JPS63251170A - Surface to be ground suitable for tool and its forming method - Google Patents

Surface to be ground suitable for tool and its forming method

Info

Publication number
JPS63251170A
JPS63251170A JP8295287A JP8295287A JPS63251170A JP S63251170 A JPS63251170 A JP S63251170A JP 8295287 A JP8295287 A JP 8295287A JP 8295287 A JP8295287 A JP 8295287A JP S63251170 A JPS63251170 A JP S63251170A
Authority
JP
Japan
Prior art keywords
metal
metal bond
abrasive grains
grinding
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8295287A
Other languages
Japanese (ja)
Inventor
Masamichi Nagao
長尾 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIKI KOSAN KK
MIKUROTETSUKU TSUUWAN KK
Original Assignee
FUJIKI KOSAN KK
MIKUROTETSUKU TSUUWAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIKI KOSAN KK, MIKUROTETSUKU TSUUWAN KK filed Critical FUJIKI KOSAN KK
Priority to JP8295287A priority Critical patent/JPS63251170A/en
Publication of JPS63251170A publication Critical patent/JPS63251170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To provide possibility of sustaining severe service condition by fusion metallizing an exposed surface of metal bond, which fills voids between abrasive grains of extra-hard substance, with a thin surface film having a higher strength than the metal bond. CONSTITUTION:First, abrasive grains of extra-hard substance such as diamond, CBN, etc., are arranged on a base metal, and metal bond is fusion metallized by electrolytic deposition method to fix the abrasive grains on the base metal. The exposed surface of metal bond is roughened by sand-blasting, dressing, etc., to produce minute unevenness (flaws). Then the exposed surface of the metal bond is fusion metallized with such a reinforcing material as metal (Ti, W, Mo, Ni alloy), carbides (WC, TiC, Cr3C2, SiC), oxdes (Al2O3, TiO2, Cr2O3), and nitrides, followed by fixation, to form covering of thin film.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は、研削工具に適する研削面及びその形成方法に
関するものである。
(Industrial Application Field) The present invention relates to a grinding surface suitable for a grinding tool and a method for forming the same.

【従来の技術1 従来より、研削工具における研削面は、ダイヤモンド、
CBN(cubic boron n1tride)等
の超硬物質砥粒を主要なメタルボンドであるニッケル、
コバルト、銅等の金属を用いて、合金(金属ベース)上
に電解溶着して固定し形成を図っている。この研削面の
形成は、単に台金上に超硬物質を固定しただけのもので
あり、比較的容易に形成でき、且つ又形成時に熱が生じ
にくしζため研削面に狂いや歪みが生じにくい反面、メ
タルボンドによる超硬物質砥粒を保持する力に限界があ
るため比較的短期間で研削面における超硬物質砥粒が脱
粒して研削工具としての機能を失いやすい欠点や、メタ
ルボンド層の露出面が被研削物(金属、セラミックス、
樹脂、ゴム、石材、動・植物質素材並びにこれらの複合
材料等)と衝突するためそれだけメタルボンド層の表面
に摩耗、疲労か生じやすく、上述の欠点に加え耐久性に
乏しい欠点かあった。 [発明か解決しようとする問題点] 従って本発明の目的は、超硬物質の砥粒保持力か強く、
そのため被研削物の研削の際に、苛酷な使用条件に酎え
得る研削工具に適する研削面及びその形成方法を提供す
ることにある。 本発明の他の目的は、メタルボンド層の摩耗と疲労か少
なく寿命の永い研削工具に適する研削面及びその形成方
法を提供することにある。 本発明のもう一つの目的は、切削工具の寿命を延ばせる
ことによって、加工作業中の切削工具の交換脱着の頻度
を減少させて作業効率を著しく向上させることのできる
研削工具に適する研削面及びその形成方法を提供するこ
とにある(問題を解決するための手段] 本発明は、台金上のダイヤモンド、CBN等の多数の超
硬物質砥粒を、メタルボンドを電解溶着することによっ
て前記台金上に固定保持した研削面であって、前記各超
硬物質砥粒間を埋めた前記メタルボンドの露出面上に、
前記メタルボンドより強度を有する金属、炭化物、酸化
