JPS60223043A - Micro magnetic head - Google Patents

Micro magnetic head

Info

Publication number
JPS60223043A
JPS60223043A JP7835884A JP7835884A JPS60223043A JP S60223043 A JPS60223043 A JP S60223043A JP 7835884 A JP7835884 A JP 7835884A JP 7835884 A JP7835884 A JP 7835884A JP S60223043 A JPS60223043 A JP S60223043A
Authority
JP
Japan
Prior art keywords
head
magnetic
magnetization
magnetic field
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7835884A
Other languages
Japanese (ja)
Inventor
Kotaro Nonaka
野中 耕太郎
Shigeru Hirono
廣野 滋
Osamu Ishii
修 石井
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7835884A priority Critical patent/JPS60223043A/en
Publication of JPS60223043A publication Critical patent/JPS60223043A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/49Fixed mounting or arrangements, e.g. one head per track
    • G11B5/4907Details for scanning
    • G11B5/4915Structure of specially adapted heads
    • G11B5/4923Structure of specially adapted heads in which zones of the transducing part are being physically controllable
    • G11B5/493Control of magnetic properties, e.g. saturation, anisotropy
    • G11B5/4938Control of magnetic properties, e.g. saturation, anisotropy of thin magnetic films
    • G11B5/4946Control of magnetic properties, e.g. saturation, anisotropy of thin magnetic films for formation or displacement of magnetic domains, e.g. walls, bubbles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a micro magnetic head which can control the direction of magnetization within a magnetic domain in a magnetic thin film, by applying a bias magnetic field to the head. CONSTITUTION:A micro head core 11-1 consisting of a magnetic thin film is magnetized by a signal magnetic field given from a recording medium. Then a bias current 13-2 is flowed to the core 11-1 together with application of a magnetic field higher than an anisotropic magnetic field. Thus the head magnetization is saturated evenly in the axis direction 15-1 easy for magnetization. Under such conditions, a right-turned magnetic field 15-2 leaked out of a recording medium is applied to set the bias magnetic field at zero. Thus a magnetic domain of the head tip part has the right-turned magnetization. While said magnetic domain has left-turned magnetization if a left-turned magnetic field 15-3 leaked out of the recording medium together with the bias magnetic field set at zero. Thus the direction of magnetization is controlled within the magnetic domain at the head tip part and then reproduced.

Description

【発明の詳細な説明】 (技術分野) 本発明は、磁気記録媒体上の超微細記録ビットを再生す
る、小型の磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a small magnetic head for reproducing ultra-fine recording bits on a magnetic recording medium.

(従来の技術) 近年磁気記録媒体の特性向上に関する進歩は目覚しく、
記録密度はlO年間で約10倍の割合で向上している。
(Prior art) Progress in improving the characteristics of magnetic recording media has been remarkable in recent years.
Recording density is increasing at a rate of about 10 times per year.

特に垂直磁気記録媒体を用いると原理的に記録ビット間
の減磁界の影響が小さくなるため超高密度記録が可能で
ある。実除既に東北大学の岩#教授の研究グループによ
フCo −Crスパッタ膜と補助磁極型シングルポール
ヘッドによV) 8,000 bttAranの線記録
密度が確認されている。
In particular, when a perpendicular magnetic recording medium is used, the influence of the demagnetizing field between recording bits is reduced in principle, so ultra-high density recording is possible. A linear recording density of 8,000 bttAran has already been confirmed by Professor Iwa's research group at Tohoku University using a Co--Cr sputtered film and an auxiliary magnetic pole type single-pole head.

しかしこの値は実験室段階で高感度な増幅を行ない検出
した値であシ、実用的見地からは未だ3.000 bi
t/im程度が記録密度の限界である。高出力な高密度
記録再生の実現に対する技術的方向は、 ■ 磁気記録媒体の残留磁化を向上させる;■ ヘッド
と記録媒体間隔をサブミクロン領域で安定に保持する機
構を開発する; ■ ヘッドの高感度化を図る; 等があフ、それぞれの分野で研究が続けられている。現
状での垂直媒体の記録密度に対する潜在能力はまだまだ
あることを考慮すれば高密度化のための限界は主にヘッ
ドにあると考えられる。以下に現状でのヘッドの問題点
を述べる。
However, this value was detected through highly sensitive amplification in the laboratory, and from a practical standpoint it is still 3.000 bi.
The limit of recording density is about t/im. The technical directions for realizing high-output, high-density recording and reproduction are: ■ Improving the residual magnetization of the magnetic recording medium; ■ Developing a mechanism to stably maintain the distance between the head and the recording medium in the submicron range; ■ Increasing the height of the head. Research is continuing in each field to increase sensitivity; etc. Considering that the current perpendicular media still has a lot of potential for recording density, it is thought that the limit for increasing density lies mainly in the head. The problems with the current head are described below.

(1) シングルポールヘッド 現状で最も高い記録再生特性を示すヘッドとしては東北
大学岩崎教授によって開発されたシングルポールヘッド
であシ図11に示す。1.1は主磁極、1.2は補助磁
極、1.3はコイル、1.4はCo −Cr等の垂直記
録媒体、1.5はそのベース、1.6は主磁極の厚さで
ある。再生原理は次の通シである。
(1) Single-pole head The single-pole head developed by Professor Iwasaki of Tohoku University is shown in Figure 11 as the head that currently exhibits the highest recording and reproducing characteristics. 1.1 is the main magnetic pole, 1.2 is the auxiliary magnetic pole, 1.3 is the coil, 1.4 is the perpendicular recording medium such as Co-Cr, 1.5 is the base, and 1.6 is the thickness of the main magnetic pole. be. The regeneration principle is as follows.

即ち記録ビットから発生する漏洩磁場により主磁極(1
,1)先端が磁化され、主磁極からの漏洩磁束を補助磁
極(1,2)に巻いたコイル(1,3) Kよシ検知す
る。この場合記録ビットからの漏洩磁場が小さいだめの
主磁極(1,1)は記録媒体に接する必要があることと
、さらに主磁極(1,1)の厚さはビットサイズ程度(
0,2〜数1trn)であるためその磁束を感知するた
めには補助磁極(1,2)と主磁極の間隔を数10μm
以下に小さくする必要があることかう記録媒体(1,4
)のベース(1’、5)はフレキシブルかつ薄いもので
なければならない。したがって従来この種のヘッドはフ
ロッピーディスクにのみ使用されていた。フロッピーデ
ィスクは簡便゛な用途には用いられるが、トラック方向
の位置制御も必要とする高密度記録には使用できない。
In other words, the main magnetic pole (1
, 1) The tip is magnetized and leakage magnetic flux from the main pole is detected by the coil (1, 3) K wound around the auxiliary pole (1, 2). In this case, the main magnetic pole (1, 1), which has a smaller leakage magnetic field from the recording bit, needs to be in contact with the recording medium, and the thickness of the main magnetic pole (1, 1) is about the bit size (
0,2 to several 1 trn), so in order to sense that magnetic flux, the distance between the auxiliary magnetic pole (1,2) and the main magnetic pole must be several tens of μm.
The recording medium (1,4
The base (1', 5) of ) must be flexible and thin. Therefore, this type of head has conventionally been used only for floppy disks. Although floppy disks are used for simple purposes, they cannot be used for high-density recording that also requires position control in the track direction.

