JPS63247400A - Method for controlling continuous electroplating - Google Patents

Method for controlling continuous electroplating

Info

Publication number
JPS63247400A
JPS63247400A JP8068987A JP8068987A JPS63247400A JP S63247400 A JPS63247400 A JP S63247400A JP 8068987 A JP8068987 A JP 8068987A JP 8068987 A JP8068987 A JP 8068987A JP S63247400 A JPS63247400 A JP S63247400A
Authority
JP
Japan
Prior art keywords
plating
thickness
efficiency
current
equality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068987A
Other languages
Japanese (ja)
Inventor
Hiromitsu Nakabayashi
中林 廣光
Takashi Kashimoto
樫本 敬
Naoyuki Sasaki
直之 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8068987A priority Critical patent/JPS63247400A/en
Publication of JPS63247400A publication Critical patent/JPS63247400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To control the thickness of plating to the desired value by deciding constants for deciding plating efficiency according to the thickness of plating, line speed, electric current for plating and measured values. CONSTITUTION:When a metallic strip is continuously electroplated, the thickness Fa of plating, line speed Va, electric current Ia for plating and the temp. Ta of a plating soln. are simultaneously measured with sensors and plating efficiency eta1 represented by equality I (where K is a constant) is calculated every time they are measured. It is supposed that the plating efficiency eta1 is equal to plating efficiency eta2 represented by equality II. Current density Dk in the equality II is calculated from the electric current Ia, and the line speed Va and the temp. Ta are substd. for V and T, respectively. This operation is repeated plural times to calculate constants A, B, C, D in the equality II. The thickness of plating is made uniform in the longitudinal direction by control according to the plating efficiency 2. By this control method, plating efficiency is automatically corrected and can be rapidly adapted to control.

Description

【発明の詳細な説明】 技術分野 本発明は、金属帯状体、たとえば銅帯を連続電気めっき
し、そのめっき厚みを制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD This invention relates to a method for continuously electroplating a metal strip, such as a copper strip, and controlling the plating thickness.

背景技術 金属帯状体の表面に形成されるめっき付着量であるめっ
き厚みは、めっき電流を制御することによって調整する
ことができる。従来では、希望するめっき厚みを得るた
めに、ライン出側においてめっきされた鋼板をサンプリ
ングし、これを手分析し、この値に基づいてめっき電流
を決定している。
BACKGROUND ART The plating thickness, which is the amount of plating deposited on the surface of a metal strip, can be adjusted by controlling the plating current. Conventionally, in order to obtain the desired plating thickness, a plated steel plate is sampled at the output side of the line, this is manually analyzed, and the plating current is determined based on this value.

発明が解決すべき問題点 このような先行技術では、分析は作業者によって行なわ
れるので、パッチ処理となる。したがって時系列的にめ
っき効率が変化した場合には、めっき厚みの制御を迅速
に対処することが不可能である。そのため、めっき厚み
を均一にすることができない。
Problems to be Solved by the Invention In such prior art, analysis is performed by an operator, resulting in a patch process. Therefore, when the plating efficiency changes over time, it is impossible to quickly control the plating thickness. Therefore, it is not possible to make the plating thickness uniform.

本発明の目的は、金属帯状体の長さ方向に均一なめつき
厚みを得ることができるようにした連続電気めっきの制
御方法を提供することである。
An object of the present invention is to provide a continuous electroplating control method that makes it possible to obtain a uniform plating thickness in the length direction of a metal strip.

間に点を解決するための手段 本発明は、金属帯状体のめっき厚みFa、金属帯状体の
速度Va、めっき電流Iaおよびめっき液の温度Taと
を、同時にかつ複数回実測し、めっき電流Iaに基づい
て電流密度Dkを計算し、各測定時毎に、めっき効率η
1、 ただしKは定数 を求め、この結果に基づいて、次式のめっき効率η2に
おける定数A 、B 、C、Dを求め、? 2 =A 
−Dk+B −V+C−T+Dこれによってめっき厚み
を希望する値に制御することを特徴とする連続電気めっ
きの制御方法である。
Means for Solving Problems in the Invention The present invention measures the plating thickness Fa of the metal strip, the speed Va of the metal strip, the plating current Ia, and the temperature Ta of the plating solution simultaneously and multiple times, and calculates the plating current Ia. The current density Dk is calculated based on the plating efficiency η for each measurement.
1, where K is a constant, and based on this result, find constants A, B, C, and D in the plating efficiency η2 of the following equation, and ? 2 = A
-Dk+B -V+C-T+D This is a continuous electroplating control method characterized by controlling the plating thickness to a desired value.

