JP2001080576A - Magnetic mine sweeping device - Google Patents

Magnetic mine sweeping device

Info

Publication number
JP2001080576A
JP2001080576A JP26233299A JP26233299A JP2001080576A JP 2001080576 A JP2001080576 A JP 2001080576A JP 26233299 A JP26233299 A JP 26233299A JP 26233299 A JP26233299 A JP 26233299A JP 2001080576 A JP2001080576 A JP 2001080576A
Authority
JP
Japan
Prior art keywords
magnetic
heat
refrigerator
cooling
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP26233299A
Other languages
Japanese (ja)
Inventor
Tetsuo Sado
哲夫 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26233299A priority Critical patent/JP2001080576A/en
Publication of JP2001080576A publication Critical patent/JP2001080576A/en
Abandoned legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a compact and lightweight magnetic mine sweeping device easy to handle, capable of securing a simulated magnetic flux range as wide as possible and of reducing electric power provided from outside. SOLUTION: This device consists of a refrigerating machine direct cooling style superconductive coil part 11 in which a cooling part of a gas circulation type heat accumulator style refrigerating machine 14 is mechanically contacted on a coil main body 15 made from a superconductive material wound up in a coil like shape through a heat conduction plate, a cooling part 12 radiating heat by taking heat generated from the refrigerating machine 14 in a heat radiator 17 through cooling water as the medium, and an electric power source control part 13 supplying electric power to the superconductive coil part 11 and the electric power source control part 13. Those components are loaded on a towed body and are towed by a ship or a helicopter. Magnetic mines are sympathetically detonated by magnetic flux generated from the superconductive coil part 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海中や海底に敷設
された磁気機雷を誘爆して取り除く磁気機雷掃海具に係
り、特に超電導コイルを用いて磁気機雷を誘爆する磁気
機雷掃海具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic mine sweeping device for inducing and removing magnetic mine laid underwater or on the sea floor, and more particularly to a magnetic mine sweeping device for inducing magnetic mine using a superconducting coil.

【0002】[0002]

【従来の技術】艦船等の残留磁気を探知して起爆する磁
気検知型の機雷(以下、磁気機雷と称する)がある。こ
のような磁気機雷を掃海するための磁気機雷掃海具とし
て、従来、図12や図13に示すような方式が知られて
いる。
2. Description of the Related Art There is a magnetic detection type mine (hereinafter referred to as a magnetic mine) that detects a residual magnetism of a ship or the like and initiates an explosion. As a magnetic mine sweeping tool for sweeping such a magnetic mine, conventionally, a system as shown in FIGS. 12 and 13 has been known.

【0003】すなわち、図12(a)に示すように、2
00〜300mの長い電線(銅線)を海面上に延ばし、
掃海艇にて曳航する。この電線に数千アンペア程度の電
流を流し、海水を帰路とすることで模擬磁界を作り、そ
の模擬磁界によって海中や海底に敷設された磁気機雷を
誘爆するものである。また、図12(b)や図12
(c)に示すように、例えば200m先で半径50mぐ
らいのループを作り、これに同様な電流を電線に流しな
がら掃海艇にて曳航することで、磁気機雷を誘爆する方
式もある。一般に、図12(a)に示す磁気機雷掃海具
をI型、同図(b)に示す磁気機雷掃海具をJ型、同図
(c)に示す磁気機雷掃海具をCL型と呼ばれている。
That is, as shown in FIG.
A long wire (copper wire) with a length of 100 to 300 m is stretched over the sea surface,
Towed by minesweeper. A simulated magnetic field is created by passing a current of about several thousand amps through the electric wire and returning the seawater to the seawater, and the simulated magnetic field induces a magnetic mine laid in the sea or on the sea floor. 12 (b) and FIG.
As shown in (c), for example, there is a method in which a magnetic mine is detonated by creating a loop having a radius of about 50 m at a distance of 200 m and towing a minesweeper while applying a similar current to the electric wire. Generally, the magnetic mine sweeper shown in FIG. 12A is called an I type, the magnetic mine sweeper shown in FIG. 12B is called a J type, and the magnetic mine sweeper shown in FIG. 12C is called a CL type. I have.

【0004】このような方式では、掃海艇にDC電源を
搭載し、海面に延ばした電線に数千アンペアの電流を流
すことになるが、そのためには500kW〜800kW
の大型のDC電源が必要となる。
In such a system, a DC power source is mounted on the minesweeper, and a current of several thousand amps flows through an electric wire extending to the sea surface.
Large DC power supply is required.

【0005】また、図13に示すように、掃海ヘリコプ
タにてボートを曳航する場合もある。この方式では、ボ
ートに発電機を搭載してDC電源を作り、その先に電線
(銅線)を結び付け、ボートごと掃海ヘリコプタにて曳
航することになる。
Further, as shown in FIG. 13, a boat may be towed by a minesweeping helicopter. In this system, a generator is mounted on a boat to create a DC power supply, an electric wire (copper wire) is connected to the end, and the whole boat is towed by a minesweeping helicopter.

【0006】なお、磁気機雷掃海具に関する参考文献を
以下に列挙しておく。
References relating to the magnetic mine sweeper are listed below.

【0007】・「世界の艦船」H9.11.21,新型
掃海母艦「うらが」の明細 ・「世界の艦船」1990,10月号,P92「掃海
具」,P106「はつしま」型掃海艇 ・「防衛技術ジャーナル」1997年6月,P4「掃海
の新機材」 ・「世界の艦船」1993,2月号,P94「対機雷戦
システム」
[Specifications of "ships of the world" H9.11.21, new type minesweeper "Uraga" ・ "Ships of the world" 1990, October, P92 "sweeping tool", P106 "Hatsushima" type sweeping Boats ・ Journal of Defense Technology June 1997, P4 “New equipment for minesweeping” ・ “Ships in the World”, February 1993, P94 “Anti-Mine Action System”

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
方式では、海面上に延ばした電線に電流を流すことで、
磁気機雷に模擬的な磁束を与えて誘爆していた。しかし
ながら、数千アンペアの電流を流すためには、電線の直
径を5cm、比重約9とすれば、約18kg/m(実際
には細線撚線を使用していると思われる)の太い電線が
必要となり、しかも、電線の周囲に被覆ビニールを施
し、要所要所にフロート(電線を浮かばせるための部
材)を付加することを考慮すると、約20kg/m相当
になる。これを300m延ばすとすれば、6トンもの重
量となる。さらに、電線に数千アンペアの電流を流すた
めには、400〜900kW程度の大型のDC電源が必
要であり、この電源設備は10トン近くにもなる。
As described above, in the conventional method, a current is caused to flow through an electric wire extending over the sea surface,
He gave a simulated magnetic flux to a magnetic mine and induced the explosion. However, in order to pass a current of several thousand amps, if the diameter of the electric wire is 5 cm and the specific gravity is about 9, a thick electric wire of about 18 kg / m (actually, it is thought that a fine wire strand is used) is used. It becomes necessary, and in consideration of applying a covering vinyl around the electric wire and adding a float (a member for floating the electric wire) at a necessary point, the weight becomes about 20 kg / m. If this is extended by 300 m, the weight will be as much as 6 tons. In addition, a large DC power supply of about 400 to 900 kW is required to pass a current of several thousand amps through the electric wire, and this power supply equipment is close to 10 tons.