この用途に適するハードディスクでは基板の厚さが1〜
2日と厚いためシングルポールヘッドは記録、再生共感
度が足シず使用することができないという欠点がある。
Hard disks suitable for this purpose have a substrate thickness of 1~
Since it is as thick as 2 days, a single pole head has a disadvantage in that it has poor recording and playback sensitivity and cannot be used.

(2)MRヘッド MRヘッドの原理図を図2に示す。2.1はパーマロイ
膜等から成る磁気抵抗素子であシ、厚さL1幅W1長さ
lとする。2゜211−1:素子の両端に形成された導
体である。素子2.1の電気抵抗Rが媒体1.4からの
信号磁界によって変化する。導体2.2を通して一定電
流■を流しておくと記録媒体1゜4からの信号磁界によ
り電気抵抗が変化し、素子2.1の両端の電圧が変化す
る。この変化分を検出することによシ再生ヘッドとして
使用される。
(2) MR head A diagram of the principle of the MR head is shown in FIG. 2.1 is a magnetoresistive element made of a permalloy film or the like, and has a thickness of L1, a width of W1, and a length of L. 2°211-1: A conductor formed at both ends of the element. The electrical resistance R of the element 2.1 is varied by the signal magnetic field from the medium 1.4. When a constant current (2) is caused to flow through the conductor 2.2, the electrical resistance changes due to the signal magnetic field from the recording medium 1.4, and the voltage across the element 2.1 changes. By detecting this change, it is used as a playback head.

MRヘッドの詳細な解析がAmpex社のRoP、Hu
ntによって行なわれておシ(文献IEEE Tran
s、onMag、Vot、MAG−7,超pp 150
〜1541971)出力電圧v、は(1−e )/kW
に比例する。但しに=2x/、1であシ、λは記録ビッ
ト長の2倍に相当する記録波長である。これによれば記
録波長λを小さくした場合、出力電圧を確保するために
は素子幅Wを小さくする必要がある。たとえばλ=0.
2μmのビットからの信号を検出するためには素子幅W
をサブミクロンの長さにする必要があシ、素子作製上又
ヘッドとしての摩耗を考慮した場合現実的でない。この
ように図2に示したクイゾのMRヘッドは幅損失を持つ
がこれは磁気回路的に開磁路になっているためである。
Detailed analysis of MR heads is provided by Ampex's RoP, Hu
nt (Reference IEEE Tran
s, onMag, Vot, MAG-7, super pp 150
~1541971) Output voltage v is (1-e)/kW
is proportional to. However, =2x/, 1 is required, and λ is a recording wavelength corresponding to twice the recording bit length. According to this, when the recording wavelength λ is made small, the element width W needs to be made small in order to secure the output voltage. For example, λ=0.
In order to detect a signal from a 2 μm bit, the element width W
It is necessary to make the length submicron, which is not realistic when considering the element manufacturing and head wear. As described above, the Quizo MR head shown in FIG. 2 has a width loss, but this is because the magnetic circuit is an open magnetic path.

この性質を改善するためにMR素子の背部に磁束の吸い
込み口を設けて素子を閉磁路の一部として用いる方法が
提案されている。(電子通信学会磁気記録研究会MR8
2−24)この原理図を図3に示す。3.1は磁性フェ
ライト等から成る磁束のリターンパス、3.2はガラス
等よ構成る非磁性部分である。鹸騙おいてMR素子(2
,1)の先端から入った信号磁束は背部のリターン・や
ス(3,1)を通って記録媒体にもどる。
In order to improve this property, a method has been proposed in which a magnetic flux suction port is provided at the back of the MR element and the element is used as part of a closed magnetic circuit. (IEICE Magnetic Recording Research Group MR8
2-24) A diagram of this principle is shown in FIG. 3.1 is a magnetic flux return path made of magnetic ferrite or the like, and 3.2 is a non-magnetic part made of glass or the like. MR element (2)
, 1) returns to the recording medium through the return shaft (3, 1) at the back.

幅が20μmのMR素子を用いて0.13μm幅ビット
の出力を検出している。但しこの値は相対出力−45d
Bという値であシ出力が半分となる時の再生ビット長は
127μmと大きい。さらにこの場合記録媒体である磁
気テープとMRヘッド先端が接触している状態であり媒
体とヘッドが離れると大幅に出力は減る。記録媒体とヘ
ッド先端がl離れているとすると出力はe 倍となシ、
たとえば−に/l。
An MR element with a width of 20 μm is used to detect the output of a 0.13 μm wide bit. However, this value is relative output -45d
The reproduction bit length when the output is halved with the value B is as large as 127 μm. Furthermore, in this case, the magnetic tape, which is a recording medium, and the tip of the MR head are in contact with each other, and when the medium and head are separated, the output decreases significantly. If the recording medium and the head tip are l apart, the output will be e times,
For example -ni/l.

0.1μmビットで0.1μm離れると0.04倍出力
が減少し、前述の改善されたMRヘッドでも再生するこ
とが不可能となる。
If the bit is separated by 0.1 μm, the output decreases by 0.04 times, making it impossible to reproduce even with the improved MR head described above.

図4に示すような垂直記録された媒体1.4からの媒体
から垂直方向の磁界Hyは Hy= 2 πMr e dy(Oe) (1)と表わ
される。但し、Mrは媒体の残留磁化dはビット幅であ
シ媒体の厚さtはビット幅dよシも十分大きいとして媒
体の厚さ損失は無視した。(1)式の関係を示したのが
図5である。但しMr = 101000e/ccとし
た。
The magnetic field Hy in the perpendicular direction from the medium 1.4 that is perpendicularly recorded as shown in FIG. 4 is expressed as Hy=2πMre dy(Oe) (1). However, assuming that Mr is the residual magnetization d of the medium equal to the bit width and the thickness t of the medium is sufficiently larger than the bit width d, the thickness loss of the medium is ignored. FIG. 5 shows the relationship expressed by equation (1). However, Mr = 101000e/cc.