作  用 本発明に従えば、めっき効率り2を決定するための定数
A 、B 、C、Dを、めっき厚みFa、速度■a、め
っき電流Iaおよび温度Taの同時的なかつ複数回の実
測値に基づいて定め、このめっき効率り2の式によって
めっき厚みを希望する値に制御するようにしたので、作
業者による分析作業が不必要になり、しがも連続的に分
析が可能になる。
According to the present invention, the constants A, B, C, and D for determining the plating efficiency 2 are determined by simultaneous and multiple actual measurements of the plating thickness Fa, speed a, plating current Ia, and temperature Ta. Since the plating thickness is controlled to a desired value using the formula of plating efficiency 2, analysis work by the operator is unnecessary and continuous analysis is possible.

これによって金属帯状体の長さ方向に希望する均一なめ
っき厚みを形成することが可能になる。
This makes it possible to form a desired uniform plating thickness in the length direction of the metal strip.

実施例 第1図は、本発明の一実施例の全体の系統図である。め
っきされるべき金属帯状体である鋼板の原板1は、プラ
イドルロール2がら前処理装置3に導かれて洗浄などさ
れる。前処理装置3がらの鋼板は、ステアリングロール
4がらめっき処理装fi5に供給される。このめっき処
理装置5では、鋼板がめつき液22内を通過する。この
めっき液22内には、鋼板の上下に電極21が配置され
る。
Embodiment FIG. 1 is an overall system diagram of an embodiment of the present invention. An original steel sheet 1, which is a metal strip to be plated, is guided through a pre-drill roll 2 to a pretreatment device 3, where it is cleaned and the like. The steel plate from the pretreatment device 3 is supplied to the steering roll 4 plating treatment device fi5. In this plating processing apparatus 5 , the steel plate passes through a plating solution 22 . Electrodes 21 are placed in this plating solution 22 above and below the steel plate.

鋼板にはコングクトロール20が接触し、鋼板に電気的
に接続される。めっき処理装置5からのめっきされた鋼
板は、ステアリングロール6を経て走行し、その途中で
めっき厚み計7によって鋼板の表面に形成されためっき
厚みが測定される。このめっき厚み計7は、たとえばX
@などを用いた構成によって実現されてもよい。鋼板は
さらに、後処理装置8を経てプライドルロール9から出
側ルーパーで貯留され、さらにプライドルロール11を
経てテンションリール13で巻取られる。テンションリ
ール13の上流側には鋼板の剪断のためにシャー12が
配置される。
Kongtrol 20 contacts the steel plate and is electrically connected to the steel plate. The plated steel plate from the plating processing device 5 travels through a steering roll 6, and along the way, the thickness of the plating formed on the surface of the steel plate is measured by a plating thickness gauge 7. This plating thickness gauge 7 is, for example,
It may be realized by a configuration using @ or the like. The steel plate further passes through a post-processing device 8, is stored in a looper on the exit side from a prydle roll 9, further passes through a prydle roll 11, and is wound up on a tension reel 13. A shear 12 is arranged upstream of the tension reel 13 for shearing the steel plate.

めっき電流制御回路16は、フングクトロール20と電
極21との間にめっき電流を流す。このめっき電流は、
電流検出器17によって検出される。めっき処理装置5
におけるめっき8!22の温度は、めっき液温度検出器
18によって検出される。プライドルロール9に設けら
れたライン速度検出器19は、鋼板の走行している速度
を検出する。
The plating current control circuit 16 causes a plating current to flow between the Fungktrol 20 and the electrode 21 . This plating current is
It is detected by the current detector 17. Plating processing equipment 5
The temperature of the plating 8!22 in is detected by the plating solution temperature detector 18. A line speed detector 19 provided on the priddle roll 9 detects the running speed of the steel plate.

第2図は、第1図に示された実施例の電気的構成を示す
ブロック図である。めっき厚み計7、電流検出器17、
めっき液温度検出器18およびライン速度検出器19が
らの各出力は、マイクロコンピュータなどによって実現
される処理回路23に与えられ、これによって処理回路
23は次に述べる演算を行ない、電流制御回路16によ
るめっき電流を制御する。
FIG. 2 is a block diagram showing the electrical configuration of the embodiment shown in FIG. 1. Plating thickness gauge 7, current detector 17,
The respective outputs from the plating solution temperature detector 18 and the line speed detector 19 are given to a processing circuit 23 realized by a microcomputer or the like, and thereby the processing circuit 23 performs the calculations described below. Control plating current.