物等の素材から成る薄膜状の表面被膜層を、溶射するこ
とによって被着したことを特徴とする研削工具に適する
研削面、並びに台金上にダイヤモンド、C:BN等の超
硬物質砥粒を配置し、次にメタルボンドを電解溶着して
前記超硬物質砥粒を前記台金上に固定保持し、更に前記
メタルボンドの表面露出部に目荒しを施し、その後金属
、炭化物、酸化物等の少なくとも1種を含む溶射材を溶
射し、固着せしめて、このメタルボンドの表面露出部に
薄膜状の被膜層を被着することを特徴とする研削工具に
適する研削面の形成方法である。 【実施例] 次に、本発明をその良好な実施例について詳細に説明し
よう。 実施例に先立ち本発明を総轄的に説明する。 本発明に係る研削工具に適する研削面を形成する場合、
先ず台金上にダイヤモンド、CBN等超硬物質砥粒を配
置する6次に、電解溶着法によってメタルボンドを溶着
させて超硬物質砥粒を前記台金上に固定保持する。更に
、メタルボンドの表面露出部にサンドブラスト、ドレッ
シング等の方法によって目荒しを施す、この目荒しによ
ってメタルボンド表面上に無数の微細な凹凸(傷)を生
じさせる。その後、このメタルボンドの表面露出部に金
属(T、、W、Mo、N、合金等)、炭化物(WC,T
、C,Cr3G2.8IC等)、酸化物(Al2O2゜
T+02. CrtOi等)、窒化物等の強化用素材を
溶射し、固着させ、薄膜状の被膜層を被着する。このと
き溶射によって前記メタルボンド表面上の無数の微細な
凹部には溶解した強化用素材が侵入し、凝固固着して足
となり、この足が溶射による被膜層の下面とメタルボン
ド表面を結合接着するアンカーとなる。尚、メタルボン
ドで超硬物質砥粒か固定された状態(溶射を行なう前)
では、超硬物質砥粒は、その各砥粒の台金側よりの17
2乃至375部分(超硬物質砥粒の高さを1としたとき
の、台金上よりの超硬物質砥粒の高さの割合)がメタル
ボンドの中に抱持され、残りの1/2乃至215の部分
がメタルボンドの表面から突出して露出した状態に置か
れる。従って、溶射の際、強化用素材は、目的面(被射
体表面)に到達した時、硬い滑面となっている超硬物質
砥粒の表面を滑りながら移動し、各超硬物質砥粒間の谷
間を埋めたメタルボンドの表面に到達し、速やかに凝固
堆積して被膜層が被着される。尚、このとき超硬物質砥
粒の露出した突出部に溶射した強化用素材がメタルボン
ド側へ十分に移動しないまま固化し、超硬物質砥粒を被
覆してしまう場合には、超硬物質砥粒の表面は平滑で且
つ硬度が高いために、被膜の下面はアンカーとならない
。従って、このような場合には、仕上工程におけるドレ
ッシングによって該部分の被膜を剥離するとよい。又、
強化用素材が凝固堆積して形成された被膜層の厚さは、
研削工具の設計目的と砥粒のサイズに従って5乃至20
00ILmの厚さの範囲で選択することにより、砥粒の
保持力強化、メタルボンドの表面摩耗に対する保護、メ
タルボンドの脆弱個所の補強を図ることができる。 尚、溶射の方法としては、プラズマ溶射、アーク溶射、
フレーム溶射、爆発溶射等の何れの溶射方法によっても
よい。本発明者の知見では、プラズマ溶射では、ガスプ
ラズマの温度が12000C以上、例えばaooo’c
という超高温で、しかも秒速250s/s以“上、例え
ば秒速800■/Sという高速でノズルを発進するにも
拘らず、5乃至数十cmの間隔を経て溶射すれば被射体
表面のポイント部に到達して放散する熱量を極めて微少
な量におさえることができ、このため容易に放熱拡散が
行なわれて、被射体表面では、下限150’C。 上限4006C程度の温度上昇が瞬間的に生じるに止ま
る。しかして本発明においては、被射体における熱的変
化、有害な膨張が生じることがなく、メタルボンドの表
面を強化する方法として極めて有効である。 ここで、本発明に係る研削工具に適する研削面を、第1
図を参照しながら説明すると、研削面1は1台金上2上
のダイヤモンド、CBN等多数多数硬物質砥粒3を、メ
タルボンド4を電解溶着することによって前記台金上に
固定保持してあり、前記各超硬物質砥粒間を埋めたメタ
ルボンド4の露出面上に前記メタルボンド4より強度を
有する金属、炭化物、酸化物等の素材がら成る薄膜状の
被膜層5をプラズマ溶射することによって形成しである
。 次に、本発明を砥石(平面を研削するのに使用する一般
的なもの)の製造に適用した例について第3図乃至第8
図を参照して説明する。第3図において、符号12は砥
石10の台金、13は超硬物質砥粒(ここではダイヤモ
ンド粒子)、14はメタルボンドを示す。この砥石10
の中央にはシャフト (図示せず)を挿着するための孔
15が貫通しており、シャフトの回転により砥石IOは
同軸で回転し、平面部16が目的の加工材に接触して超
硬物質砥粒13で研削する。 次にかかる砥粒lOの平面部16を形成する手順を示す
。 ■ 先ず、第4図に示すように合金(例えば鋳鉄)12
の表面を切削し、適度の粗面を形成して次工程の電解溶
着をやり易くする。 かくした上で、直径120gmのダイヤモンド粒子13
をlsm平方当り60個入る密度に配列した。 (リ 次に、第5図に示すようにニッケルによるメタル
ボンド14を電解溶着して台金12上にダイヤモンド粒
子13を固定保持した。この状態を拡大してみると第6
図に示すように、電解溶着の進行中の発生水素の離脱に
よって生じるピンホール20や、超硬物質砥粒13の周
辺部(陰部)21に生じる残留孔22が存在していた。 これらとンホール20や残留孔22は、既述のようにメ
タルボンド14が台金12に付着して超硬物質砥粒13
を固定する電解溶着の際に生じるものであるが、これら
ミクロンオーダーの微細な空隙は、メタルボンド14の
保持力を脆弱化する要因となる。 ■ そこで、このピンホール2oや残留孔22を封じる
ため、次工程て溶射(ここではプラズマ溶射)を行なう
が、その前にプラズマ溶射の溶射材の食いつきを良くす
るため、前処理として電解溶着か完了したメタルボンド
層の表面に対してwc等の微粒の硬質材料のサンドブラ
ストを施して目荒しなし、プラズマ溶射の溶射材のアン
カーを固定し易くした(第7図参照)。 ■ かかる状態の後、砥粒10表面に超高温下で溶解し
たWCを主材料とする溶射材[WC(88〜84%)、
 C,(12〜16%)からなるもの;但し単位は重量
パーセント】を、プラズマ溶射機のノズル25先端から
、温度3000°C以上のガスプラズマの形て噴射した
(第8図参照)。このとき、溶解したWCは毎秒610
m/s以上の速度でメタルボンド14表面に叩きつけら
れて、メタルボンド14の表面に存在する空隙を埋め、
更に表面に平均20乃至30JLmの被膜を形成した。 更に、前記プラズマ溶射機のノズル25の位置をずらし
ながら移動することによって、全面に所望のWC被膜2