(3) 光磁気再生 原理図を図6に示す。6.1は半導体レーデ等の光源、
6.2は偏光子、6.3はビームスジリッター、6.4
は検光子、6.5はフォトダイオード、等の光検出器、
6,6は記録媒体内の磁化、である。光源6.1から出
た光は偏光子6.2によシ直線偏光となシ記録媒体1.
4に入射する。反射光は磁気光学効果によシその偏光面
が回転する。これを検光子6.4を通して光検出器6.
5で受光すると、磁化6.6の向きによシ光の強弱とな
り出力電圧変化として検出される。この場合記録ビット
の識別分解能は光ビームの回折限界によって決まシ現在
0.8伽波長の半導体レーザを使、つとすれば回折限界
は約0.4μmである。よシ分解能を上げるためには、
よシ短波長の小型光源の開発が必要である。
(3) Figure 6 shows a diagram of the principle of magneto-optical reproduction. 6.1 is a light source such as a semiconductor radar,
6.2 is a polarizer, 6.3 is a beam striper, 6.4
is an analyzer, 6.5 is a photodetector such as a photodiode,
6, 6 is magnetization within the recording medium. The light emitted from the light source 6.1 is converted into linearly polarized light by the polarizer 6.2.
4. The plane of polarization of the reflected light is rotated due to the magneto-optic effect. This is passed through an analyzer 6.4 to a photodetector 6.4.
When light is received at 5, the intensity of the light changes depending on the direction of magnetization 6.6, and is detected as a change in output voltage. In this case, the identification resolution of the recorded bits is determined by the diffraction limit of the light beam.Currently, if a semiconductor laser with a wavelength of 0.8 mm is used, the diffraction limit is about 0.4 μm. In order to increase the resolution,
It is necessary to develop a compact light source with a very short wavelength.

(4)転写ヘッド(文献 山田、氷室、牧野”ガーネッ
ト膜を用いた磁気録画再生方式”電子通信学会、磁気記
録研究会MR79−11)転写ヘッドの原理図を図7に
示す。7.1はガーネット、パーマロイ等の軟磁性膜、
7゜2は軟磁性膜内の磁化、7.3は媒体1.4からの
漏洩磁界である。再生原理は次の通シである。記録媒体
1.4からの漏洩磁界7.3によシ軟磁性膜7゜lが磁
化され、その軟磁性膜の磁化7.2を前述した光磁気再
生と全く同じ原理で検出する。記録媒体1.4からの情
報を一担、軟磁性膜に転写するため転写ヘッドと呼ぶこ
とにする。このヘッドは記録媒体へ直接光を照射するこ
とがないため媒体ノイズの低減ができるという利点があ
るが、記録ビットの識別分解能か光の回折限界という制
限はまぬがれ得ない。
(4) Transfer head (Reference: Yamada, Himuro, Makino, "Magnetic recording and reproducing system using garnet film", Institute of Electronics and Communication Engineers, Magnetic Recording Research Group MR79-11) A diagram of the principle of the transfer head is shown in FIG. 7. 7.1 is a soft magnetic film such as garnet or permalloy,
7°2 is the magnetization in the soft magnetic film, and 7.3 is the leakage magnetic field from the medium 1.4. The regeneration principle is as follows. The soft magnetic film 7.1 is magnetized by the leakage magnetic field 7.3 from the recording medium 1.4, and the magnetization 7.2 of the soft magnetic film is detected using exactly the same principle as the magneto-optical reproduction described above. It will be called a transfer head because it partially transfers information from the recording medium 1.4 onto a soft magnetic film. This head has the advantage of reducing media noise because it does not directly irradiate light onto the recording medium, but it is still subject to limitations such as the identification resolution of recording bits or the diffraction limit of light.

したがってこの種の構成では再生限界は0.5#1ビッ
ト程度である。又転写ヘッドの変形として提案されてい
るものを図8に示す。8.1は反視膜、8.2は光であ
る。(文献、特公昭56−33781)この場合軟磁性
膜(7゜1)はMR素子のように記録媒体(1,4)面
に対して立った状態に設置されており、図7に示した夕
1プより短波長再生が浸れている。しかし、記録波長が
短かくなると媒体(1,4)面からの距離をyとして、
媒体からの漏洩磁界は図5に示し穴ように小さくなる。
Therefore, in this type of configuration, the reproduction limit is about 0.5#1 bit. A proposed modification of the transfer head is shown in FIG. 8.1 is an antioptic membrane, and 8.2 is a light. (Reference, Japanese Patent Publication No. 56-33781) In this case, the soft magnetic film (7°1) is placed upright against the surface of the recording medium (1, 4) like an MR element, and as shown in FIG. Shorter wavelength reproduction is more prevalent than in the evening 1st episode. However, when the recording wavelength becomes shorter, the distance from the medium (1, 4) surface is y,
The leakage magnetic field from the medium becomes small as shown in FIG. 5.

したがってたとえば0.1μmビットでヘッドと媒体間
隔0.1μmとすればMRヘッドの項で述べたようにヘ
ッド先端磁化変化は極めてわずかになる。
Therefore, for example, if the distance between the head and the medium is 0.1 .mu.m for a 0.1 .mu.m bit, the change in magnetization at the tip of the head will be extremely small, as described in the section on the MR head.

さらに光による検出の場合、軟磁性膜7.1の磁化があ
る方向に飽和した時を1とすると、検出器のショットノ
イズを考慮して高々飽和磁化の1/100の磁化の大き
さしか検出できない。MRヘッドではそれが1/100
0程度まで検出できるのに対して感度が小さい。さらに
図8の構成では光を軟磁性膜(5゜1)の先端数句の領
域に当てる工夫がなされていないため、特にサブミクロ
ン程度の微小ビットの検出は不可能である。
Furthermore, in the case of optical detection, if the time when the magnetization of the soft magnetic film 7.1 is saturated in a certain direction is defined as 1, the magnitude of magnetization is only detected at most 1/100 of the saturation magnetization, taking into account the shot noise of the detector. Can not. For MR heads, it is 1/100.
Although it can detect up to about 0, the sensitivity is low. Furthermore, in the configuration of FIG. 8, no measures have been taken to irradiate the light onto a region within the tip of the soft magnetic film (5.degree. 1), and therefore it is impossible to detect particularly small bits on the order of submicrons.

同様な転写ヘッドの例として米国特許3,737,23
8があシ、その原理図を図9に示す。9.1は光ファイ
バ、9.2はコア、であシ軟磁性M7.1を光ファイバ
9.1の先端に形成するようにしたものである。
An example of a similar transfer head is U.S. Pat.
8, the principle diagram is shown in Fig. 9. 9.1 is an optical fiber, 9.2 is a core, and a soft magnetic M7.1 is formed at the tip of the optical fiber 9.1.

