先端との距離を500声と設定し
磁極先端面の中央から500−はなれた場所の媒体垂直
方向の磁場強度(H)を測定した結果を第2図にてH,
と水平磁界H8とて示す。なお、H2はH,= OO,
の時の値で規格化しである。
Here, the distance between the medium 5 and the magnetic pole tip was set to 500 degrees, and the magnetic field strength (H) in the direction perpendicular to the medium at a location 500 degrees away from the center of the magnetic pole tip surface was measured.
and horizontal magnetic field H8. Note that H2 is H, = OO,
It is normalized by the value at the time of .

第2図において、H,が1000.付近まではHの減少
は実験誤差範囲内で一定である。
In FIG. 2, H is 1000. The decrease in H is constant within the experimental error range up to approximately

即ち、このような構造を用いれば、光磁気記録媒体等の
垂直磁化膜に対し、垂直方向には信号磁場(交流)を加
えつつ、水平方向にも直流磁場を加えることができる。
That is, by using such a structure, it is possible to apply a signal magnetic field (alternating current) in the perpendicular direction and also apply a direct current magnetic field in the horizontal direction to a perpendicularly magnetized film such as a magneto-optical recording medium.

膜面に垂直方向には、前述の如く膜の自己減磁界(4π
M、、M、:@性膜の自発磁化)が作用するので、町が
加わった場合にスピンが町の方向に傾くのが抑制される
ため、磁極の膜面白成分(M、、lはHoが小さい範囲
(H,<< 4πM、)では、はとんど減少しない。H
2はM、lに比例するため前述の結果が得られる。
In the direction perpendicular to the film surface, the film's self-demagnetizing field (4π
M, , M, : @ Spontaneous magnetization of the magnetic film) acts, so when the town is added, the spin is suppressed from tilting in the direction of the town. In the range where is small (H, << 4πM,), H hardly decreases.
Since 2 is proportional to M and l, the above result is obtained.

本実施例の場合には、磁極の厚さが150声と厚いので
、光磁気記録における磁場変調方式を用いた書き込み用
の磁場印加装置として好適であるが、磁極の層数を減ら
し、且つ磁性層と非磁性層の厚みを減らせば、草種型の
垂直磁気記録用磁気ヘッドとしても適当である。
In the case of this example, since the thickness of the magnetic pole is as thick as 150 tones, it is suitable as a magnetic field application device for writing using a magnetic field modulation method in magneto-optical recording. If the thicknesses of the layer and the nonmagnetic layer are reduced, it is suitable as a grass type magnetic head for perpendicular magnetic recording.

第3図、第4図は磁極の他の構造例を示しており、第3
図においては磁束が戻る磁路を形成した閉磁路構造であ
って、第1図の例と異なり媒体側にのみ磁束が発生する
場合であり、磁束利用効率が良い。また、第4図におい
ては磁極自体にコイルを巻くことなく媒体を間に挾んで
位置した比較的大きな電磁石(補助磁極)にて磁束を発
生させるようにしてもよい。この場合、補助磁極6を多
層構造体としない場合には、補助磁極6に加わる水平磁
場は実用上差支えない程度に小さくなるよう設定するこ
とが必要となる。もっとも、補助磁極6は記録用の磁極
と別体であるので大電流を流して強い磁力を発生させて
もよい。
Figures 3 and 4 show other structural examples of magnetic poles.
The figure shows a closed magnetic path structure in which a magnetic path for returning magnetic flux is formed, and unlike the example in FIG. 1, magnetic flux is generated only on the medium side, and the magnetic flux utilization efficiency is good. Furthermore, in FIG. 4, the magnetic flux may be generated by a relatively large electromagnet (auxiliary magnetic pole) placed with the medium sandwiched between them, without winding a coil around the magnetic pole itself. In this case, if the auxiliary magnetic pole 6 is not made of a multilayer structure, the horizontal magnetic field applied to the auxiliary magnetic pole 6 needs to be set to be small enough to be practically acceptable. However, since the auxiliary magnetic pole 6 is separate from the recording magnetic pole, a large current may be passed therethrough to generate a strong magnetic force.

また、第3図と第4図の構造を組合せるようにしてもよ
い。いずれにしても、磁極を磁性薄膜と非磁性膜の多層
構造とし、その膜面に対し垂直方向に均一磁場を加印す
ることで、媒体に対しては垂直方向の信号磁場に加え、
水平方向の直流磁場を重ね合わせることができる。
Furthermore, the structures shown in FIGS. 3 and 4 may be combined. In any case, by making the magnetic pole a multilayer structure of a magnetic thin film and a nonmagnetic film, and applying a uniform magnetic field perpendicular to the film surface, in addition to the signal magnetic field perpendicular to the medium,
Horizontal DC magnetic fields can be superimposed.