6を被着した。尚、プラズマ溶射かダイヤモンド粒子に
与えた熱は、250〜350°Cの範囲であった。この
ためダイヤモンドの硬度に影響を与えることはなく、従
って切削力が低下することはなかった。又、熱の総量は
極めて少量てあり、台金12が熱変化のために歪むこと
もなかった−6 (0被膜26の中には、メタルボンド14の表面たけで
なく、超硬物質砥粒13の上部に盛り上かって覆うもの
もあるので (第9図参照)、プラズマ溶射の工程の後
、仕上げにWC微粒を使用してドレッシングを施すこと
によって、超硬物質砥粒13が顔を出すようにした。更
に又、プラズマ溶射の後、被膜26上に生じた粗面につ
いても、同上のドレッシングによって滑らかに仕上げた
。 かくして形成された研削面11は、メタルボンド14に
よるダイヤモンド砥粒13の保持力の脆弱性を、補強材
の溶射によって強化しであるため苛酷な条件下において
も、超硬物質砥粒の脱粒がなく、従来の価石による同条
件の使用例と比較して寿命を著しく延ばすことが出来た
。 【発明の効果1 以上の様な本発明によれば、メタルボンドによる電着工
程において生じた発生水素離脱によるピンホール、溶着
不良によるメタル付着のばらつき、超硬物質砥粒の陰部
に残された小孔等、保持力が脆弱な個所に強化用素材を
侵入させて補強する結果、メタルボンド溶着によって台
金上に固定保持した超硬物質砥粒の保持力の均−化並び
に安定化が図れて研削工具の寿命を著しく延ばすことが
できると共に、研削工具の研削面における砥粒保持力の
強化が図れて脱粒が生じにくく、その結果深削り等、苛
酷な使用条件に耐え得る研削工具の研削面を形成出来る
。 又1本発明によれば、研削作業中の研削工具の交換と調
整作業の頻度を減少せしめて作業効率の向上を図ること
が可能となる。
[Conventional technology 1] Conventionally, the grinding surface of a grinding tool has been made of diamond,
Super hard material abrasive grains such as CBN (cubic boron n1tride) are bonded to nickel, which is the main metal bond.
It is formed by electrolytically welding and fixing metals such as cobalt and copper onto an alloy (metal base). This grinding surface is formed by simply fixing a cemented carbide material on the base metal, and it is relatively easy to form, and it also prevents the generation of heat during formation, which causes irregularities and distortions in the ground surface. On the other hand, the metal bond has a limited ability to hold the carbide abrasive grains, so the carbide abrasive grains on the grinding surface tend to come off in a relatively short period of time and lose its function as a grinding tool. The exposed surface of the layer is ground against the workpiece (metal, ceramics,
Because the metal bond layer collides with materials (resins, rubber, stone, animal/vegetable materials, composite materials, etc.), wear and fatigue are more likely to occur on the surface of the metal bond layer, and in addition to the above-mentioned drawbacks, there is also the drawback of poor durability. [Problems to be solved by the invention] Therefore, an object of the present invention is to increase the abrasive retention power of the superhard material,
Therefore, it is an object of the present invention to provide a grinding surface suitable for a grinding tool that can be used under severe conditions when grinding an object to be ground, and a method for forming the grinding surface. Another object of the present invention is to provide a grinding surface suitable for a grinding tool having a long life with less wear and fatigue of the metal bond layer and a method for forming the same. Another object of the present invention is to provide a grinding surface suitable for a grinding tool that can extend the life of the cutting tool, reduce the frequency of replacing and removing the cutting tool during machining work, and significantly improve work efficiency. An object of the present invention is to provide a forming method (means for solving the problem) by electrolytically welding a large number of super-hard material abrasive grains such as diamond, CBN, etc. on a base metal. On the exposed surface of the metal bond, which is the grinding surface fixedly held on the surface and which fills the space between each of the cemented carbide abrasive grains,