【0009】一方、近年、艦船の磁束分布を模擬するた
めに、永久磁石による模擬分布、ソレノイドコイルによ
る模擬分布等が研究されている。これは、図14に示す
ように、ソレノイドコイル磁石(VMM:バリアブルモ
ーメントマグネット)を1ボートに何段も積み上げ、こ
のボートを縦方向(曳航方向)に5〜6台継ぎにして掃
海艇にて曳航することで、あたかも艦船が存在するよう
な磁束分布を作り出すものであり、ソレノイド方式と呼
ばる。なお、図14(a)はソレノイドコイルを磁石と
して用いられるVMMの構造を示す図、同図(b)は複
数個のVMMを配列して掃海艇にて曳航した状態を示す
図、同図(c)は複数個のVMMによって作り出される
模擬艦船の磁束分布を示す図である。このソレノイド方
式の場合でも、艇からの電源供給は図12や図13のよ
うな電線に送る方式と同じ量を必要とする。
On the other hand, in order to simulate the magnetic flux distribution of a ship, simulated distribution using permanent magnets, simulated distribution using solenoid coils, and the like have been studied in recent years. This means that as shown in FIG. 14, many stages of solenoid coil magnets (VMMs: variable moment magnets) are stacked on one boat, and five or six of these boats are spliced in the vertical direction (towing direction), and the minesweeper uses them. Towing creates a magnetic flux distribution as if a ship were present, and is called a solenoid system. FIG. 14A is a diagram showing a structure of a VMM using a solenoid coil as a magnet, and FIG. 14B is a diagram showing a state in which a plurality of VMMs are arranged and towed by a minesweeper. FIG. 3C is a diagram illustrating a magnetic flux distribution of a simulated ship created by a plurality of VMMs. Even in the case of this solenoid type, the power supply from the boat requires the same amount as the method of sending power to electric wires as shown in FIGS.

【0010】また、電線方式とソレノイド方式のいずれ
の場合も縦方向(曳航方向)は何台でも継いで模擬する
ことが可能であり、縦方向の磁束分布は確保できるもの
の、横方向の磁束の分布が広くとれない欠点がある。さ
らに、1台当りの重量が1トン近くにもなり、それに見
合う動力が必要である。
[0010] In both the electric wire system and the solenoid system, it is possible to simulate by connecting any number of machines in the vertical direction (towing direction). There is a disadvantage that the distribution cannot be widened. In addition, the weight per vehicle is close to one ton, and power corresponding to that is required.

【0011】本発明は上記のような点に鑑みなされたも
ので、模擬磁束をなるべく幅広く取ることができ、さら
に、外部から供給する電力を減らし、小型軽量で扱いや
すい磁気機雷掃海具を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and provides a magnetic mine sweeping tool which can take as large a simulated magnetic flux as possible, further reduce external power supply, and is small and lightweight and easy to handle. The purpose is to:

【0012】[0012]

【課題を解決するための手段】本発明の磁気機雷掃海具
は、超電導材料をコイル状に巻き、そのコイル本体に熱
伝導板を介してガス循環型蓄熱器式冷凍機の冷却部位を
機械的に接触させ、上記コイル本体の熱を上記ガス循環
型蓄熱器式冷凍機の放熱部位から外部に放熱する構造を
有する冷凍機直冷式超電導コイル部と、この冷凍機直冷
式超電導コイル部の上記ガス循環型蓄熱器式冷凍機から
発せられる熱を冷却水を媒体として放熱器に取り込んで
放熱する冷却部と、上記冷凍機直冷式超電導コイル部お
よび上記冷却部に駆動電源を供給する電源制御部とで構
成される。
According to the magnetic mine sweeper of the present invention, a superconducting material is wound in a coil shape, and the cooling portion of the gas circulating regenerator refrigerator is mechanically wound around the coil body via a heat conducting plate. And a refrigerator directly cooled superconducting coil portion having a structure for radiating heat of the coil body from the heat radiating portion of the gas circulation type regenerative refrigerator to the outside, and a refrigerator directly cooled superconducting coil portion. A cooling unit that takes in heat generated from the gas circulation type regenerator refrigerator into a radiator by using cooling water as a medium and dissipates heat, and a power supply that supplies drive power to the refrigerator direct cooling superconducting coil unit and the cooling unit And a control unit.

【0013】このような構成の磁気機雷掃海具によれ
ば、冷凍機直冷式超電導コイル部から発生する磁束を利
用して磁気機雷を誘爆することができる。この場合、リ
ニヤモータ等で一般的に用いられている超電導コイルで
は、高価な液体ヘリウムが必要であり、しかも、常にそ
の液体ヘリウムを補充する必要があるが、本発明に適用
される冷凍機直冷式超電導コイルでは、液体ヘリウムを
必要としないため、非常に安価で扱い易い磁気機雷掃海
具を実現できる。さらに、超電導現象を利用したコイル
により外部からの磁化電流は非常に容量の小さなもので
済み、一度超電導状態となれば、外部電流の供給を断っ
ても必要な磁束を発生させ続けることが可能である。
[0013] According to the magnetic mine sweeper of the above configuration, a magnetic mine can be induced by utilizing the magnetic flux generated from the directly cooled superconducting coil of the refrigerator. In this case, a superconducting coil generally used in a linear motor or the like requires expensive liquid helium, and it is necessary to always replenish the liquid helium. Since the liquid superconducting coil does not require liquid helium, a very inexpensive and easy-to-handle magnetic mine sweeper can be realized. Furthermore, the coil utilizing the superconducting phenomenon allows the magnetizing current from the outside to have a very small capacity, and once in the superconducting state, it can continue to generate the necessary magnetic flux even if the supply of the external current is cut off. is there.

【0014】また、上記電源制御部として、外部から供
給されるAC電源を入力として、そのAC電源をDC電
源に変換して上記冷凍機直冷式超電導コイル部および上
記冷却部に供給する構成とすれば、電源設備を搭載した
としても、その重量は軽くて済む。
Further, the power supply control unit may be configured to receive an externally supplied AC power supply, convert the AC power supply into a DC power supply, and supply the DC power supply to the refrigerator direct cooling type superconducting coil unit and the cooling unit. Then, even if the power supply equipment is mounted, the weight can be reduced.

【0015】また、上記冷凍機直冷式超電導コイル部、
上記冷却部、上記電源制御部は、海面または海中を移動
可能な曳航体に収納される。この曳航体を直列または並
列に複数繋げて船艦やヘリコプタ等で曳航すれば、磁束
密度の分布を広げて、海底および海中に敷設された磁気
機雷を効果的に取り除くことができる。
[0015] Further, the refrigerator direct cooling type superconducting coil portion,
The cooling unit and the power control unit are housed in a towed body movable on the sea surface or under the sea. If a plurality of such towed bodies are connected in series or in parallel and towed by a ship or a helicopter, the distribution of magnetic flux density can be widened, and magnetic mines laid on the sea floor and under the sea can be effectively removed.

【0016】また、上記曳航体の底部に熱伝導率の高い
金属からなるヒートシンク板を配することで、上記冷却
部および上記電源制御部から発せられる余分な熱を海水
中に放熱することができる。
Further, by disposing a heat sink plate made of a metal having a high thermal conductivity at the bottom of the towed body, excess heat generated from the cooling unit and the power supply control unit can be radiated into seawater. .