光ファイバ(9,1)のコア(9,2)の直径は数μm
〜数IOμmであ勺、このような方法によれば軟磁性膜
上のコア径程度の領域に光を容易に集光することができ
るため図8の構成における問題点は解決される。但し、
記録ビットが小さくなって漏洩磁界が小さくなった時の
信号検出については何も考慮が払われていない。又この
種の信号は、光の偏波面の変化で検出するにもかかわら
ず光フアイバ内を光が伝搬する際の偏光面の乱れについ
ては伺ら考慮が払われていない。
The diameter of the core (9,2) of the optical fiber (9,1) is several μm
With this method, the problem with the configuration of FIG. 8 can be solved because the light can be easily focused on a region of about the diameter of the core on the soft magnetic film. however,
No consideration is given to signal detection when the recording bit becomes smaller and the leakage magnetic field becomes smaller. Furthermore, although this type of signal is detected by changes in the plane of polarization of light, no consideration is given to disturbances in the plane of polarization when light propagates within an optical fiber.

以上述べたようにこれまで考案されている各種のヘッド
ではそれぞれの理由によシ特に1μm以下の微小な記録
ビットを高効率で再生することは困難である。この問題
を解決する方法として、特願昭57−124317(マ
イクロ磁気ヘッド)があり、原理図を図10に示す。1
0.1はマイクロヘッド、10.2は偏波面保存性単一
モード先導波路、10.3はコア、1O04は偏光、1
0.5は記録ビットである。これはへラドコアによシ媒
体(1,4)からの磁界を検出しそれを偏光10゜4に
よって信号に変えるものである。このヘラFによるとコ
ア(10,1)のサイズをコア径(数μm)程度まで小
さくし媒体からの磁束を吸い込む効率を大幅に向上でき
しかもヘッドが媒体(1,4)と対向している先端付近
のヘッド磁化情報を検出できること又光導波路として偏
波面保存性を有するものを用いるため光導波路内での信
号の乱れがないこと等の特徴を有するAめ、微小信号の
高感度検出に適している。しかし図5でも分るように媒
体とヘッドが接触している場合にはへラドコアは媒体表
面の強い磁界を感じることができるが、媒体とヘッドの
距離がある場合には、特に記録ビットがサブミクロンと
小さい時の信号磁界の強度は、極端に小さくなりその検
出のためのヘッド構成が次第に困難となる。たとえばヘ
ッド浮上量02μmとすればヘッド先端から0.2〜0
.3μm程度しかヘッドは十分磁化されない。
As described above, it is difficult for the various heads devised up to now to reproduce with high efficiency, especially minute recorded bits of 1 μm or less, for various reasons. As a method for solving this problem, there is a Japanese Patent Application No. 57-124317 (Micro Magnetic Head), the principle of which is shown in FIG. 1
0.1 is a micro head, 10.2 is a polarization preserving single mode leading waveguide, 10.3 is a core, 1O04 is a polarized light, 1
0.5 is a recording bit. This detects the magnetic field from the medium (1, 4) using a herad core and converts it into a signal by polarizing 10°4. According to this Spatula F, the size of the core (10, 1) can be reduced to the core diameter (several μm), and the efficiency of sucking magnetic flux from the medium can be greatly improved, and the head faces the medium (1, 4). It has characteristics such as being able to detect head magnetization information near the tip, and using an optical waveguide with polarization preservation properties, so there is no signal disturbance within the optical waveguide, making it suitable for high-sensitivity detection of minute signals. ing. However, as can be seen in Figure 5, when the medium and head are in contact, the Herad core can sense the strong magnetic field on the medium surface, but when there is a distance between the medium and the head, the recorded bits are The strength of the signal magnetic field becomes extremely small when it is as small as microns, and it becomes increasingly difficult to configure a head for its detection. For example, if the head flying height is 02 μm, it is 0.2 to 0 from the head tip.
.. The head is sufficiently magnetized only by about 3 μm.

コアの大きさを02〜0.3μm8度とすれば良いがこ
の大きさの領域に光を導入することが難かしくなシ、高
出力のレーザを用いるとか、光導波路の光入射端のみ規
格化周波数を2.4にしたままコアとクラッドの比屈折
率差を小さくしてコア径を大きくするとかの工夫が必要
となってくる。
The size of the core should be 02 to 0.3 μm and 8 degrees, but it is difficult to introduce light into an area of this size, so it is necessary to use a high-power laser or standardize only the light input end of the optical waveguide. It is necessary to take measures such as increasing the core diameter by decreasing the relative refractive index difference between the core and the cladding while keeping the frequency at 2.4.

即ち特願昭57−124317によればヘッド浮上量が
あっても微小ビットからの信号を検出することは原理的
に可能ではあるがその構成方法が次第に困難となって来
る。
That is, according to Japanese Patent Application No. 57-124317, it is theoretically possible to detect signals from minute bits even if there is a head flying height, but the method of construction thereof becomes increasingly difficult.

上記の欠点を改善する技術として本出願人は先に特願昭
58−87557(マイクロ磁気へ、ットつを提案した
。この技術は単磁区構造の磁性体を用いるため、製造が
困難という問題がある。
As a technique to improve the above-mentioned drawbacks, the present applicant previously proposed Japanese Patent Application No. 58-87557 (Micro Magnetism).This technique uses a magnetic material with a single magnetic domain structure, so it has the problem of being difficult to manufacture. There is.

(発明の課題) 本発明は、これらの欠点を解決するため、ヘッドにパイ
アヌ磁界を印加することを特徴とするマイクロ磁気ヘッ
ドに関するものであシ、その目的は高記録密度の記録ビ
ットを高感度、高出力で再生する多磁区構造のヘッドを
提供するもので、その特徴は、偏波面保存性を有する単
一モード光導波路と、該光導波路の光軸と交差する面内
に形成される磁気光学効果を有する多磁区構造の磁性薄
膜と、該磁性薄膜に接する導体とを有し、前記磁性薄膜
は一軸性の磁化容易軸を有し、前記導体中を流れる電流
による磁界および記録媒体の発生する漏洩磁界により、
前記磁性薄膜中の磁区内の磁化方向を制御するマイクロ
磁気ヘッドにある。
(Problems to be solved by the invention) In order to solve these drawbacks, the present invention relates to a micro magnetic head characterized by applying a Paianu magnetic field to the head, and its purpose is to record bits of high recording density with high sensitivity. , provides a head with a multi-domain structure that reproduces at high output, and its features include a single mode optical waveguide with polarization preserving properties and a magnetic field formed in a plane intersecting the optical axis of the optical waveguide. It has a magnetic thin film with a multi-domain structure having an optical effect and a conductor in contact with the magnetic thin film, the magnetic thin film has a uniaxial easy magnetization axis, and a magnetic field and a recording medium are generated by a current flowing through the conductor. Due to the leakage magnetic field,
The present invention provides a micro magnetic head that controls the magnetization direction within magnetic domains in the magnetic thin film.