A thin surface coating layer made of a material such as metal, carbide, oxide, etc., which is stronger than the metal bond, is deposited by thermal spraying on a grinding surface suitable for a grinding tool, and on a base metal. A superhard abrasive grain such as diamond or C:BN is placed, and then a metal bond is electrolytically welded to fix and hold the superhard abrasive grain on the base metal. The surface of the metal bond is roughened, and then a thermal spraying material containing at least one of metal, carbide, oxide, etc. is sprayed and fixed, and a thin film layer is applied to the exposed surface of the metal bond. This is a method for forming a grinding surface suitable for grinding tools. [Examples] Next, the present invention will be explained in detail with respect to preferred embodiments thereof. Prior to examples, the present invention will be comprehensively explained. When forming a grinding surface suitable for the grinding tool according to the present invention,
First, ultra-hard abrasive grains such as diamond or CBN are placed on the base metal.Next, a metal bond is welded by electrolytic welding to fix and hold the ultra-hard abrasive grains on the base metal. Further, the exposed surface portion of the metal bond is roughened by methods such as sandblasting and dressing, and this roughening causes countless fine irregularities (scratches) on the surface of the metal bond. After that, metals (T, W, Mo, N, alloys, etc.) and carbides (WC, T
, C, Cr3G2.8IC, etc.), oxides (Al2O2°T+02.CrtOi, etc.), nitrides, and other reinforcing materials are thermally sprayed and fixed, and a thin film layer is applied. At this time, the melted reinforcing material enters the countless minute recesses on the surface of the metal bond due to thermal spraying, solidifies and solidifies to form legs, and these legs bond and bond the bottom surface of the thermally sprayed coating layer and the surface of the metal bond. Become an anchor. In addition, the state in which the carbide abrasive grains are fixed with metal bond (before thermal spraying)
In this case, the carbide abrasive grains are 17 mm from the base metal side of each abrasive grain.