【0017】[0017]

【発明の実施の形態】まず、本発明の実施形態を説明す
る前に、超電導コイルを利用した磁気機雷掃海具につい
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing an embodiment of the present invention, a magnetic mine sweeper using a superconducting coil will be described.

【0018】超電導コイルを利用した磁気機雷掃海具に
おいても、コイル径やコイル冷却装置、流入させる電流
作成のための電源設備、これらを収納する容器等の外形
寸法、容量について軽量化が要求される。
Magnetic minesweeping tools using superconducting coils are also required to be lighter in terms of coil diameter, coil cooling device, power supply equipment for generating an electric current to be supplied, and external dimensions and capacity of a container for accommodating them. .

【0019】ここで、例えばリニヤモータなどに用いら
れる一般的な超電導コイルは、コイル全体を液体ヘリウ
ムに付けている。つまり、コイルを約4K(ケルビン)
程度の臨界温度以下に冷却するために液体ヘリウムの蒸
発熱を利用している。したがって、高価な液体ヘリウム
の補充が常に必要である。
Here, for example, a general superconducting coil used for a linear motor or the like has the entire coil attached to liquid helium. That is, the coil is about 4K (Kelvin)
The heat of vaporization of liquid helium is used to cool below a critical temperature. Therefore, replenishment of expensive liquid helium is always necessary.

【0020】そこで、本発明では、コイルの熱を伝導に
より導き、これを蓄熱器式冷凍機により外部に放熱する
といった冷凍機直冷式超電導コイルを利用することで、
液体ヘリウムを不要とする。
Therefore, in the present invention, a refrigerator direct cooling type superconducting coil is used in which the heat of the coil is conducted by conduction and the heat is radiated to the outside by a regenerator.
No liquid helium is required.

【0021】さらに取扱いを容易とするため、全体の収
納容器を3m×1m×1m以下として、全重量を500
kg以下とする。この程度の寸法、重量であれば、例え
ばヘリコプタで曳航する場合であっても、掃海域に自機
搭載した掃海具をホバリングしながら、海上へ降ろした
り、海上から機内に吊り上げたりすることは可能であ
る。当然、掃海艇による曳航時は海面への昇降は十分可
能である。
In order to further facilitate handling, the total storage container is set to 3 m × 1 m × 1 m or less, and the total weight is 500
kg or less. With such dimensions and weight, for example, even when towing with a helicopter, it is possible to hover the minesweeper mounted on the minesweeping area while hovering, or to lift it into the aircraft from the sea. It is. Of course, when the minesweeper is towing, it is possible to move up and down to the surface.

【0022】一方、3m×1m×1mの収納寸法でコイ
ルの径が決定される。1mの径のコイルでは、所要磁束
密度を満す分布の幅が小さくなる。これは掃海幅に関係
し、一定領域を掃海するために必要な時間に関係する。
On the other hand, the diameter of the coil is determined by the storage dimensions of 3 m × 1 m × 1 m. With a coil having a diameter of 1 m, the width of the distribution satisfying the required magnetic flux density is small. It is related to the sweep width and the time required to sweep a certain area.

【0023】すなわち、排水量5000トンクラスの艦
船の寸法は長さ約150m、幅15〜20mで、深さ約
10mで喫水が5m程度である。このような艦船の船体
に地球の表面磁束(200〜450mG程度)が着磁
し、船体全体が磁化される。航海中にも、地球の磁場で
着磁される。その他に、艦船内に搭載されている電子機
器からの漏洩磁界によっても着磁される。そのため、船
体全体にコイルを巻き、着磁方向と逆の磁界が発生する
ように、電流を流して消磁するのが一般的である。
That is, a ship with a displacement of 5,000 tons has dimensions of about 150 m in length, 15 to 20 m in width, about 10 m in depth and about 5 m in draft. The surface magnetic flux of the earth (about 200 to 450 mG) is magnetized on the hull of such a ship, and the entire hull is magnetized. During the voyage, it is magnetized by the earth's magnetic field. In addition, it is magnetized by the leakage magnetic field from the electronic equipment mounted in the ship. Therefore, a coil is generally wound around the entire hull, and a current is applied to demagnetize the magnetic field so that a magnetic field opposite to the magnetization direction is generated.

【0024】しかし、消磁コイルで着磁磁界を消去して
も1/10程度しか消磁されず、残留磁気は存在する。
この残留磁気を磁気機雷が検知して、機雷上方を航行す
る艦船を撃破することになる。したがって、艦船の発生
する残留磁気を磁気機雷の検知レベルに対して艦船の周
りの磁束密度にいかに整合させるかが問題点となる。小
型艦は磁束密度も小さいため、検知レベルを小さくし、
大型艦をこの検知レベルに設定すると、艦船から離れた
点で起爆でき、艦船への影響力がなくなるため、検知レ
ベルを大きくして艦船の近くで起爆させている。
However, even if the magnetizing magnetic field is erased by the demagnetizing coil, only about 1/10 is demagnetized, and there is residual magnetism.
This remnant magnetism is detected by a magnetic mine and destroys a ship sailing above the mine. Therefore, the problem is how to match the remanence generated by the ship with the magnetic flux density around the ship with respect to the detection level of the magnetic mine. Smaller ships have lower magnetic flux density, so the detection level is lower,
If a large ship is set to this detection level, it can be detonated at a point far away from the ship and has no influence on the ship. Therefore, the detection level is increased and the detonation is performed near the ship.

【0025】ここで、艦船の残留磁気は150m×20
m×10mの大きな磁石から発生している磁気と考えれ
ば、幅は20mの数倍で、長さも150mの数倍に相当
した点で磁気機雷の検出レベルに相当した磁束分布が要
求される。これに対し、直径1m程度の超電導コイルの
中心磁束は大きいが、周囲への流れ磁場は小さく、おの
ずと限界を生じる。
Here, the residual magnetism of the ship is 150 m × 20
Considering the magnetism generated from a large magnet of m × 10 m, a magnetic flux distribution corresponding to the detection level of a magnetic mine is required in that the width is several times as large as 20 m and the length is several times as large as 150 m. On the other hand, the center magnetic flux of the superconducting coil having a diameter of about 1 m is large, but the magnetic field flowing to the surroundings is small, which naturally causes a limit.

【0026】そこで、3m×1m×1m程度の本発明の
磁気機雷掃海具を一定の間隔で横方向または縦方向に継
ぎ曳航することで、広い領域へ磁場分布を得ることがで
きる。さらに、深さ方向で分布が不足すれば、これらの
曳航体を沈航曳航することで必要な深さで必要な掃海磁
場分布が得られる。
Therefore, the magnetic mine minesweeper of the present invention of about 3 m × 1 m × 1 m is towed in a horizontal or vertical direction at a constant interval, so that a magnetic field distribution can be obtained in a wide area. Further, if the distribution is insufficient in the depth direction, the required sweeping magnetic field distribution at the required depth can be obtained by sinking and towing these towed bodies.

【0027】次に、電源であるが、本発明程度のコイル
寸法に対しては200A程度の電流(1kVA程度)で
飽和磁界に達成する。しかも、一度超電導状態に達すれ
ば、外部からの電流補充は不要(コイル永久電流が流れ
るため)で、非常に小型の電源で済む。
Next, as for the power supply, a saturation magnetic field is achieved with a current of about 200 A (about 1 kVA) for the coil dimensions of the present invention. Moreover, once the superconducting state is reached, no external current replenishment is required (since a permanent coil current flows), and a very small power supply is required.