(発明の構成および作用) 図1は本発明の概略の構造図であJ、11−’1はマイ
クロヘッドコア、11−2 u バイアス磁界発生用の
電流導体パターンである。11−3は入射光、11=4
は反射光、11−5は基板であり、10−3は図10に
示したように偏波面保存性を有する単一モード光導波路
のコアである。また、ヘッドコア11−1は多磁区構造
の磁性膜で光導波路10−3の端面に矢印で示したよう
に接する。
(Structure and operation of the invention) FIG. 1 is a schematic structural diagram of the present invention. Reference numeral 11-'1 represents a micro head core, and 11-2 u represents a current conductor pattern for generating a bias magnetic field. 11-3 is incident light, 11=4
is reflected light, 11-5 is a substrate, and 10-3 is a core of a single mode optical waveguide having polarization preserving property as shown in FIG. Further, the head core 11-1 is a magnetic film having a multi-domain structure and is in contact with the end surface of the optical waveguide 10-3 as shown by the arrow.

記録媒体はコア幅方向(図の矢印■の方向)に相対的に
移動するものとする。図12に、本ヘッドを実際に作動
させるための概念図を示す。12−1は半導体レーザ等
の光源、12−2は電源導入用リード線、12−3は偏
光子、12−4は検光子、12−5はフォトダイオード
等の光検出器、12−5は信号検出用リード線、12−
7はバイアス用電源、12−8は電流導入用リード線で
ある。尚記録媒体は1−4であシ点線で示したようにヘ
ッドの幅方向に移動する。本発明ヘッドの再生方法は次
の通シである。記録媒体からの信号磁界ニヨっテノクー
マロイ、コパル)−ジルコニウム、センダスト等の軟磁
性薄膜から成るマイクロヘッドコア11−Jが磁化する
。一方光源12−1から出た光は偏光子12−3を通過
することにより単一偏波となシ、これが単一モード先導
波路のコア10−3を通シヘッドコア11−1に当る。
It is assumed that the recording medium moves relatively in the core width direction (direction of arrow ■ in the figure). FIG. 12 shows a conceptual diagram for actually operating this head. 12-1 is a light source such as a semiconductor laser, 12-2 is a power supply lead wire, 12-3 is a polarizer, 12-4 is an analyzer, 12-5 is a photodetector such as a photodiode, and 12-5 is a photodetector such as a photodiode. Lead wire for signal detection, 12-
7 is a power source for bias, and 12-8 is a lead wire for introducing current. Note that the recording medium moves in the width direction of the head as shown by the dotted line at 1-4. The reproducing method for the head of the present invention is as follows. The signal magnetic field from the recording medium magnetizes the micro head core 11-J, which is made of a soft magnetic thin film such as alloy, copal, zirconium, or sendust. On the other hand, the light emitted from the light source 12-1 becomes a single polarized wave by passing through the polarizer 12-3, and this light passes through the core 10-3 of the single mode leading waveguide and hits the head core 11-1.

光がへラドコアに入射する入射角αfd60〜70°程
度が適当である。反射光11−4は磁気光学効果(この
場合はKerr(カー)効果)によシ偏波面が回転する
。回転の方向がヘッドコア11−1の磁化の向きによシ
異なる。この反射光11−4を検光子12−4を通過さ
せることによシ磁化の向きによシ、その透過光が強弱と
変化するためこれを光検出器12−5によシミ気信号に
変えリード線12−6から取シ出す。ヘッドコアのサイ
ズを光導波路のコアサイズ程度にすることにより記録媒
体からの磁束を吸い上げる効率を大幅に向上させること
および光によりヘッドコアの磁化を検出すること等は特
願昭57−124317と同じである。次に本発明の詳
細な説明する。
An appropriate incident angle αfd for light to enter the herad core is about 60 to 70°. The plane of polarization of the reflected light 11-4 is rotated by the magneto-optic effect (in this case, the Kerr effect). The direction of rotation differs depending on the direction of magnetization of head core 11-1. By passing this reflected light 11-4 through an analyzer 12-4, the transmitted light changes in intensity depending on the direction of magnetization, and is converted into a stain signal by a photodetector 12-5. Take it out from the lead wire 12-6. It is the same as in Japanese Patent Application No. 124317-1985 that the efficiency of sucking up the magnetic flux from the recording medium is greatly improved by making the size of the head core about the same as the core size of an optical waveguide, and that the magnetization of the head core is detected by light. . Next, the present invention will be explained in detail.

図13と図14は本発明の詳細な説明するための図であ
り図13はヘッド斜視図、図14は図13をBの方向か
ら見た図を示す。13−1はヘッドコア11−1の磁化
容易軸、13−.2はバイアス磁界発生用の電流、13
−3は電流13−2によって発生するバイアス磁界であ
る。本ヘッドの動作原理は次の通シである。ヘッドコア
11−1の磁化容易軸13−1をヘッドコアの幅方向に
つくっておく。磁化容易軸の導入方法は導入したい方向
に磁場を印加しなから熱処理をする方法、あるいは、容
易方向の長さしをそれと直角方向の幅Wjj)長くし形
状異方性をつける方法等がある。
13 and 14 are diagrams for explaining the present invention in detail. FIG. 13 is a perspective view of the head, and FIG. 14 is a view of FIG. 13 viewed from the direction B. 13-1 is the easy magnetization axis of the head core 11-1, 13-. 2 is a current for generating a bias magnetic field, 13
-3 is a bias magnetic field generated by the current 13-2. The operating principle of this head is as follows. The axis of easy magnetization 13-1 of the head core 11-1 is made in the width direction of the head core. Methods for introducing the easy axis of magnetization include applying heat treatment without applying a magnetic field in the desired direction, or increasing the length in the easy direction by increasing the width (Wjj) in the direction perpendicular to it to create shape anisotropy. .

このようなヘッドコアに接して、図13に示したように
銅、アルミニウム、ベリリウム銅等の薄膜によって作製
した導体を作製する。尚磁性体よ9成るヘッドコア11
−1と導体との間は特に絶縁する必要はないが、その間
にSiO、5i02 、SiN等の非晶質膜を入れるこ
とにょシヘッドコアである磁性膜の軟磁化特性が良好と
なる。
A conductor made of a thin film of copper, aluminum, beryllium copper, or the like is fabricated in contact with such a head core, as shown in FIG. Head core 11 made of magnetic material 9
Although it is not necessary to particularly insulate between -1 and the conductor, inserting an amorphous film of SiO, 5i02, SiN, etc. between them improves the soft magnetization characteristics of the magnetic film that is the head core.