2 to 375 parts (ratio of the height of the carbide abrasive grains above the base metal when the height of the carbide abrasive grains is 1) are held in the metal bond, and the remaining 1/375 parts are held in the metal bond. The portions 2 to 215 protrude from the surface of the metal bond and are left exposed. Therefore, during thermal spraying, when the reinforcing material reaches the target surface (surface of the object to be irradiated), it moves while sliding on the surface of the cemented carbide abrasive grains, which is a hard smooth surface, and each cemented carbide abrasive grain It reaches the surface of the metal bond that fills the gap between the two, and is quickly solidified and deposited to form a coating layer. At this time, if the reinforcing material sprayed onto the exposed protrusions of the carbide abrasive grains solidifies without sufficiently moving toward the metal bond side and covers the carbide abrasive grains, the superhard material Since the surface of the abrasive grain is smooth and hard, the lower surface of the coating does not act as an anchor. Therefore, in such a case, it is preferable to peel off the film in the area by dressing in the finishing process. or,
The thickness of the coating layer formed by solidifying and depositing the reinforcing material is
5 to 20 depending on the grinding tool design purpose and abrasive grain size.
By selecting the thickness within the range of 00ILm, it is possible to strengthen the holding power of the abrasive grains, protect the metal bond from surface abrasion, and strengthen the weak parts of the metal bond. Thermal spraying methods include plasma spraying, arc spraying,
Any thermal spraying method such as flame spraying or explosive thermal spraying may be used. According to the inventor's knowledge, in plasma spraying, the temperature of gas plasma is 12000C or higher, for example, aooo'c
Even though the nozzle is launched at an extremely high temperature of 250 s/s or more, for example 800 s/s, if the spray is applied at intervals of 5 to several tens of centimeters, the points on the surface of the object to be irradiated can be reached. The amount of heat that reaches and dissipates to the surface of the object can be suppressed to an extremely small amount, and therefore the heat is easily dissipated and diffused, and the temperature rise on the surface of the object is instantaneous, with a lower limit of 150'C and an upper limit of about 4006C. However, in the present invention, no thermal change or harmful expansion occurs in the target object, and it is extremely effective as a method for strengthening the surface of a metal bond. The first grinding surface suitable for the grinding tool is
To explain with reference to the figure, the grinding surface 1 is made by fixing and holding a large number of hard material abrasive grains 3 such as diamond or CBN on the base metal 2 on the base metal by electrolytically welding metal bonds 4. A thin film-like coating layer 5 made of a material such as metal, carbide, or oxide, which is stronger than the metal bond 4, is plasma sprayed on the exposed surface of the metal bond 4 filling the spaces between the cemented carbide abrasive grains. It is formed by this. Next, Figures 3 to 8 show examples in which the present invention is applied to the manufacture of grindstones (generally used for grinding flat surfaces).