【0028】以上のように、冷凍機直冷式超電導コイル
を用いることで、液体ヘリウムから解放された、非常に
安価で扱い易い磁気機雷掃海具を実現でき、さらに超電
導現象を利用したコイルにより外部からの磁化電流は非
常に容量の小さなもので済み、一度超電導状態となれ
ば、外部電流の供給を断っても必要な磁束を発生させ続
けることが可能である。
As described above, by using a refrigerator direct cooling type superconducting coil, a very inexpensive and easy-to-handle magnetic mine sweeper free from liquid helium can be realized. Since the magnetizing current from the substrate needs only a very small capacity, once it is in a superconducting state, it is possible to continue to generate a necessary magnetic flux even when the supply of the external current is cut off.

【0029】小型軽量化された本発明の磁気機雷掃海具
は、必要な掃海幅と、ペイロードに従って2〜3個を横
方向または縦方向に一定の間隔を保ち曳航することで、
掃海の幅を自由に設定可能であるし、個々の磁気機雷掃
海具のコイルに別々の大きさの電流を流すことで、複雑
な磁束分布を得ることができる。さらに、深度方向での
分布を必要とする場合は本発明の磁気機雷掃海具を沈航
曳航することで対応可能である。
The magnetic mine minesweeper of the present invention, which has been reduced in size and weight, can be obtained by towing two or three pieces at a constant horizontal or vertical interval according to the required sweeping width and payload.
The width of the minesweeping can be freely set, and a complicated magnetic flux distribution can be obtained by supplying currents of different magnitudes to the coils of the individual mining minesweeper. Further, when a distribution in the depth direction is required, it can be dealt with by sinking and towing the magnetic mine sweeper of the present invention.

【0030】以下、図面を参照して本発明の一実施形態
を説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0031】図1は本発明の一実施形態に係る磁気機雷
掃海具の構成を示すブロック図である。また、図2はこ
の磁気機雷掃海具を搭載した曳航体の構成を示す図であ
り、図2(a)はその曳航体を正面から見た図、同図
(b)はその曳航体の側面から見た図、同図(c)はそ
の曳航体の後面から見た図、同図(d)はその曳航体の
上面から見た図である。
FIG. 1 is a block diagram showing the configuration of a magnetic mine sweeper according to an embodiment of the present invention. FIG. 2 is a diagram showing the configuration of a towed body equipped with the magnetic mine sweeper, FIG. 2 (a) is a view of the towed body viewed from the front, and FIG. 2 (b) is a side view of the towed body. (C) is a view from the back of the tow body, and (d) is a view from the top of the tow body.

【0032】本発明の磁気機雷掃海具は、海中や海底に
敷設された磁気検知型の機雷(磁気機雷)を除去するた
めのもので、超電導コイル部11、冷却部12、電源制
御部13から構成され、これらの構成部品は図2に示す
ような配置で曳航体21に搭載される。
The magnetic mine sweeping tool of the present invention is for removing a magnetic detection type mine (magnetic mine) laid in the sea or on the sea floor, and includes a superconducting coil unit 11, a cooling unit 12, and a power supply control unit 13. These components are mounted on the towing body 21 in an arrangement as shown in FIG.

【0033】超電導コイル部11は、後述する冷凍機直
冷式超電導コイルからなり、冷凍機14を介してコイル
本体15を超電導現象温度まで冷却することで磁場を発
生させる部分である。冷却部12は、冷凍機14から発
せられる熱を冷却水を媒体として放熱器16に取り込み
放熱する部分である。冷却水はポンプ16の駆動によっ
て循環される。電源制御部13は、外部(掃海艇)から
供給されるAC電源をDC電源に変換して超電導コイル
部11に供給する部分であり、電源の開閉制御、コイル
本体15に流す電流の制御、その電流の極性を変更する
ためのリレー回路が含まれている。
The superconducting coil section 11 is composed of a refrigerator directly cooled type superconducting coil, which will be described later, and is a section for generating a magnetic field by cooling the coil body 15 to a superconducting phenomenon temperature via the refrigerator 14. The cooling unit 12 is a part that takes in heat generated from the refrigerator 14 into the radiator 16 using cooling water as a medium and radiates heat. The cooling water is circulated by driving the pump 16. The power supply control unit 13 is a unit that converts AC power supplied from the outside (minesweeper) into DC power and supplies the DC power to the superconducting coil unit 11, and controls the opening and closing of the power supply, the control of the current flowing through the coil body 15, and the like. A relay circuit for changing the polarity of the current is included.

【0034】一方、曳航体21は、F.R.P(Fiber
Reinforced Plastic:繊維強化プラスティック)等の強
固な材料で作られたボートからなり、そのボートの底部
にアルミ合金等の熱伝導率の高い金属からなるヒートシ
ンク板22を配して、超電導コイル部11の冷凍機14
から発生する熱や電源制御部13から発生する熱を海水
中に放熱する構造を有する。
On the other hand, the towing body 21 is R. P (Fiber
A boat made of a strong material such as Reinforced Plastic (fiber reinforced plastic) is provided, and a heat sink plate 22 made of a metal having high thermal conductivity such as an aluminum alloy is arranged at the bottom of the boat. Refrigerator 14
It has a structure to radiate the heat generated from the water and the heat generated from the power supply control unit 13 into the seawater.

【0035】また、この曳航体21は、防水、防圧構造
をなし、後方に安定翼23a〜23cが設けられ、先端
部に牽引用のフック24と外部からのAC電源、制御信
号等を送受する防水コネクタ25が設けられている。
The towing body 21 has a waterproof and pressure-resistant structure, is provided with stabilizing wings 23a to 23c at the rear, and sends and receives a towing hook 24 and an external AC power supply and control signals at its tip. A waterproof connector 25 is provided.

【0036】次に、図3および図4を参照して、超電導
コイル部11について説明する。図3は超電導コイル部
11の構成を示す図、図4はこの超電導コイル部11に
用いられる冷凍機14の構成を示す図である。
Next, the superconducting coil 11 will be described with reference to FIGS. FIG. 3 is a diagram illustrating a configuration of the superconducting coil unit 11, and FIG. 4 is a diagram illustrating a configuration of a refrigerator 14 used for the superconducting coil unit 11.

【0037】超電導コイル部11は、冷凍機直冷式超電
導コイルからなる。図3に示すように、超電導コイルの
材料であるNbTi(ニオブチタン)をコイル状に巻
き、このコイル本体15をヒートシンク板(熱伝導板)
30を介して冷凍機14の冷却部位31に機械的に接触
させる。これにより、コイル本体15からの熱はヒート
シンク板30を介して冷凍機14の冷却部位31に伝導
され、冷凍機14の放熱部位32から外部に放熱され
る。コイル本体15と冷凍機14の冷却部位31は真空
容器33で密閉され、その内部は真空に保たれている。
以上のような構造により、コイル本体15を容易に超電
導現象温度である液体ヘリウム温度4Kに冷却すること
ができる。
The superconducting coil section 11 is composed of a refrigerator direct cooling type superconducting coil. As shown in FIG. 3, NbTi (niobium titanium), which is the material of the superconducting coil, is wound in a coil shape, and the coil body 15 is placed on a heat sink plate (heat conductive plate).
The cooling part 31 of the refrigerator 14 is brought into mechanical contact with the cooling part 31 through the part 30. Thereby, the heat from the coil body 15 is conducted to the cooling part 31 of the refrigerator 14 via the heat sink plate 30 and is radiated outside from the heat radiation part 32 of the refrigerator 14. The coil body 15 and the cooling part 31 of the refrigerator 14 are hermetically sealed by a vacuum vessel 33, and the inside thereof is kept at a vacuum.
With the above structure, the coil main body 15 can be easily cooled to the liquid helium temperature of 4 K, which is the superconducting phenomenon temperature.