図14(a)は、バイアス電流を流し異方性磁界以上の
磁界を印加した場合のへラドコア内の磁化状態を示した
ものであシ、磁化は一様に磁化困難軸方向(14−1)
に飽和している。この状態において、バイアス電流を零
にすると、ヘッドコア内の磁区は図14 (b)まだは
図14(c)に示した構造となる。このように、バイア
ス電流を零にすると、ヘッド先端部の磁区内磁化方向は
14−2に示す右向き、または14−3に示す左向きの
2方向のみ取りうる。異方性分散のない理想的なヘッド
コアならば、磁区内磁化方向はバイアス磁界が零になっ
た瞬間の無限小の外部磁界の方向に定まる。
Figure 14(a) shows the magnetization state in the herad core when a bias current is applied and a magnetic field higher than the anisotropic magnetic field is applied, and the magnetization is uniformly in the direction of the hard magnetization axis (14-1 )
is saturated with In this state, when the bias current is reduced to zero, the magnetic domains in the head core have the structure shown in FIG. 14(b) but not in FIG. 14(c). In this way, when the bias current is set to zero, the magnetization direction within the magnetic domain of the head tip can take only two directions: rightward as shown at 14-2, or leftward as shown at 14-3. In an ideal head core without anisotropic dispersion, the direction of magnetization within the magnetic domain is determined by the direction of the infinitesimal external magnetic field at the moment the bias magnetic field becomes zero.

従って、記録媒体漏洩磁界中のへラドコア】1−1にバ
イアス磁界を印加し、その後、バイアス電流を零にした
場合、記録媒体漏洩磁界の方向が右向きの場合(14−
4)は、ヘッド先端部の磁区内磁化方向は右向き(14
−2,)とな9、記録媒体漏洩磁界の方向が左向き(1
4−5)の場合は、ヘッド先端部の磁区内磁化方向は左
向き(14−3)となる。図14 (d)、 、+ (
e)にこれを示した。ヘッド先端部のヘッド長さ方向磁
区幅を、光導波路のコア厚み以上とし、この磁区内の左
右の磁化変化を磁気光学効果を利用して検出することが
本発明の原理である。
Therefore, if a bias magnetic field is applied to the Herad core in the recording medium leakage magnetic field] 1-1, and then the bias current is made zero, if the direction of the recording medium leakage magnetic field is to the right (14-
4), the magnetization direction in the magnetic domain of the head tip is rightward (14
-2,) 9, the direction of the recording medium leakage magnetic field is to the left (1
In the case of 4-5), the magnetization direction within the magnetic domain of the head tip is leftward (14-3). Figure 14 (d), , + (
This is shown in e). The principle of the present invention is to make the magnetic domain width in the head length direction at the tip of the head greater than or equal to the core thickness of the optical waveguide, and to detect left and right magnetization changes within this magnetic domain using the magneto-optic effect.

9上述べてきた方法においては、マイクロヘッドコアの
磁化容易軸は、ヘッドコア幅方向とした。
9 In the method described above, the axis of easy magnetization of the micro head core is set in the width direction of the head core.

磁化容易軸をヘッド長さ方向とした場合にも本発明の方
法が有効である。これを次に述べる。
The method of the present invention is also effective when the axis of easy magnetization is set in the head length direction. This will be discussed next.

図15(a)に、バイアス電流(13−2)を流し、異
方性磁界以上の磁界を印加した場合の、ヘッ、ドコア内
磁化状態を示す。磁化は一様に磁化容易軸方向(] 5
−1 )に飽和する。この状態において右向きの記録媒
体漏洩磁界(、15−2)が印加さし、シカる後、バイ
アス磁界が零となればヘッド先端部の磁区は図15(b
)に示すように右向きの磁化を持つ。また、左向きの記
録媒体漏洩磁界15−3が印加され、しかる後、バイア
ス磁界が零となれば、ヘッド先端部の磁区は図15(c
)に示すように左向きの磁化を持つ。この左右の磁化変
化を磁気光学効果を用いて検出することは、図14の場
合と同様である。
FIG. 15A shows the state of magnetization in the core when a bias current (13-2) is applied and a magnetic field higher than the anisotropic magnetic field is applied. Magnetization is uniformly in the easy magnetization axis direction (] 5
-1). In this state, a rightward recording medium leakage magnetic field (15-2) is applied, and after the bias magnetic field becomes zero, the magnetic domain at the head tip becomes
), it has rightward magnetization. Furthermore, when a leftward recording medium leakage magnetic field 15-3 is applied and then the bias magnetic field becomes zero, the magnetic domain at the head tip becomes
), it has leftward magnetization. Detecting this left and right magnetization change using the magneto-optic effect is the same as in the case of FIG. 14.

本方法は、ヘッド先端部に印加される無限小の記録媒体
漏洩磁界の方向により、ヘッド先端部の磁区内磁化方向
を制御し、これを再生するものであシ、高感度ヘッドと
して優れていることが分る。
This method controls the magnetization direction within the magnetic domain of the head tip by the direction of the infinitesimal recording medium leakage magnetic field applied to the head tip and reproduces this, making it an excellent high-sensitivity head. I understand.

次に実際のヘッドとしての実施例を示す。Next, an example of an actual head will be shown.

光導波路として石英基板上にVAD法によりGeをドー
ピングした厚さ6μmの5t02 %を作製した。
An optical waveguide was fabricated on a 5t02% quartz substrate with a thickness of 6 μm and doped with Ge by the VAD method.

石英基板との比屈折率差を0.23 %にした。このガ
ラス膜上に図12に示した導波路のパターンをTiで作
製し、C2F6+c2H4のガス雰囲気中でスノ(’ツ
タリングしTiマスクがのっている所以外を除去して光
導波路を作製した。その後Tiマスク除去後にS r 
02膜を・ぐターンを含む全面に作製し導波路を保護し
た。
The relative refractive index difference with the quartz substrate was set to 0.23%. The waveguide pattern shown in FIG. 12 was formed on this glass film using Ti, and the area other than the area covered with the Ti mask was removed by sloping in a C2F6+c2H4 gas atmosphere to fabricate an optical waveguide. After that, after removing the Ti mask, S r
A 02 film was formed on the entire surface including the turns to protect the waveguide.

作製した光導波路の折れ曲シの所で基板端面を光学研磨
し、この端面にマイクロヘッドを膜作製B術(RFスパ
ッタリングおよびイオンビームスパッタ)と電子ビーム
露光およびス・ぐツタエツチングによシ作製した。膜は
80’at%Ni−Feのパーマロイとし、Hcは0.
60eとなった。ヘッドサイズは厚さ0.2μm1幅5
μm1長さ50μmとした。
The end face of the substrate was optically polished at the bent point of the fabricated optical waveguide, and a microhead was fabricated on this end face using film fabrication method B (RF sputtering and ion beam sputtering), electron beam exposure, and sputter etching. . The membrane was made of 80'at% Ni-Fe permalloy, and Hc was 0.
It became 60e. The head size is 0.2 μm thick and 5 wide.
The length was 50 μm.