This will be explained with reference to the figures. In FIG. 3, reference numeral 12 indicates a base metal of the grinding wheel 10, 13 indicates superhard abrasive grains (here, diamond particles), and 14 indicates a metal bond. This whetstone 10
A hole 15 for inserting a shaft (not shown) passes through the center of the grinding wheel IO, and as the shaft rotates, the grinding wheel IO rotates coaxially, and the flat part 16 comes into contact with the target material to grind carbide. Grinding with material abrasive grains 13. Next, a procedure for forming the flat portion 16 of such abrasive grains 1O will be described. ■ First, as shown in Figure 4, alloy (for example, cast iron) 12
The surface is cut to form a moderately rough surface to facilitate electrolytic welding in the next step. After this, diamond particles 13 with a diameter of 120 gm
were arranged at a density of 60 pieces per lsm square. (Next, as shown in FIG. 5, a metal bond 14 made of nickel was electrolytically welded to fix and hold the diamond particles 13 on the base metal 12.
As shown in the figure, there were pinholes 20 caused by the detachment of generated hydrogen during electrolytic welding, and residual holes 22 formed in the periphery (pocket) 21 of the superhard abrasive grains 13. These hole holes 20 and residual holes 22 are caused by the metal bond 14 adhering to the base metal 12 and the superhard abrasive grains 13 as described above.
These fine voids on the order of microns, which are generated during electrolytic welding to fix the metal bond 14, become a factor that weakens the holding power of the metal bond 14. ■ Therefore, in order to seal the pinholes 2o and residual holes 22, thermal spraying (in this case, plasma spraying) is performed in the next process, but before that, electrolytic welding is performed as a pretreatment to improve the bite of the plasma sprayed material. The surface of the completed metal bond layer was sandblasted with fine particles of hard material such as WC to eliminate roughness and to make it easier to fix the anchor of the plasma sprayed material (see Figure 7). ■ After such a state, a thermal spray material [WC (88 to 84%),
C, (12 to 16%) (unit: weight percent) was injected from the tip of the nozzle 25 of a plasma spraying machine in the form of gas plasma at a temperature of 3000° C. or more (see FIG. 8). At this time, the dissolved WC is 610 per second
It is slammed against the surface of the metal bond 14 at a speed of m/s or more to fill the voids existing on the surface of the metal bond 14,
Furthermore, a coating having an average thickness of 20 to 30 JLm was formed on the surface. Furthermore, by moving the nozzle 25 of the plasma spraying machine while shifting the position, the desired WC coating 2 is coated on the entire surface.
