JPS63247196A - Hybrid type magnetically propelled ship - Google Patents

Hybrid type magnetically propelled ship

Info

Publication number
JPS63247196A
JPS63247196A JP8094587A JP8094587A JPS63247196A JP S63247196 A JPS63247196 A JP S63247196A JP 8094587 A JP8094587 A JP 8094587A JP 8094587 A JP8094587 A JP 8094587A JP S63247196 A JPS63247196 A JP S63247196A
Authority
JP
Japan
Prior art keywords
magnetic field
ship
field type
type electromagnetic
propelling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8094587A
Other languages
Japanese (ja)
Inventor
Kazuo Kuroishi
黒石 一夫
Hiroya Imura
井村 泰也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Service Engineering Co Ltd
Priority to JP8094587A priority Critical patent/JPS63247196A/en
Publication of JPS63247196A publication Critical patent/JPS63247196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a leakage magnetic field and improve propelling efficiency by providing both external magnetic field type electromagnetic propelling device and an internal magnetic field type electromagnetic propelling device on one ship and separately and independently operating each of them. CONSTITUTION:An external magnetic field type electromagnetic propelling device and an internal magnetic field type electromagnetic propelling device are installed in a hybrid type magnetically propelled ship. The external magnetic field type electromagnetic propelling device consists of a racetrack type superconductive magnet 12 having linear parts in the longitudinal direction of ship and electrodes 13, and the internal magnetic field type electromagnetic propelling device consists of a saddle type superconductive magnet 22 and electrodes 23. Thereby, during navigation on the open sea, the superconductive magnet 12 is excited to make a sea water electric current flow in the electrodes 13, enabling effective operation as an external magnetic field type magnetically propelled ship. Also, at the time of sailing in a harbor, the saddle type magnet 22 is excited to carry out navigation as an internal magnetic field type magnetically propelled ship, removing a leakage magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電磁推進船に係り、特に、外洋では高い推進
効率が得られ、他の船舶や港湾設備等への磁界の作用が
問題となる区域では外部への漏洩磁界を少なくして航行
することが可能なハイブリッド形電磁推進船に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electromagnetically propelled ship, which can achieve high propulsion efficiency in the open ocean, and where the effect of magnetic fields on other ships, port facilities, etc. is a problem. In this area, the present invention relates to a hybrid electromagnetic propulsion ship that can navigate with less leakage of magnetic fields to the outside.

〔従来の技術〕[Conventional technology]

電磁推進船は第2図に示す半うに、船体1の内部に設け
た磁界発生用電磁石2が船底附近に作る磁界Bと船底に
設けた一対の電極3間に流した海水電流Jの相互作用に
より発生する海水を押し流す力F′の反力F(磁界発生
用電磁石に発生する)を推進力とするもので、発生する
磁界により、ACタイプとDCタイプの二種に大別でき
る。
As shown in Fig. 2, an electromagnetically propelled ship is constructed by an interaction between a magnetic field B generated near the bottom of the ship by a magnetic field generating electromagnet 2 installed inside the ship's hull 1, and a seawater current J passed between a pair of electrodes 3 installed at the bottom of the ship. The propulsion force is the reaction force F (generated in the magnetic field generating electromagnet) of the force F' that pushes away the seawater generated by the magnetic field, and can be roughly divided into two types, AC type and DC type, depending on the generated magnetic field.

ACタイプでは、海水中のAC磁界により誘起した海水
電流との相互作用により推力を得るので、海水電流通電
用電極は不要であるが、推進効率はDCタイプの方が高
い。又、電磁推進船は、発生する磁界の範囲により、外
部磁界形と、内部磁界形に分類できる。
In the AC type, thrust is obtained by interaction with the seawater current induced by the AC magnetic field in the seawater, so electrodes for applying seawater current are not required, but the DC type has higher propulsion efficiency. Furthermore, electromagnetic propulsion vessels can be classified into external magnetic field type and internal magnetic field type depending on the range of the magnetic field generated.