ヘッド先端部の1コの磁区のヘッド長さ方向磁区幅はへ
、ド先端よ!1110μmであシ、光導波路のコア厚み
(6μm)以上となった。バイアス電流印加用導体は、
Cuを用い、幅20μm1厚さ11tmである。次に光
導波路を含む面で表面を軽く研摩して表面の平滑化を行
ないヘッドを作製した。光源としては0.78μm波長
のAlGaAsレーザダイオード、偏光子、検光子には
ダラムトムソンプリズム、検出器にはSiのフォトダイ
オードを用いた。
The width of one magnetic domain in the head length direction at the tip of the head is the tip! The thickness was 1110 μm, which was more than the core thickness of the optical waveguide (6 μm). The conductor for applying bias current is
It is made of Cu and has a width of 20 μm and a thickness of 11 tm. Next, the surface including the optical waveguide was lightly polished to smooth the surface, and a head was manufactured. An AlGaAs laser diode with a wavelength of 0.78 μm was used as a light source, a Durham-Thomson prism was used as a polarizer and an analyzer, and a Si photodiode was used as a detector.

光の導波路への結合はマイクロヘッドを用いて行なった
。磁気記録媒体としてスパッタリングによって30珈厚
のポリイミドベースにパーマロイとCo−Cr膜を順に
作製したものを用いた。それぞれの厚さはパーマロイ0
.3 μm 、 Co−Cr 0.311mである。図
16に、本マイクロヘッドを用いてフロッピーディスク
の記録ビットを再生した波形を示す。
Coupling of light to the waveguide was performed using a microhead. As a magnetic recording medium, a permalloy film and a Co--Cr film were sequentially formed on a polyimide base having a thickness of 30 mm by sputtering. Each thickness is permalloy 0
.. 3 μm, Co-Cr 0.311 m. FIG. 16 shows a waveform obtained by reproducing recorded bits of a floppy disk using this microhead.

高周波の正弦波形の包絡線が信号波形である。尚、記録
は、補助磁極励磁シングルポールヘッドを用いた。バイ
アス電流は、100 kHz % 100’mArm5
の交流電流である。
The envelope of the high frequency sine waveform is the signal waveform. Note that a single pole head excited by an auxiliary magnetic pole was used for recording. Bias current is 100 kHz % 100'mArm5
is an alternating current.

上記は、信号周波数よシ高い周波数の交流バイアス磁界
を用いる方法であったが、この他に、信号周波に同期し
た/’Pルス磁界を用いる方法も考えられる。
The above method uses an alternating current bias magnetic field with a frequency higher than the signal frequency, but a method using a /'P pulse magnetic field synchronized with the signal frequency may also be considered.

本実施例においては、ビット幅58m1トラツク幅0.
2μmとなっておシ、記録密度10 ’ b i t/
rrrm2の再生を可能とした。
In this embodiment, the bit width is 58 m and the track width is 0.
2μm, recording density 10'bit/
Enabled playback of rrrm2.

(発明の効果) 以上示したように本発明ヘッドを用いると高密度記録さ
れた記録媒体のサブミクロンサイズのビット信号を高感
度に検出することができる。したがって磁気テープ、フ
ロッピーディスク、磁気ディスク等における磁気ヘッド
として用いることによシ、超高密度記録再生が可能であ
シ、磁気記録を用いるディジタル情報処理VTR、放送
用テープ、オーディオ等において従来の記録密度特性を
大きく向上させることができると共に記録装置の小型化
、低価格化に大きく貢献するものと考えられる。
(Effects of the Invention) As described above, when the head of the present invention is used, submicron-sized bit signals of a recording medium recorded at high density can be detected with high sensitivity. Therefore, by using it as a magnetic head in magnetic tapes, floppy disks, magnetic disks, etc., ultra-high density recording and reproduction is possible. It is thought that the density characteristics can be greatly improved, and it will also greatly contribute to the miniaturization and cost reduction of recording devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明によるヘッドの斜視図で、11.1はへラ
ドコア、11.2/′i導体、11.、l;l:入射光
、11.4は反射光、’11.5は基板である。図2は
、従来の磁気抵抗形(MR)ヘッドであり 2.1 /
l′i磁気抵抗素子、2゜2は導体、図3は従来の改良
されたMRヘッドであり、3.1は磁束のリターンパス
、3.2は非磁性部である。図4は垂直記録媒体上の磁
界を計算するモデルを示す図である。図5は図4のモデ
ルによシ計算した垂直方向の磁界Hyの媒体からの距離
依存性でありノ4ラメータはビット幅である。図6は従
来の光磁気再生の原理図であシロ、1は光源、6゜2は
偏光子、6.3はビームスグリツタ−16,4は検光子
、6.5は光検出器、6.6は記録媒体内の磁化である
。図7は転写ヘッドの原理図であシ、7.1は転写用軟
磁性膜、7.2は軟磁性膜の磁化、7゜3は媒体からの
漏洩磁界である。 図8は改良された転写ヘッドの一例であシ、8.1は反
射膜、8.2は光線である。図9は転写ヘッドの他の例
であり、9.1は光ファイバ、9.2はコアである。図
10は従来のマイクロ磁気ヘッドの構成図であり、10
゜1はマイクロヘッド、10.2は偏波面保存性単一モ
ード光導波路、10.3はコア、10.4は偏光、10
.5u記録ビツトである。図11は従来の垂直記録用の
補助磁極励磁形シングルポールヘッドであ、j)、1.
1は主磁極、1.2は補助磁−極、1.3はコイル、1
.4は記録媒体、1.5は記録媒体用ベースである。図
12は本発明ヘッドの全体の概念図で12.1は光源、
12.2はリード線、12.3は偏光子、12.4は検
光子、12.5は光検出器、12.6はリード線、12
.7はバイアス用電源、12.8はリード線である。図
13、発明の詳細な説明するためのヘッドの図、図14
 (a)〜(、)は、図13をBの方向から見た図であ
る。図15は、図13において、ヘッドコアの磁化容易
軸がヘッド長さ方向の場合のBの方向から見た図である
。図16は、本発明ヘッドによる再生波形である。 特許出願人 日本電信電話公社 特許出願代理人 弁理士 山 本 恵 − 第8図 第9図 e)、b IA AlO2fi 第11図
FIG. 1 is a perspective view of a head according to the present invention, in which 11.1 is a helad core, 11.2/'i conductor, 11. , l; l: incident light, 11.4 is reflected light, '11.5 is the substrate. Figure 2 shows a conventional magnetoresistive (MR) head.
l'i magnetoresistive element, 2°2 is a conductor, FIG. 3 shows a conventional improved MR head, 3.1 is a magnetic flux return path, and 3.2 is a non-magnetic part. FIG. 4 is a diagram showing a model for calculating the magnetic field on a perpendicular recording medium. FIG. 5 shows the distance dependence of the perpendicular magnetic field Hy calculated based on the model of FIG. 4 from the medium, where the parameter is the bit width. FIG. 6 is a diagram showing the principle of conventional magneto-optical reproduction. 1 is a light source, 6.2 is a polarizer, 6.3 is a beam sinter 16, 4 is an analyzer, 6.5 is a photodetector, 6. .6 is the magnetization within the recording medium. FIG. 7 is a diagram showing the principle of the transfer head. 7.1 is a soft magnetic film for transfer, 7.2 is the magnetization of the soft magnetic film, and 7.3 is a leakage magnetic field from the medium. FIG. 8 shows an example of an improved transfer head, in which 8.1 is a reflective film and 8.2 is a light beam. FIG. 9 shows another example of the transfer head, in which 9.1 is an optical fiber and 9.2 is a core. FIG. 10 is a block diagram of a conventional micro magnetic head.
゜1 is a micro head, 10.2 is a polarization preserving single mode optical waveguide, 10.3 is a core, 10.4 is a polarized light, 10
.. This is a 5u recording bit. FIG. 11 shows a conventional auxiliary magnetic pole excitation type single pole head for perpendicular recording, and shows j), 1.
1 is the main magnetic pole, 1.2 is the auxiliary magnetic pole, 1.3 is the coil, 1
.. 4 is a recording medium, and 1.5 is a base for the recording medium. FIG. 12 is a conceptual diagram of the entire head of the present invention, and 12.1 is a light source;
12.2 is a lead wire, 12.3 is a polarizer, 12.4 is an analyzer, 12.5 is a photodetector, 12.6 is a lead wire, 12
.. 7 is a bias power supply, and 12.8 is a lead wire. Figure 13, diagram of the head for detailed explanation of the invention, Figure 14
(a) to (,) are views of FIG. 13 viewed from the direction B. FIG. 15 is a view seen from direction B in FIG. 13 when the axis of easy magnetization of the head core is in the head length direction. FIG. 16 shows waveforms reproduced by the head of the present invention. Patent applicant Nippon Telegraph and Telephone Public Corporation Patent agent Megumi Yamamoto - Figure 8 Figure 9 e), b IA AlO2fi Figure 11