6 was applied. The heat applied to the diamond particles by plasma spraying was in the range of 250 to 350°C. Therefore, the hardness of the diamond was not affected, and therefore the cutting force was not reduced. In addition, the total amount of heat was extremely small, and the base metal 12 was not distorted due to thermal changes. Since some of the particles bulge up and cover the upper part of the abrasive grains 13 (see Figure 9), after the plasma spraying process, the carbide abrasive grains 13 are exposed by dressing them using fine WC particles. Furthermore, the rough surface that appeared on the coating 26 after plasma spraying was smoothed by the above-mentioned dressing. Because the weak holding power is strengthened by thermal spraying of reinforcing material, there is no shedding of the super-hard abrasive grains even under severe conditions, and the lifespan is longer than that of conventional abrasive stones used under the same conditions. [Effects of the Invention 1] According to the present invention as described above, pinholes caused by the desorption of hydrogen generated during the metal bond electrodeposition process, variations in metal adhesion due to poor welding, and ultra-hard material abrasiveness can be avoided. As a result of reinforcing the parts where the holding force is weak, such as the small holes left behind the grains, the holding force of the cemented carbide abrasive grains fixed and held on the base metal by metal bond welding becomes even. It is possible to significantly extend the life of the grinding tool by making it more stable and stable, and it also strengthens the abrasive retention force on the grinding surface of the grinding tool, making it difficult for particles to come off. According to the present invention, it is possible to improve work efficiency by reducing the frequency of replacing and adjusting the grinding tool during grinding work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る研削工具に適する研削面を示す拡
大断面略図、第2図は本発明の形成方法を示すフロー・
ダイアグラムの概略図、第3図は本発明を砥石に適用し
た状態を示す略図、第4図乃至第9図は第3図に示す砥
石の研削面の形成工程を示す拡大断面略図である。 第3図 第4図 第5図 第6図 第7図 第9図
FIG. 1 is an enlarged schematic cross-sectional view showing a grinding surface suitable for the grinding tool according to the present invention, and FIG. 2 is a flowchart showing the forming method of the present invention.
FIG. 3 is a schematic view showing the state in which the present invention is applied to a grindstone, and FIGS. 4 to 9 are enlarged schematic cross-sectional views showing the process of forming the grinding surface of the grindstone shown in FIG. 3. Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)台金上のダイヤモンド、CBN等の多数の超硬物
質砥粒を、メタルボンドを電解溶着することによって前
記台金上に固定保持した研削面であって、前記各超硬物
質砥粒間を埋めた前記メタルボンドの露出面上に、前記
メタルボンドより強度を有する金属、炭化物、酸化物等
の素材から成る薄膜状の表面被膜層を、溶射することに
よって被着したことを特徴とする研削工具に適する研削
面。
(1) A grinding surface in which a large number of carbide abrasive grains such as diamond and CBN are fixedly held on the base metal by electrolytically welding metal bonds, and each of the carbide abrasive grains is A thin surface coating layer made of a material such as a metal, carbide, or oxide that is stronger than the metal bond is deposited on the exposed surface of the metal bond filling the gap by thermal spraying. Grinding surface suitable for grinding tools.
(2)台金上にダイヤモンド、CBN等の超硬物質砥粒
を配置し、次にメタルボンドを電解溶着して前記超硬物
質砥粒を前記台金上に固定保持し、更に前記メタルボン
ドの表面露出部に目荒しを施し、その後金属、炭化物、
酸化物等の少なくとも1種を含む溶射材を溶射し、固着
せしめて、このメタルボンドの表面露出部に薄膜状の被
膜層を被着することを特徴とする研削工具に適する研削
面の形成方法。
(2) Place super-hard material abrasive grains such as diamond or CBN on the base metal, then electrolytically weld a metal bond to fix and hold the super-hard material abrasive grains on the base metal, and further the metal bond After roughening the exposed surface of the metal, carbide,
A method for forming a grinding surface suitable for a grinding tool, which comprises spraying and fixing a thermal spray material containing at least one kind of oxide, etc., and depositing a thin film layer on the exposed surface of the metal bond. .