【0038】一方、冷凍機14は、図4に示すような構
造を有する。すなわち、シリンダ41の中間部に蓄熱材
42を配し、シリンダ41内をHeガス(ヘリウムガ
ス)を冷媒として、ピストン43を上下させて圧縮、膨
張をくり返すことにより、冷却部位31の熱をピストン
43側に移動させ、この熱を放熱部位32から外部に放
熱する。
On the other hand, the refrigerator 14 has a structure as shown in FIG. That is, the heat storage material 42 is disposed in the middle of the cylinder 41, and the gas in the cylinder 41 is used as a refrigerant, and the piston 43 is moved up and down to repeatedly compress and expand, so that the heat of the cooling portion 31 is repeated. The heat is moved to the piston 43 side, and this heat is radiated to the outside from the heat radiation part 32.

【0039】この冷凍機14はHeガスを媒体としてい
る。この場合、冷却部位31を超電導現象温度4K近く
まで冷却するには、低温で大きな比熱を有するEr3
i等が使用される。一般に、この方式を用いた冷凍機1
4をガス循環型蓄熱器式冷凍機と称する。
The refrigerator 14 uses He gas as a medium. In this case, in order to cool the cooling portion 31 to a temperature close to the superconducting phenomenon temperature of 4 K, Er 3 N having a large specific heat at a low temperature is used.
i and the like are used. Generally, a refrigerator 1 using this method
4 is called a gas circulation type regenerator refrigerator.

【0040】このガス循環型蓄熱器式冷凍機14を用い
てコイル本体15の冷却を行う構成とすれば、液体ヘリ
ウムが不要となる。しかも、最初に冷凍機14にHeガ
スを封入した後はメンテナンスフリーとなり、安価で扱
い易い超電導コイルを実現することができる。
When the coil body 15 is cooled by using the gas circulation type regenerator refrigerator 14, liquid helium becomes unnecessary. Moreover, after the He gas is first sealed in the refrigerator 14, the superconducting coil becomes maintenance-free, and is inexpensive and easy to handle.

【0041】ここで、電線によって得られる磁束密度と
超電導コイルによって得られる磁束密度を比較してみ
る。
Here, the magnetic flux density obtained by the electric wire and the magnetic flux density obtained by the superconducting coil will be compared.

【0042】例えば図5に示すように、長い電線L
(m)に電流I(A)を流した場合に、電線に対して直
角な方向r(m)での点Pでの磁束密度B(G)は、以
下のような式で表される。
For example, as shown in FIG.
When the current I (A) flows through (m), the magnetic flux density B (G) at the point P in the direction r (m) perpendicular to the electric wire is expressed by the following equation.

【0043】B=1.257×10-2×I/4πr×
(sinβ1 +sinβ2 ) 電線L=100m、電流I=2000Aとすると、磁束
密度Bの分布は図6のようになる。実際には、電流の帰
路を海水としているので、多少の違いはあるが、曳航す
る方向に対して直角な方向の(掃海幅の)磁束分布の様
子は解る。
B = 1.257 × 10 -2 × I / 4πr ×
(Sin β1 + sin β2) Assuming that the electric wire L = 100 m and the current I = 2000 A, the distribution of the magnetic flux density B is as shown in FIG. Actually, since the return path of the current is seawater, there is a slight difference, but the state of the magnetic flux distribution (of the sweep width) perpendicular to the towing direction can be understood.

【0044】図6の例では、L軸を中心に回転、すなわ
ち、r=50m,r=70mの内筒上の磁束密度を示し
ている。一方、β1 ,β2 にほとんど影響を及ぼさない
領域、つまり、両端より20m内側において、r=90
mの時、磁束密度は約20mGとなる。図7に示すよう
に、深度50mの時に磁束密度20mGとなる幅は約1
50m(75m×2)程度である。
In the example shown in FIG. 6, the rotation about the L axis, that is, the magnetic flux density on the inner cylinder at r = 50 m and r = 70 m is shown. On the other hand, in a region that hardly affects β1 and β2, that is, in a region 20 m inside both ends, r = 90
When m, the magnetic flux density is about 20 mG. As shown in FIG. 7, the width at which the magnetic flux density becomes 20 mG at a depth of 50 m is about 1
It is about 50 m (75 m × 2).

【0045】これに対し、直径約1m(実際は0.8m
外径のコイル)の超電導コイルでは、コイル断面寸法
0.1m×0.1m、約8000回巻に130Aの電流
を流して得られる。水深10mと水深60mでの超電導
コイルの磁束密度分布は図8のようになる。例えばZ=
10m(水深10m)で、磁束密度20mGとなる幅は
約70mである。したがって、先に試算した電線による
水深50mで、磁束密度20mGとなる幅150mに対
応させるためには、図9に示すように、超電導コイルを
横方向に80mの間隔で2個並べる。これにより、約1
50mの幅で磁束密度20mGとなり、これを40m沈
降させて曳航することで同様の効果が得られる。
On the other hand, the diameter is about 1 m (actually 0.8 m
In the case of a superconducting coil having an outer diameter (coil of outer diameter), the coil is obtained by applying a current of 130 A to approximately 8000 turns of a coil having a cross section of 0.1 m × 0.1 m. FIG. 8 shows the magnetic flux density distribution of the superconducting coil at a water depth of 10 m and a water depth of 60 m. For example, Z =
The width at which the magnetic flux density becomes 20 mG at 10 m (water depth 10 m) is about 70 m. Therefore, in order to correspond to a width of 150 m at which the magnetic flux density becomes 20 mG at a water depth of 50 m by the previously calculated electric wire, as shown in FIG. 9, two superconducting coils are arranged side by side at an interval of 80 m. As a result, about 1
A magnetic flux density of 20 mG is obtained with a width of 50 m, and a similar effect can be obtained by sinking this to 40 m and towing.

【0046】本発明の磁気機雷掃海具では、このような
超電導コイルの特性を利用して、海底または海中に敷設
された磁気機雷に模擬磁束を与えて誘爆する。図1に示
すように、超電導コイル部11を構成するコイル本体1
5の熱は冷凍機14に電導されて外部に放熱される。こ
の熱は冷却水を冷媒として冷却部12の放熱器17に取
り込まれて海中へ放熱される。
In the magnetic mine sweeping tool of the present invention, a simulated magnetic flux is applied to a magnetic mine laid on the sea floor or in the sea to induce explosion by utilizing the characteristics of such a superconducting coil. As shown in FIG. 1, a coil main body 1 constituting a superconducting coil unit 11
The heat of No. 5 is conducted to the refrigerator 14 and radiated to the outside. This heat is taken into the radiator 17 of the cooling unit 12 using the cooling water as a coolant and is radiated to the sea.