Claims (1)

【特許請求の範囲】[Claims] 偏波面保存性を有する単一モード光導波路と、該光導波
路の光軸と交差する面内に形成される磁気光学効果を有
する多磁区構造の磁性薄膜と、該磁性薄膜に接する導体
とを有し、前記磁性薄膜は一軸性の磁化容易軸を有し、
前記導体中を流れる電流による磁界および記録媒体の発
生する漏洩磁界によジ、前記磁性薄膜中の磁区内の磁化
方向を制御することを特徴とするマイクロ磁気ヘッド。
A single mode optical waveguide having polarization preserving property, a magnetic thin film having a multi-domain structure having a magneto-optic effect formed in a plane intersecting the optical axis of the optical waveguide, and a conductor in contact with the magnetic thin film. and the magnetic thin film has a uniaxial easy axis of magnetization,
A micro magnetic head characterized in that the direction of magnetization in the magnetic domains in the magnetic thin film is controlled by a magnetic field caused by a current flowing through the conductor and a leakage magnetic field generated by a recording medium.
JP7835884A 1984-04-20 1984-04-20 Micro magnetic head Pending JPS60223043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7835884A JPS60223043A (en) 1984-04-20 1984-04-20 Micro magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7835884A JPS60223043A (en) 1984-04-20 1984-04-20 Micro magnetic head

Publications (1)

Publication Number Publication Date
JPS60223043A true JPS60223043A (en) 1985-11-07

Family

ID=13659762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7835884A Pending JPS60223043A (en) 1984-04-20 1984-04-20 Micro magnetic head

Country Status (1)

Country Link
JP (1) JPS60223043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594471A2 (en) * 1992-09-18 1994-04-27 Thomson-Csf Magnetic read-out device
EP0620573A2 (en) * 1989-06-02 1994-10-19 Quantum Corporation Flux spreading thin film magnetic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0620573A2 (en) * 1989-06-02 1994-10-19 Quantum Corporation Flux spreading thin film magnetic devices
EP0620573A3 (en) * 1989-06-02 1995-04-05 Digital Equipment Corp Flux spreading thin film magnetic devices.
EP0594471A2 (en) * 1992-09-18 1994-04-27 Thomson-Csf Magnetic read-out device
EP0594471A3 (en) * 1992-09-18 1994-07-06 Thomson Csf Magnetic read-out device

Similar Documents

Publication Publication Date Title
US6873576B1 (en) Method of thermally-assisted data recording and a recording apparatus
US4618901A (en) High density magnetic head
Cumpson et al. A hybrid recording method using thermally assisted writing and flux sensitive detection
JP2003006803A (en) Optical magnetic head and magneto-optical disk device
JP5494623B2 (en) Thermally assisted magnetic recording method for recording information on a hard disk medium
JP3948318B2 (en) Optically assisted magnetic recording head and optically assisted magnetic recording disk device
JPS60223043A (en) Micro magnetic head
JP2003228802A (en) Light-assisted magnetic recording head and light-assisted magnetic recording disk unit
JP2002117502A (en) Information storage device and recording/reproducing head
JPS61214258A (en) Write and reproducing integrated magnetic head
EP0472188B1 (en) Magnetic head
JP3431265B2 (en) Magnetic disk drive
JPS60223042A (en) Micro magnetic head
JP3284029B2 (en) Signal reproducing method in magnetic recording and reproducing apparatus and magnetic recording and reproducing apparatus
JP3356605B2 (en) Signal reproducing method in magnetic recording and reproducing apparatus and magnetic recording and reproducing apparatus
JPS60129952A (en) Micromagnetic head
JPS59215043A (en) Micro magnetic head
JP2665022B2 (en) Magnetic head and method of manufacturing the same
JPH043016B2 (en)
US20050128885A1 (en) High density thermal recording and magnetic reading recording medium and system
JPS60224139A (en) High-density magnetooptic playback head
JPH0456363B2 (en)
JP3356606B2 (en) Signal reproducing method in magnetic recording and reproducing apparatus and magnetic recording and reproducing apparatus
JP3823696B2 (en) Magnetic recording / reproducing device
JP2000293802A (en) Magnetic recording method, magnetic recording head and magnetic recording device