第3図に外部磁界形電磁推進船の一例の断面を示す。磁
界発生用超電流2の発生する磁力線21と海水電流通電
用電極3により通電した場合の海水中の電気力線31は
、船底1の形状最適化することにより、広範囲にわたっ
てほぼ直交させることができ、これにより、高い推進効
率が得られる。
FIG. 3 shows a cross section of an example of an external magnetic field type electromagnetic propulsion vessel. By optimizing the shape of the ship's bottom 1, the magnetic lines of force 21 generated by the magnetic field generating supercurrent 2 and the electric lines of force 31 in the seawater when energized by the seawater current-carrying electrode 3 can be made to intersect at right angles over a wide range. , this provides high propulsion efficiency.

第4図及び第5図に内部磁界形電磁推進船の一例を示す
。第4図は船体断面の概要であり、第5図はダクト断面
を示す。第5図は電磁石が超電導マグネットである場合
の例を示している。本方式では、電磁力作用領域10が
ダクト内部の狭い範囲に限られており、高い推進効率は
望めない。その反面、ダクト外周を磁気シールドで覆う
ことにより、外部に対する磁気遮蔽は容易に行なえると
いう特徴を持つ。
Figures 4 and 5 show an example of an internal magnetic field type electromagnetic propulsion vessel. FIG. 4 is an outline of the hull cross section, and FIG. 5 is a duct cross section. FIG. 5 shows an example in which the electromagnet is a superconducting magnet. In this system, the electromagnetic force acting area 10 is limited to a narrow area inside the duct, and high propulsion efficiency cannot be expected. On the other hand, by covering the outer periphery of the duct with a magnetic shield, magnetic shielding from the outside can be easily achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電磁推進船を実用化する場合、まず、推進効率を高める
ことが必要であり、磁界発生用電磁石を超電導化し、D
Cタイプの外部磁界形を採用する等、効率の高い方式で
各種検討を実施する必要がある。しかし、外部磁界形の
場合、磁界の作用領域が広範囲となるため、港湾内等で
は、他の船舶や、港湾設備等磁性体との作用が問題とな
り、実際には、外部磁界形電磁推進方式で、港湾内を航
行することは不可能である。又、外部への漏洩磁界を容
易に遮蔽できる内部磁界形の場合も一部の特殊な場合を
除いては、効率の問題から実用船としては、歓迎されな
い。
In order to put an electromagnetic propulsion ship into practical use, it is first necessary to increase the propulsion efficiency.
It is necessary to conduct various studies on highly efficient methods, such as adopting a C-type external magnetic field type. However, in the case of the external magnetic field type, the magnetic field has a wide area of action, so in ports etc., interaction with other ships and magnetic materials such as port equipment becomes a problem. Therefore, it is impossible to navigate within the port. In addition, the internal magnetic field type, which can easily shield external magnetic field leakage, is not welcome as a practical ship due to efficiency issues, except in some special cases.

本発明の目的は、電磁推進船の推進効率と漏洩磁界とい
う相反する問題を解決する一手段を与えることにある。
An object of the present invention is to provide a means for solving the conflicting problems of propulsion efficiency and leakage magnetic field of electromagnetic propulsion vessels.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、−隻の船に、外部磁界形電磁推進装置と内
部磁界形電極推進装置の両方を兼備させ夫々を別々に独
立して自由に運転可能なようにしておくことにより達成
できる。
The above object can be achieved by providing two ships with both an external magnetic field type electromagnetic propulsion device and an internal magnetic field type electrode propulsion device so that they can be freely operated separately and independently.

〔作用〕[Effect]