【0047】外部入力電源としては、AC(例えばAC
100V,50/60Hz、ヘリコプタ曳航時はAC2
00V,3相,400Hz)電源で良く、冷凍機用のポ
ンプ、放熱器用のポンプ、超電導コイル用の電源とし
て、22kVAもあれば十分である。コイル本体15に
流す電流は、5V,200Aもあれば十分であり、これ
を図2に示すように曳航体21内に収納する。その際、
ポンプ16、放熱器17を備えた冷却部12と、DC電
源を供給する電源制御部13は曳航体21本体の底を金
属としたヒートシンク板22上に載置する。これによ
り、各部から発生した熱をヒートシンク板22を介して
海中へ放熱することができる。なお、図2に示す曳航体
21全体の重量は500kg以下で十分に達成される。
As an external input power supply, AC (for example, AC
100V, 50 / 60Hz, AC2 when helicopter towing
(00 V, three-phase, 400 Hz) power supply is sufficient, and 22 kVA is sufficient as a power supply for a pump for a refrigerator, a pump for a radiator, and a superconducting coil. The current flowing through the coil body 15 is sufficient if it is 5 V and 200 A, and this is stored in the towing body 21 as shown in FIG. that time,
The cooling unit 12 including the pump 16 and the radiator 17 and the power control unit 13 for supplying DC power are mounted on a heat sink plate 22 having a bottom of the towing body 21 as a metal. Thereby, the heat generated from each part can be radiated to the sea via the heat sink plate 22. It should be noted that the weight of the entire towing body 21 shown in FIG.

【0048】このような曳航体21に対し、曳航ワイヤ
に束ねて、AC電源、ポンプ等を制御するリレー制御用
信号線を含め10本程度のキャプタイヤケーブルを接続
し、ヘリコプタまたは掃海艇からAC電源を供給すると
共に制御信号を送る。
To such a tow body 21, bundled with a towing wire and connected with about 10 cabtire cables including a relay control signal line for controlling an AC power supply, a pump and the like, and an AC power supply from a helicopter or minesweeper. And sends a control signal.

【0049】本発明の磁気機雷掃海具の概略重量を見積
ると、超電導コイル部11(ケースをアルミ合金、真空
容器とした場合)が約300kg、冷却部12が40k
g、電源制御部13が40kg、曳航体21本体(F.
R.P等のプラスチックと、ヒートシンク板)が100
kgであり、合計で約480kg程度の軽量体で実現で
きる。
When the approximate weight of the magnetic mine sweeper of the present invention is estimated, the superconducting coil portion 11 (when the case is made of an aluminum alloy and a vacuum vessel) is approximately 300 kg, and the cooling portion 12 is 40 k.
g, the power control unit 13 is 40 kg, and the towing body 21 body (F.
R. Plastic such as P and heat sink plate) is 100
kg, and can be realized with a lightweight body of about 480 kg in total.

【0050】次に、本発明の磁気機雷掃海具の運用例に
ついて説明する。
Next, an operation example of the magnetic mine sweeper of the present invention will be described.

【0051】図10に本発明の磁気機雷掃海具を並列に
複数繋げて運用した場合の一例を示す。図10(a)は
海面を上から見た図、同図(b)は海面を横から見た図
である。
FIG. 10 shows an example in which a plurality of magnetic mine sweepers of the present invention are connected and operated in parallel. FIG. 10A is a diagram of the sea surface viewed from above, and FIG. 10B is a diagram of the sea surface viewed from the side.

【0052】本発明の磁気機雷掃海具を搭載した2台の
曳航体101a、101bを使用し、両者間の間隔Hを
例えば約80mに維持するために、ワイヤ102にそれ
ぞれ展開器103a、103bを設け、掃海艇またはヘ
リコプタにて曳航する。これにより、曳航方向に対して
直交する方向(横方向)に磁束の広がりを得ることがで
きる。
Using two towed bodies 101a and 101b equipped with the magnetic mine sweeper of the present invention, expanders 103a and 103b are respectively attached to the wire 102 in order to maintain a distance H between them at about 80 m, for example. And be towed by minesweeper or helicopter. Thereby, the spread of the magnetic flux can be obtained in a direction (lateral direction) orthogonal to the towing direction.

【0053】なお、2台の曳航体101a、101bを
縦方向に所定間隔で直列接続することで、これらを曳航
するような運用でも良く、このような場合には曳航方向
(縦方向)に磁束の広がりを得ることができる。
The two towing bodies 101a and 101b may be connected in series at a predetermined interval in the vertical direction, so that the towing operation may be performed. In such a case, the magnetic flux is generated in the towing direction (vertical direction). Can be obtained.

【0054】図11に本発明の磁気機雷掃海具を並列に
複数繋げ、さらに沈降させて運用した場合の一例を示
す。図11(a)は海面を上から見た図、同図(b)は
海面を横から見た図である。
FIG. 11 shows an example in which a plurality of magnetic mine minesweepers of the present invention are connected in parallel, and further operated by sinking. FIG. 11A is a diagram of the sea surface viewed from above, and FIG. 11B is a diagram of the sea surface viewed from the side.

【0055】上記同様に、本発明の磁気機雷掃海具を搭
載した2台の曳航体101a、101bを使用し、両者
間の間隔Hを例えば約80mに維持するために、ワイヤ
103にそれぞれ展開器102a、102bを設ける。
さらに、曳航体101a、101bの後にそれぞれ沈降
器104a、104bを設け、フロート105a、10
5bに繋ぐことにより、曳航体101a、101bを例
えばD=40(m)だけ沈降させて運用する。
In the same manner as described above, two towed bodies 101a and 101b each equipped with the magnetic mine sweeper of the present invention are used, and in order to maintain an interval H between them of, for example, about 80 m, expanders are respectively attached to the wires 103. 102a and 102b are provided.
Further, sedimentation devices 104a and 104b are provided after the towing bodies 101a and 101b, respectively, and the floats 105a and
5b, the towed bodies 101a and 101b are settled and operated by D = 40 (m), for example.

【0056】展開器102a、102bと沈降器104
a、104bについては、ラダーの角度を変化させて、
展開幅、沈降距離を設定する。D=40mだけ沈降運航
することで、水深50m点で掃海幅(磁束密度20mG
分布)150mを得ることができる。
The expanders 102a and 102b and the settler 104
For a and 104b, change the angle of the ladder,
Set the deployment width and settling distance. Destroyed by D = 40m, the sweeping width (magnetic flux density 20mG) at 50m depth
Distribution) of 150 m.

【0057】なお、2台の曳航体101a、101bを
縦方向に所定間隔で直列接続することで、これらを沈降
させて曳航するような運用でも良く、このような場合に
は曳航方向(縦方向)に磁束の広がりを得ることができ
る。
The two tow bodies 101a and 101b may be connected in series at a predetermined interval in the vertical direction so that they settle down and tow. In such a case, the towing direction (longitudinal direction) may be used. The spread of the magnetic flux can be obtained.

【0058】また、図10および図11において、例え
ば2台の曳航体101a、101b縦に接続し、これを
2組並列接続して運用し、それぞれの電流の大きさ、方
向等を変化させることで種々の磁束パターンを得ること
ができる。さらに、複数台の曳航体を用いて直列または
並列に繋げて運用することも可能である。当然掃海幅が
許容されれば、ヘリコプタまたは艦船により1台の曳航
体を曳航し、浮上掃海または沈降掃海を行えば良い。
In FIGS. 10 and 11, for example, two towing bodies 101a and 101b are connected vertically, two sets of these are connected in parallel and operated, and the magnitude, direction and the like of each current are changed. Thus, various magnetic flux patterns can be obtained. Furthermore, it is also possible to connect and operate in series or parallel using a plurality of towing bodies. Naturally, if the sweeping width is allowed, a single towing body may be towed by a helicopter or a ship to perform a floating sweep or a sinking sweep.