第3図を参照して、ステップn1がらステップn2に移
り、予想して定めた成る条件で鋼板のめっきを行ない、
これによって鋼板のめっき厚みFa。
Referring to FIG. 3, proceeding from step n1 to step n2, plating the steel plate under the predicted and determined conditions,
This increases the plating thickness Fa of the steel plate.

速度Va、めっき電流Iaおよびめっき液の温度T8を
、検出器7.17,18.19によってステップn3 
 において同時に検出し、この測定値に基づいてステッ
プn4ではめっき効率+71を求める。
The speed Va, the plating current Ia and the temperature T8 of the plating solution are detected in step n3 by the detectors 7.17 and 18.19.
, and based on this measured value, the plating efficiency +71 is determined in step n4.

ここでKは定数である。Here K is a constant.

ステップn5  では、第2式で示されるめっき効率r
/2 η2=A−Dk+B−V+C−T+D  ・・・(2)
における定数A 、B 、C、D  を連立方程式によ
って計算して求めるために、ステップn6  では前述
の第1式で求めためっき効率η1を第2式のめっき効率
り2に等しいと置き、このtJS2式における電流密度
Dkをめっき電流Iaに基づいて計算して代入するとと
もに、第2式のV、Tには上述の速度Va、めっき液の
温度Taをそれぞれ代入する。ステップn3〜ステツプ
n6  の動作をステップn7で定めた複数回、少な(
とも4回繰返すことによって4つの定数A 、B 、C
、Dをステップn8で連立方程式によって計算すること
が可能になる。
In step n5, the plating efficiency r expressed by the second equation
/2 η2=A-Dk+B-V+C-T+D...(2)
In order to calculate and obtain the constants A, B, C, and D using simultaneous equations, in step n6, the plating efficiency η1 obtained from the first equation above is set equal to the plating efficiency 2 of the second equation, and this tJS2 The current density Dk in the equation is calculated based on the plating current Ia and is substituted, and the above-mentioned speed Va and temperature Ta of the plating solution are substituted into V and T of the second equation, respectively. The operations from step n3 to step n6 are repeated multiple times as determined in step n7.
By repeating both four times, four constants A, B, C
, D can be calculated by simultaneous equations in step n8.

次にステップn 9  では、鋼板にめっきを行なうラ
イン運転によって新たに、めっき厚みFb、速度vb、
めっき電流Ibおよびめっき液の温度Tbを検出器7.
17,18.19  によって実測する。
Next, in step n9, the plating thickness Fb, speed vb,
The plating current Ib and the temperature Tb of the plating solution are detected by a detector 7.
17, 18, and 19.

ステップ1110  では、この実測値に基づいてめっ
き効率η3を求める。
In step 1110, the plating efficiency η3 is determined based on this measured value.

ステップnilでは、めっき電流Illに基づいて電流
密度Dkl  を計算し、第4式に基づいて定数D1を
求める。
In step nil, a current density Dkl is calculated based on the plating current Ill, and a constant D1 is determined based on the fourth equation.

D1=η3−(A−Dkl+B ・Vb十C−Tb)・
・・(4) これによって前述のステップn8  でPItJ2式に
基づいて計算された定IDをDlに修正する。こうして
めっき効率η4を求める第5式をステップn12におい
て設定する。
D1=η3-(A-Dkl+B ・Vb×C-Tb)・
(4) As a result, the constant ID calculated based on the PItJ2 formula in step n8 described above is corrected to Dl. In this way, the fifth equation for calculating the plating efficiency η4 is set in step n12.