周囲に磁性体の無い外洋を航行する時は、外部磁界形推
進装置のみを運転することにより、効率の良い航行が実
現でき、船舶の輻幀する区域や、港湾内等は、磁気シー
ルドを施した内部磁界形推進装置のみを使用して航行す
れば、周囲に磁界の影響を与えずにすむ。
When navigating the open ocean where there is no magnetic material around, efficient navigation can be achieved by operating only the external magnetic field type propulsion system, and it is recommended to use magnetic shielding in areas where ships are congested, in ports, etc. If the ship navigates using only the internal magnetic field type propulsion system, the surrounding area will not be affected by the magnetic field.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図はハイブリッド形電磁推進船の前後方向中心附近の断
面を示す。外部磁界形電磁推進装置は、船の前後方向に
直線部をもつレーストラック形超電導マグネット12及
び電極13から構成され、その磁力線と電気力線31の
分布は、第3図に示すようになる。内部磁界形電極推進
装置は、船底附近に設けたダクト4内にくら形超電辱磁
石22及び電極23により構成されている。磁力線21
、及び、電気力線31は、第5図に示すような分布にな
る。ダクトは、船体前部底面に吸入口を船体後部に吐出
口をもつ構造となっている。
An embodiment of the present invention will be described below with reference to FIG. 1st
The figure shows a cross section near the center of the hybrid electromagnetic propulsion vessel in the longitudinal direction. The external magnetic field type electromagnetic propulsion device is composed of a racetrack type superconducting magnet 12 and an electrode 13 having a straight section in the longitudinal direction of the ship, and the distribution of magnetic lines of force and electric lines of force 31 is as shown in FIG. The internal magnetic field type electrode propulsion device is comprised of a saddle-shaped super-electromagnet 22 and an electrode 23 in a duct 4 provided near the bottom of the ship. magnetic field lines 21
, and the electric lines of force 31 have a distribution as shown in FIG. The duct has an inlet at the bottom of the front of the hull and an outlet at the rear of the hull.

本実施例によれば、外洋航行中は、超電導マグネット1
2を励磁しく永久電流モード)電極13により海水電流
を流すことにより、外部磁界形電磁推進船として効率の
良い運転が可能で、他の船舶や磁性体に影響を及ぼす心
配のある区域を航行する時は、超電導マグネット12は
消磁し、超電導くら形マグネット22を励磁し、電極2
3に通電することにより、内部磁界形電磁推進船として
運転すれば周囲に磁場を漏洩することが無い。特に、本
実施例の場合、磁界発生用電導磁石に超電導マグネット
を使用したので、一度マグネットを励磁してしまえば後
はマグネット励磁用電源は不要となり、磁界を発生させ
るために必要なエネルギは、不要であるというメリット
がある。
According to this embodiment, during ocean navigation, the superconducting magnet 1
2 (in persistent current mode)) By applying a seawater current through the electrode 13, it is possible to operate efficiently as an external magnetic field type electromagnetic propulsion vessel, and it is possible to navigate in areas where there is a risk of affecting other vessels or magnetic materials. At this time, the superconducting magnet 12 is demagnetized, the superconducting spiral magnet 22 is energized, and the electrode 2
By energizing 3, the magnetic field will not leak to the surroundings if it is operated as an internal magnetic field type electromagnetic propulsion ship. In particular, in the case of this example, since a superconducting magnet was used as the conductive magnet for generating the magnetic field, once the magnet is excited, a power source for magnet excitation is no longer required, and the energy required to generate the magnetic field is It has the advantage of not being necessary.

図中4はダクト、5は海面、6は断熱真空槽、7は液体
ヘリウム、8は輻射シールドである。
In the figure, 4 is a duct, 5 is a sea surface, 6 is an insulating vacuum tank, 7 is liquid helium, and 8 is a radiation shield.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、外洋は外部磁界形電磁推進船として効
率よく航行でき、港湾内等は、内部磁界形電磁推進船と
して外部に磁界を漏洩すること無く航行することができ
る。
According to the present invention, the open ocean can be navigated efficiently as an external magnetic field type electromagnetic propulsion vessel, and the internal magnetic field type electromagnetic propulsion vessel can navigate inside a harbor without leaking the magnetic field to the outside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の船体前後方向中心附近の
断面図、第2回は電磁推進船の原理を説明する斜視図、
第3図は、外部磁界形電磁推進船の断面図、第4図は内
部磁界形電磁推進船の概要を示す断面図、第5図は、第
4図のダクト部の詳細を示す断面図である。
Fig. 1 is a sectional view of an embodiment of the present invention near the center of the hull in the longitudinal direction; Fig. 2 is a perspective view illustrating the principle of an electromagnetic propulsion vessel;
Figure 3 is a sectional view of an external magnetic field type electromagnetic propulsion vessel, Figure 4 is a sectional view showing an outline of an internal magnetic field type electromagnetic propulsion vessel, and Figure 5 is a sectional view showing details of the duct part in Figure 4. be.