【0059】[0059]

【発明の効果】以上詳記したように本発明によれば、液
体ヘリウムを必要としない冷凍機直冷式超電導コイルを
用い、その超電導コイルから発生する磁束を利用して磁
気機雷を誘爆する構成としたため、重量が非常に小さ
く、扱い易い磁気機雷掃海具を実現できる。また、磁束
分布を得るための外部からの電源入力は数百分の一で済
む。しかも、磁化された後には外部電源の供給を断つこ
とができるため、非常に経済的な掃海具を提供できる。
As described above in detail, according to the present invention, a configuration is used in which a magnetic mine is detonated by using a direct cooling superconducting coil of a refrigerator which does not require liquid helium and utilizing a magnetic flux generated from the superconducting coil. As a result, it is possible to realize a magnetic mine sweeping tool that is extremely small in weight and easy to handle. Also, external power supply input for obtaining the magnetic flux distribution is reduced to several hundredths. In addition, since the supply of the external power can be cut off after being magnetized, a very economical minesweeper can be provided.

【0060】また、本発明の磁気機雷掃海具を搭載した
曳航体を直列または並列に複数繋げて曳航することで、
磁束密度の分布を広して、磁気機雷を効果的に取り除く
ことができる。
Further, by connecting a plurality of towed bodies equipped with the magnetic mine sweeper of the present invention in series or in parallel, and towing,
The distribution of magnetic flux density can be broadened to effectively remove magnetic mines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る磁気機雷掃海具の構
成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a magnetic mine sweeper according to an embodiment of the present invention.

【図2】上記磁気機雷掃海具を搭載した曳航体の構成を
示す図であり、図2(a)はその曳航体を正面から見た
図、同図(b)はその曳航体の側面から見た図、同図
(c)はその曳航体の後面から見た図、同図(d)はそ
の曳航体の上面から見た図。
FIG. 2 is a diagram showing a configuration of a towed body equipped with the magnetic mine sweeper, wherein FIG. 2 (a) is a view of the towed body from the front, and FIG. 2 (b) is a view of the towed body from a side. FIG. 2C is a view from the back of the tow body, and FIG. 2D is a view from the top of the tow body.

【図3】本発明の磁気機雷掃海具に用いられる冷凍機直
冷式超電導コイルの構成を示す図。
FIG. 3 is a diagram showing a configuration of a refrigerator direct cooling type superconducting coil used for the magnetic mine sweeper of the present invention.

【図4】上記冷凍機直冷式超電導コイルにおけるガス循
環型蓄熱器式冷凍機の構成を示す図。
FIG. 4 is a diagram showing a configuration of a gas circulation type regenerator refrigerator in the refrigerator direct cooling type superconducting coil.

【図5】電線に流れる電流によって得られる磁束密度を
説明するための図。
FIG. 5 is a diagram for explaining a magnetic flux density obtained by a current flowing through an electric wire.

【図6】電線L=100m、電流I=2000Aとした
場合での磁束密度の分布を示す図。
FIG. 6 is a diagram showing a magnetic flux density distribution when the electric wire L is 100 m and the current I is 2000 A;

【図7】電線による深度50m時の磁束密度20mGの
幅を説明するための図。
FIG. 7 is a diagram for explaining a width of a magnetic flux density of 20 mG at a depth of 50 m by an electric wire.

【図8】超電導コイルの磁束分布を示す図。FIG. 8 is a view showing a magnetic flux distribution of a superconducting coil.

【図9】超電導コイルを並列配置した時の磁束分布を示
す図。
FIG. 9 is a diagram showing a magnetic flux distribution when superconducting coils are arranged in parallel.

【図10】本発明の磁気機雷掃海具を並列運用した場合
の一例を示す図であり、図10(a)は海面を上から見
た図、同図(b)は海面を横から見た図。
FIG. 10 is a view showing an example in which the magnetic mine sweepers of the present invention are operated in parallel. FIG. 10 (a) is a view of the sea surface from above, and FIG. 10 (b) is a view of the sea surface from the side. FIG.

【図11】本発明の磁気機雷掃海具を並列、沈降運用し
た場合の一例を示す図であり、図11(a)は海面を上
から見た図、同図(b)は海面を横から見た図。
FIG. 11 is a view showing an example of the case where the magnetic mine sweepers of the present invention are operated in parallel and settled, and FIG. 11 (a) is a view of the sea surface from above, and FIG. 11 (b) is a view of the sea surface from the side. The figure I saw.

【図12】従来の磁気機雷掃海具の一例(掃海艇による
電線曳航の例)を示す図であり、図12(a)はI型の
磁気機雷掃海具、同図(b)はJ型の磁気機雷掃海具、
同図(c)はCL型の磁気機雷掃海具を示す図。
FIG. 12 is a view showing an example of a conventional magnetic mine minesweeper (an example of electric wire towing by a minesweeper), wherein FIG. 12 (a) is an I type magnetic mine minesweeper, and FIG. Magnetic mine sweeper,
FIG. 3C is a diagram showing a CL type magnetic mine sweeper.

【図13】従来の磁気機雷掃海具の一例(掃海ヘリによ
る電源と電線曳航の例)を示す図。
FIG. 13 is a diagram illustrating an example of a conventional magnetic mine sweeping tool (an example of power supply and electric wire towing by a sweeping helicopter).

【図14】従来のVMM(バリアブルモーメントマグネ
ット)掃海具の一例を示す図であり、図14(a)はV
MMの構造を示す図、同図(b)は複数個のVMMを配
列して掃海艇にて曳航した状態を示す図、同図(c)は
複数個のVMMによって作り出される模擬艦船の磁束分
布を示す図。。
FIG. 14 is a view showing an example of a conventional VMM (Variable Moment Magnet) minesweeper, and FIG.
FIG. 2B shows a structure of the MM, FIG. 2B shows a state in which a plurality of VMMs are arranged and towed by a minesweeper, and FIG. 2C is a magnetic flux distribution of the simulated ship created by the plurality of VMMs. FIG. .

【符号の説明】[Explanation of symbols]

11…超電導コイル部 12…冷却部 13…電源制御部 14…冷凍機 15…コイル本体 16…ポンプ 17…放熱器 21…曳航体 22…ヒートシンク板 23a〜23c…安定翼 24…牽引用のフック 30…ヒートシンク板(熱伝導板) 31…冷却部位 32…放熱部位 33…真空容器 41…シリンダ 42…蓄熱材 101a,101b…曳航体 102…ワイヤ 103a,103b…展開器 104a,104b…沈降器 105a,105b…フロート DESCRIPTION OF SYMBOLS 11 ... Superconducting coil part 12 ... Cooling part 13 ... Power supply control part 14 ... Refrigerator 15 ... Coil main body 16 ... Pump 17 ... Radiator 21 ... Towing body 22 ... Heat sink plate 23a-23c ... Stable wing 24 ... Towing hook 30 ... heat sink plate (heat conductive plate) 31 ... cooling part 32 ... heat radiation part 33 ... vacuum vessel 41 ... cylinder 42 ... heat storage material 101a, 101b ... towed body 102 ... wires 103a, 103b ... expanders 104a, 104b ... sedimentator 105a, 105b ... Float