14=A−Dk+B  −V+C−T+D1・・・(5
) ステップn13では、鋼板の速度Vc、めっき電流Ic
およびめっき液の温度Tcの測定を行ない、めっき電流
Icに基づいて電流密度Dkcを計算する。そこでtt
S5式に代入して、すなわち第6式の演算を仔なって、
めっき効率η4aを求める。
14=A-Dk+B-V+C-T+D1...(5
) In step n13, the speed Vc of the steel plate, the plating current Ic
Then, the temperature Tc of the plating solution is measured, and the current density Dkc is calculated based on the plating current Ic. So tt
By substituting into the S5 formula, that is, by substituting the operation of the 6th formula,
Find the plating efficiency η4a.

r/4a=A−Dkc十B◆■c+C−Tc+D1・・
・(6) ステップn15では、めっき厚みの目標値Fcを設定す
る。そこで前述のステップn13  において実測した
速度VCとステップ1114において第6式から計算し
ためっき効率74aとに基づいて、第7式の演算を行な
って、めっき電流Idを求める。
r/4a=A-Dkc10B◆■c+C-Tc+D1...
-(6) In step n15, a target value Fc of plating thickness is set. Therefore, based on the speed VC actually measured in step n13 and the plating efficiency 74a calculated from equation 6 in step 1114, the calculation of equation 7 is performed to obtain the plating current Id.

この第7式で計算しためっき電流Idを表す信号を、処
理回路23から電流制御回路16に与え、めっき電流I
dでめっきを行なう。
A signal representing the plating current Id calculated by this seventh equation is given from the processing circuit 23 to the current control circuit 16, and the plating current Id is
Perform plating in step d.

ステップn17からはステップn9に戻り、このような
演算動作を繰返す。
From step n17, the process returns to step n9, and such calculation operations are repeated.

本発明の他の実施例としてステップn17  からステ
ップn2  に戻るようにしてもよい。
In another embodiment of the present invention, the process may return from step n17 to step n2.

めっき厚み計7は、めっき処理装置5のライン出側の可
及的に近傍に設置し、これによって応答性を向上し、め
っき厚みを鋼板の長さ方向の全長にわた9正確な希望す
る値にめっきを行なうことを可能にすることができる。
The plating thickness gauge 7 is installed as close as possible to the line output side of the plating processing equipment 5, thereby improving responsiveness and measuring the plating thickness to the exact desired value over the entire length of the steel plate. It can be possible to perform plating on.

本発明は、鋼板の亜鉛めっきなどだけでな(、その他の
材料から成る金属帯状体の各種のめっきを行なうために
広範囲に実施することができる。
The present invention can be widely implemented not only for galvanizing steel sheets, but also for various types of plating of metal strips made of other materials.

効  果 以上のように本発明によれば、金属帯状体の表面に形成
されるめっきの厚みを正確に、しがもその金属帯状体の
艮手力向に沿って均一に制御することができる。しかも
めつき効率を求める回帰式は常時自動的に修正され、し
たがって時系列的にめっき効率が変化しても、めっき厚
みの制御の対応を迅速に行なうことができる。
Effects As described above, according to the present invention, the thickness of the plating formed on the surface of the metal strip can be controlled accurately and uniformly along the direction of the force applied to the metal strip. . Moreover, the regression equation for determining plating efficiency is automatically corrected at all times, so even if plating efficiency changes over time, the plating thickness can be quickly controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体の系統図、第2図は#
S1図に示された実施例の電気的構成を示すブロック図
、plIJ3図は動作を説明するための70−チャート
である。 1・・・原板、3・・・前処理装置、5・・・めっき処
理装置、7・・・めっき厚み計、8・・・後処理装置、
1G・・・電流制御回路、17・・・めっき電流検出器
、18・・・めっき液温度検出器、19・・・ライン速
度検出器、20・・・コンダクトロール、21・・・電
極、22・・・めっき液
Figure 1 is an overall system diagram of one embodiment of the present invention, and Figure 2 is #
Figure S1 is a block diagram showing the electrical configuration of the embodiment shown in Figure S1, and Figure plIJ3 is a 70-chart for explaining the operation. DESCRIPTION OF SYMBOLS 1... Master plate, 3... Pre-processing device, 5... Plating processing device, 7... Plating thickness gauge, 8... Post-processing device,
1G... Current control circuit, 17... Plating current detector, 18... Plating solution temperature detector, 19... Line speed detector, 20... Conductor roll, 21... Electrode, 22 ...Plating solution

Claims (1)