〈発明の効果〉 以上説明したように、本発明による垂直磁場印加装置は
磁極面に対し垂直方向に直流磁場(H,)を加える形状
としているため磁極から発生する垂直磁場成分(H2)
は町が小さい場合にはほとんど減少しない。又、Hを高
周波磁界とする場合にも、磁性膜厚が薄いため、うず電
流損失を低減させる効果がある。
<Effects of the Invention> As explained above, the vertical magnetic field application device according to the present invention is shaped to apply a DC magnetic field (H,) perpendicularly to the magnetic pole surface, so that the vertical magnetic field component (H2) generated from the magnetic pole is
will hardly decrease if the town is small. Furthermore, even when H is a high-frequency magnetic field, the thin magnetic film has the effect of reducing eddy current loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例で、第1図は多
層構造体の簡略斜視図、第2図は垂直磁場と水平磁場と
の関係を示す特性図、第3図は閉磁路構造の斜視図、第
4図は補助磁極を備えた場合の斜視図、第5図は二つの
光磁気記録方式の説明図である。 図    中、 1は軟磁性膜、 2は非磁性膜、 4は均一な水平磁場、 5は垂直磁化媒体である。 特  許  出  願  人 日本電信電話株式会社 代    理    人
Figures 1 to 4 show an embodiment of the present invention, where Figure 1 is a simplified perspective view of a multilayer structure, Figure 2 is a characteristic diagram showing the relationship between vertical and horizontal magnetic fields, and Figure 3 is a closed magnetic field. FIG. 4 is a perspective view of the path structure, FIG. 4 is a perspective view of the case with an auxiliary magnetic pole, and FIG. 5 is an explanatory diagram of two magneto-optical recording systems. In the figure, 1 is a soft magnetic film, 2 is a nonmagnetic film, 4 is a uniform horizontal magnetic field, and 5 is a vertically magnetized medium. Patent applicant: Agent of Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 垂直磁気記録媒体の膜面に対し平行な水平磁界内に存在
して上記膜面に垂直方向に垂直磁場を印加する垂直磁場
印加装置において、 磁性薄膜と絶縁性の非磁性膜との多層構造体を磁極とし
、上記水平磁界が上記多層構造体での多層の膜面に垂直
になるように上記磁極を配置したことを特徴とする垂直
磁場印加装置。
[Claims] A vertical magnetic field applying device that exists in a horizontal magnetic field parallel to a film surface of a perpendicular magnetic recording medium and applies a perpendicular magnetic field in a direction perpendicular to the film surface, comprising: a magnetic thin film and an insulating non-magnetic film; A vertical magnetic field applying device characterized in that a multilayer structure including a film is used as a magnetic pole, and the magnetic pole is arranged so that the horizontal magnetic field is perpendicular to the surface of the multilayer in the multilayer structure.
JP8715487A 1987-04-10 1987-04-10 Perpendicular magnetic field impressing device Pending JPS63253503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8715487A JPS63253503A (en) 1987-04-10 1987-04-10 Perpendicular magnetic field impressing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8715487A JPS63253503A (en) 1987-04-10 1987-04-10 Perpendicular magnetic field impressing device

Publications (1)

Publication Number Publication Date
JPS63253503A true JPS63253503A (en) 1988-10-20

Family

ID=13907066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8715487A Pending JPS63253503A (en) 1987-04-10 1987-04-10 Perpendicular magnetic field impressing device

Country Status (1)

Country Link
JP (1) JPS63253503A (en)

Similar Documents

Publication Publication Date Title
JPS59101004A (en) Device for recording and reproducing picture
JPH0775042B2 (en) Magneto-optical recording / reproducing device
JPH06180834A (en) Perpendicular magnetic recording medium
JPS63253503A (en) Perpendicular magnetic field impressing device
JPH0348582B2 (en)
JP2002117502A (en) Information storage device and recording/reproducing head
JP3496113B2 (en) Information recording medium, information recording medium reproducing method, and information recording medium reproducing apparatus
JPH11353725A (en) Magneto-optical recording medium and magneto-optical recorder
JPH0536141A (en) Magneto-optical recorder
JP3617400B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS61214258A (en) Write and reproducing integrated magnetic head
JPH05250651A (en) Perpendicular magnetic recording medium
JP3856060B2 (en) Magnetic recording method and magnetic head
JPS63253556A (en) Information recording method for magneto-optical medium
JP2586553B2 (en) Initialization method for double-sided magneto-optical recording media
JP2002298325A (en) Magnetic recording medium and magnetic recorder having the same
JPS60223043A (en) Micro magnetic head
JP2003109201A (en) Perpendicular magnetic recording/reproducing device
JP3146614B2 (en) Recording method and recording apparatus for magneto-optical recording medium
JP2576106B2 (en) Magneto-optical recording / reproducing device
JPS61217902A (en) Reproducing method for magnetic recording information and reproducing head
JPS63302415A (en) Magnetic recording medium
JPS6185602A (en) Vertical magnetization recording and reproducing device
JPS60223042A (en) Micro magnetic head
JP2001155391A (en) Method for recording and reproducing information, information recording medium and device for recording and reproducing information