JP8295287A 1987-04-06 1987-04-06 Surface to be ground suitable for tool and its forming method Pending JPS63251170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8295287A JPS63251170A (en) 1987-04-06 1987-04-06 Surface to be ground suitable for tool and its forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8295287A JPS63251170A (en) 1987-04-06 1987-04-06 Surface to be ground suitable for tool and its forming method

Publications (1)

Publication Number Publication Date
JPS63251170A true JPS63251170A (en) 1988-10-18

Family

ID=13788558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8295287A Pending JPS63251170A (en) 1987-04-06 1987-04-06 Surface to be ground suitable for tool and its forming method

Country Status (1)

Country Link
JP (1) JPS63251170A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733436A1 (en) * 1995-03-23 1996-09-25 Honda Giken Kogyo Kabushiki Kaisha Lap structure of a lapping tool
EP1066927A2 (en) * 1999-07-09 2001-01-10 Tenryu Seikyo Kabushiki Kaisha Metal-bonded grinding tool and manufacturing method therefor
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process
JP2007508153A (en) * 2003-10-10 2007-04-05 サンーゴバン アブレイシブズ,インコーポレイティド Polishing tool made by self-avoiding abrasive grain arrangement
WO2008075512A1 (en) * 2006-12-21 2008-06-26 Ihi Corporation Grind stone
JP2013503754A (en) * 2009-09-04 2013-02-04 インステク インコーポレイテッド Cutting / polishing tool and manufacturing method thereof
WO2022131197A1 (en) * 2020-12-18 2022-06-23 ニプロ株式会社 Medical cutting tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0733436A1 (en) * 1995-03-23 1996-09-25 Honda Giken Kogyo Kabushiki Kaisha Lap structure of a lapping tool
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process
EP1066927A2 (en) * 1999-07-09 2001-01-10 Tenryu Seikyo Kabushiki Kaisha Metal-bonded grinding tool and manufacturing method therefor
EP1066927A3 (en) * 1999-07-09 2003-03-19 Tenryu Seikyo Kabushiki Kaisha Metal-bonded grinding tool and manufacturing method therefor
JP2007508153A (en) * 2003-10-10 2007-04-05 サンーゴバン アブレイシブズ,インコーポレイティド Polishing tool made by self-avoiding abrasive grain arrangement
WO2008075512A1 (en) * 2006-12-21 2008-06-26 Ihi Corporation Grind stone
JP2013503754A (en) * 2009-09-04 2013-02-04 インステク インコーポレイテッド Cutting / polishing tool and manufacturing method thereof
US9238277B2 (en) 2009-09-04 2016-01-19 Insstek, Inc. Cutting/polishing tool and manufacturing method thereof
US9764442B2 (en) 2009-09-04 2017-09-19 Insstek, Inc. Cutting/polishing tool and manufacturing method thereof
WO2022131197A1 (en) * 2020-12-18 2022-06-23 ニプロ株式会社 Medical cutting tool

Similar Documents

Publication Publication Date Title
US4610698A (en) Abrasive surface coating process for superalloys
Chattopadhyay et al. Experimental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere
KR102590480B1 (en) Manufacturing method of brake disc and brake disc for disc brake
Chattopadhyay et al. Induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere
US5127924A (en) Hard particle coated grinding wheel
US4744725A (en) Abrasive surfaced article for high temperature service
EP0166676B1 (en) Abrasive surfaced article for high temperature service
US20150290771A1 (en) Abrasive article and method for making the same
US4805586A (en) Dressing tool for grinding wheels
JP2008514446A (en) CMP pad dresser with oriented particles and related methods
JP2008515238A (en) Molded CMP pad dresser and related methods
CA2570937A1 (en) Reducing abrasive wear in abrasion resistant coatings
JP4271865B2 (en) Method for producing sintered articles and products produced thereby
EP1100653B1 (en) Rotary dressing tool containing brazed diamond layer
RU1838445C (en) Facing
US5976001A (en) Interrupted cut abrasive tool
SG186587A1 (en) Cemented carbide base outer blade cutting wheel and making method
KR970003489B1 (en) On edge honing device
JPS63251170A (en) Surface to be ground suitable for tool and its forming method
CN112247863B (en) Remanufacturing process of brazed diamond grinding wheel
JP2008155301A (en) Grinding wheel
JP2002192470A (en) Grinding wheel tool
Stephenson et al. Surface finishing of Ni–Cr–B–Si composite coatings by precision grinding
CN112677062B (en) Special abrasive grain landform for polishing steel grinding disc, diamond grinding disc and preparation method thereof
US20200070310A1 (en) Metal hybrid grinding wheel with coated filler particles