【特許請求の範囲】 金属帯状体のめっき厚みFa、金属帯状体の速度Va、
めっき電流Iaおよびめっき液の温度Taとを、同時に
かつ複数回実測し、 めっき電流Iaに基づいて電流密度Dkを計算し、各測
定時毎に、めっき効率η1、 η1=K・Va・Fa/Ia ただしKは定数 を求め、 この結果に基づいて、次式のめっき効率η2における定
数A、B、C、Dを求め、 η2=A−Dk+B・V+C・T+D これによってめっき厚みを希望する値に制御することを
特徴とする連続電気めっきの制御方法。
[Claims] Plating thickness Fa of the metal strip, speed Va of the metal strip,
Measure the plating current Ia and the temperature Ta of the plating solution simultaneously and multiple times, calculate the current density Dk based on the plating current Ia, and calculate the plating efficiency η1, η1=K・Va・Fa/ Ia However, K is determined as a constant, and based on this result, the constants A, B, C, and D in the plating efficiency η2 of the following formula are determined, and η2=A-Dk+B・V+C・T+D By this, the plating thickness is set to the desired value. A control method for continuous electroplating, characterized by controlling.
JP8068987A 1987-03-31 1987-03-31 Method for controlling continuous electroplating Pending JPS63247400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068987A JPS63247400A (en) 1987-03-31 1987-03-31 Method for controlling continuous electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068987A JPS63247400A (en) 1987-03-31 1987-03-31 Method for controlling continuous electroplating

Publications (1)

Publication Number Publication Date
JPS63247400A true JPS63247400A (en) 1988-10-14

Family

ID=13725302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068987A Pending JPS63247400A (en) 1987-03-31 1987-03-31 Method for controlling continuous electroplating

Country Status (1)

Country Link
JP (1) JPS63247400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148696A (en) * 1991-11-25 1993-06-15 Mitsubishi Electric Corp Plating current controller
BE1006710A5 (en) * 1992-11-25 1994-11-22 Sikel Nv Method for a continuous Zn coated steel sheet manufacturing process and thesteel sheet obtained in this manner
KR20180016941A (en) * 2016-08-08 2018-02-20 가부시키가이샤 에바라 세이사꾸쇼 Plating system, a plating system control method, and a storage medium containing a program for causing a computer to execute the plating system control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148696A (en) * 1991-11-25 1993-06-15 Mitsubishi Electric Corp Plating current controller
BE1006710A5 (en) * 1992-11-25 1994-11-22 Sikel Nv Method for a continuous Zn coated steel sheet manufacturing process and thesteel sheet obtained in this manner
KR20180016941A (en) * 2016-08-08 2018-02-20 가부시키가이샤 에바라 세이사꾸쇼 Plating system, a plating system control method, and a storage medium containing a program for causing a computer to execute the plating system control method
US11098414B2 (en) 2016-08-08 2021-08-24 Ebara Corporation Plating system, a plating system control method, and a storage medium containing a program for causing a computer to execute the plating system control method

Similar Documents

Publication Publication Date Title
CA2101712C (en) Resistance welding monitor
NZ205098A (en) Wire, conductive coating on magnetic substrate: thickness determination
JPS6071155A (en) Device for detecting position of discharge along electrode wire for edm device
JP2935947B2 (en) Method for selectively monitoring trace components in plating baths
JPS63247400A (en) Method for controlling continuous electroplating
CN110940600A (en) Device and method for automatically measuring elongation at break of plastic
US3553052A (en) Etching control device
JPH0611530A (en) Method and equipment for evaluating insulation reliability lifetime of electronic component
JPH05288706A (en) Monitoring system of defect of metal member
US3536999A (en) Strip sag gage in a pickling bath
US3448024A (en) Proximity detector for electrochemical machining
US4343686A (en) Method for controlling etching of electrolytic capacitor foil
US4060461A (en) Method and apparatus for correcting error in corrosion rate measurements
SU911239A2 (en) Method of determination of current-conductive material corrosion rate
CN1007219B (en) Method for controlling bead
RU2687892C1 (en) Flat metal sample for mechanical tests
SU1562680A1 (en) Eddy-current method of determining thickness of coatings
SU1486764A1 (en) Method and apparatus for monitoring thickness of electroplating coating
JPH0716790B2 (en) Method for measuring resistance between cables of welded secondary cable, apparatus therefor, and method for predicting disconnection using the method
SU1663402A1 (en) Eddy-current device for measuring electroconductive coating thickness
SU846610A1 (en) Method of measuring the surface area of part at electroplating
US3645876A (en) Current transfer measurement along a linearly extended contact
JPH04152261A (en) Deposition speed measuring apparatus for electroless plating
SU787494A1 (en) Method of measuring current density distribution over long-sized article surface
SU783371A2 (en) Device for continuous control of galvanic plating thickness