Claims (1)

【特許請求の範囲】 1、船体内部に設置した磁界発生用電磁石が作る海水内
磁場と船体表面に設けた電極から流した海水電流の相互
作用により推進力を得る電磁推進船において、 船底部附近の広範囲の海水に磁界を印加し、海水電流を
通電して推進力を得る外部磁界形電磁推進装置と、前記
船底部附近に設けたダクト内部にのみ磁界を印加し、前
記ダクト内部に海水電流を通電して、ダクト内の海水の
噴射により推進力を得る内部磁界形電磁推進装置とを兼
ねそなえたことを特徴とするハイブリツド形電磁推進船
。 2、特許請求の範囲第1項において、 前記外部磁界形電磁推進装置及び前記内部磁界形電磁推
進装置の磁界発生用電磁石が超電導電磁石であることを
特徴とするハイブリツド形電磁推進船。
[Scope of Claims] 1. In an electromagnetic propulsion ship that obtains propulsion through the interaction between a magnetic field in seawater created by a magnetic field generating electromagnet installed inside the ship and a seawater current flowing from an electrode provided on the surface of the ship, near the bottom of the ship. An external magnetic field type electromagnetic propulsion device that applies a magnetic field to a wide range of seawater and generates propulsive force by applying a seawater current, and a magnetic field is applied only to the inside of a duct installed near the bottom of the ship, and a seawater current is applied inside the duct. A hybrid electromagnetic propulsion vessel characterized by being equipped with an internal magnetic field type electromagnetic propulsion device that generates propulsion by energizing and injecting seawater in a duct. 2. A hybrid electromagnetic propulsion ship according to claim 1, wherein the magnetic field generating electromagnets of the external magnetic field type electromagnetic propulsion device and the internal magnetic field type electromagnetic propulsion device are superconducting electromagnets.
JP8094587A 1987-04-03 1987-04-03 Hybrid type magnetically propelled ship Pending JPS63247196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094587A JPS63247196A (en) 1987-04-03 1987-04-03 Hybrid type magnetically propelled ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094587A JPS63247196A (en) 1987-04-03 1987-04-03 Hybrid type magnetically propelled ship

Publications (1)

Publication Number Publication Date
JPS63247196A true JPS63247196A (en) 1988-10-13

Family

ID=13732631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094587A Pending JPS63247196A (en) 1987-04-03 1987-04-03 Hybrid type magnetically propelled ship

Country Status (1)

Country Link
JP (1) JPS63247196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087215A (en) * 1990-03-08 1992-02-11 Leonid Simuni Ocean-going vessel and method for increasing the speed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087215A (en) * 1990-03-08 1992-02-11 Leonid Simuni Ocean-going vessel and method for increasing the speed

Similar Documents

Publication Publication Date Title
US2997013A (en) Propulsion system
Way Electromagnetic propulsion for cargo submarines
US5333444A (en) Superconducting electromagnetic thruster
US6220549B1 (en) Method and apparatus for fabricating panels used for the active control of surface drag
JPH02201905A (en) Power-saving strong ac magnetic field generating device of multilayer eddy current type
JPS63247196A (en) Hybrid type magnetically propelled ship
Takezawa et al. Operation of the thruster for superconducting electromagnetohydrodynamic propu1sion ship “YAMATO 1”
EP0453567A1 (en) Thrust generator
JPS6137158B2 (en)
GB2217117A (en) Magnetohydrodynamic propulsion arrangements for marine vessels
JPS62160991A (en) Ship's propulsion device by electromagnetic pump
KR101534164B1 (en) Panel-type magnetohydrodynamic propulsion apparatus and the ship comprising the apparatus
JPH02237892A (en) Electromagnetic propulsion vessel
JP2520105Y2 (en) Superconducting cruise system
Meng Superconducting electromagnetic thruster
GB2255947A (en) Method and arrangement for steering a body
RU2094306C1 (en) Propulsor for sea-going ships
RU2057681C1 (en) Magnetodynamic conduction propeller
RU2800467C2 (en) Steering gear of shallow-draught container ship and container transport ship for inland waterways
JP2001080576A (en) Magnetic mine sweeping device
Meng SUPERCONDUCTING ELECTROMAGNETIC THRUSTER; PATENT
JPH03261362A (en) Magnetic flux convergence type electromagnetic pump
Mitchell et al. Induction-drive magnetohydrodynamic propulsion
KR970005063B1 (en) Rudder for a ship
Tada et al. Fundamental design of a superconducting EMT icebreaker