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導材料をコイル状に巻き、そのコイ
ル本体に熱伝導板を介してガス循環型蓄熱器式冷凍機の
冷却部位を機械的に接触させ、上記コイル本体の熱を上
記ガス循環型蓄熱器式冷凍機の放熱部位から外部に放熱
する構造を有する冷凍機直冷式超電導コイル部と、 この冷凍機直冷式超電導コイル部の上記ガス循環型蓄熱
器式冷凍機から発せられる熱を冷却水を媒体として放熱
器に取り込んで放熱する冷却部と、 上記冷凍機直冷式超電導コイル部および上記冷却部に駆
動電源を供給する電源制御部とで構成され、 上記電源制御部による電源供給に伴い、上記冷凍機直冷
式超電導コイル部から発せられる磁束を利用して磁気機
雷を誘爆するようにしたことを特徴とする磁気機雷掃海
具。
1. A superconducting material is wound into a coil shape, and a cooling portion of a gas circulation type regenerative refrigerator is mechanically brought into contact with the coil body via a heat conducting plate, so that heat of the coil body is circulated by the gas circulation. Direct cooling superconducting coil portion having a structure for radiating heat to the outside from the heat radiating portion of the regenerative refrigerator, and heat generated from the gas circulation type regenerator refrigerator of the direct cooling superconducting coil portion of the refrigerator. And a power control unit for supplying drive power to the refrigerator direct cooling type superconducting coil unit and the cooling unit, and a power supply by the power control unit. A magnetic mine sweeping tool characterized in that magnetic mine explosion is induced by utilizing magnetic flux generated from the above-mentioned refrigerator direct cooling type superconducting coil part upon supply.
【請求項2】 上記電源制御部は、外部から供給される
AC電源を入力として、そのAC電源をDC電源に変換
して上記冷凍機直冷式超電導コイル部および上記冷却部
に供給することを特徴とする請求項1記載の磁気機雷掃
海具。
2. The power supply control section receives an externally supplied AC power supply, converts the AC power supply into a DC power supply, and supplies the DC power supply to the refrigerator direct cooling type superconducting coil section and the cooling section. The magnetic mine sweeper according to claim 1, wherein:
【請求項3】 上記冷凍機直冷式超電導コイル部、上記
冷却部、上記電源制御部は、海面または海中を移動可能
な曳航体に収納されることを特徴とする請求項1記載の
磁気機雷掃海具。
3. The magnetic mine according to claim 1, wherein the refrigerator direct cooling superconducting coil unit, the cooling unit, and the power control unit are housed in a towed body movable on the sea surface or in the sea. Minesweeper.
【請求項4】 上記曳航体は、強固な材料で作られたボ
ートからなり、その底部に熱伝導率の高い金属からなる
ヒートシンク板を配して上記冷却部および上記電源制御
部から発せられる余分な熱を海水中に放熱する構造を有
することを特徴とする請求項3記載の磁気機雷掃海具。
4. The towed body is made of a boat made of a strong material, and a heat sink plate made of a metal having high thermal conductivity is arranged at the bottom of the towed body, and extra heat generated from the cooling unit and the power control unit is provided. The magnetic mine sweeping device according to claim 3, wherein the magnetic mine sweeping device has a structure for dissipating a large amount of heat into seawater.
JP26233299A 1999-09-16 1999-09-16 Magnetic mine sweeping device Abandoned JP2001080576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26233299A JP2001080576A (en) 1999-09-16 1999-09-16 Magnetic mine sweeping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26233299A JP2001080576A (en) 1999-09-16 1999-09-16 Magnetic mine sweeping device

Publications (1)

Publication Number Publication Date
JP2001080576A true JP2001080576A (en) 2001-03-27

Family

ID=17374305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26233299A Abandoned JP2001080576A (en) 1999-09-16 1999-09-16 Magnetic mine sweeping device

Country Status (1)

Country Link
JP (1) JP2001080576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1572531A1 (en) * 2002-12-18 2005-09-14 Commonwealth Of Australia Minesweeping device
JP2011199144A (en) * 2010-03-23 2011-10-06 Toshiba Mitsubishi-Electric Industrial System Corp Magnetism controlling device and method
JP2013535370A (en) * 2010-08-06 2013-09-12 アトラス エレクトロニック ゲーエムベーハー Weapon removal device for removing weapons such as underwater mines, unmanned submersibles equipped with such a weapon removal device, and method therefor
KR20170129628A (en) * 2016-05-17 2017-11-27 탈레스 홀딩스 유케이 피엘씨 Magnetic phase transition exploitation for enhancement of electromagnets

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1572531A1 (en) * 2002-12-18 2005-09-14 Commonwealth Of Australia Minesweeping device
EP1572531A4 (en) * 2002-12-18 2011-06-22 Commw Of Australia Minesweeping device
US8006620B2 (en) 2002-12-18 2011-08-30 The Commonwealth Of Australia Minesweeping device
KR101089118B1 (en) 2002-12-18 2011-12-02 커먼웰스 오브 오스트레일리아 Minesweeping Device
JP2011199144A (en) * 2010-03-23 2011-10-06 Toshiba Mitsubishi-Electric Industrial System Corp Magnetism controlling device and method
JP2013535370A (en) * 2010-08-06 2013-09-12 アトラス エレクトロニック ゲーエムベーハー Weapon removal device for removing weapons such as underwater mines, unmanned submersibles equipped with such a weapon removal device, and method therefor
KR20170129628A (en) * 2016-05-17 2017-11-27 탈레스 홀딩스 유케이 피엘씨 Magnetic phase transition exploitation for enhancement of electromagnets
JP2018032844A (en) * 2016-05-17 2018-03-01 テールズ ホールディングス ユーケー ピーエルシーThales Uk Plc Use of magnetic phase transition for enhancement of electromagnet
KR101974270B1 (en) 2016-05-17 2019-04-30 탈레스 홀딩스 유케이 피엘씨 System and method to use magnetic phase transition for enhancement of electromagnets
US10894588B2 (en) 2016-05-17 2021-01-19 Thales Holdings Uk Plc Magnetic phase transition exploitation for enhancement of electromagnets

Similar Documents

Publication Publication Date Title
US20100132538A1 (en) Minesweeping device
EP3931850B1 (en) A satellite system
US10978932B2 (en) Drone for triggering sea mines
EP0500970A1 (en) Thrust generator
AU559371B2 (en) Improvements in or relating to magnetic assemblies
US3826215A (en) Magnetic mine detonator system
JP2001080576A (en) Magnetic mine sweeping device
US6854375B2 (en) Open loop minesweeping system
EP1272390B1 (en) Open loop minesweeping system
Saji et al. Basic study of superconducting electromagnetic thrust device for propulsion in seawater
Kadaba et al. Feasibility of noncontacting electromagnetic despinning of a satellite by inducing eddy currents in its skin. I. Analytical considerations
WO1989009724A1 (en) Magnetohydrodynamic propulsion arrangements
WO2013110960A1 (en) Apparatus for generating a propulsive force using superconductors
Way et al. Prospects for the electromagnetic submarine
JP7148248B2 (en) Bottom-of-water exploration system, bottom-of-water exploration device, and bottom-of-water exploration method
US9824807B2 (en) Magnetic thrust generation system
US11208180B1 (en) Magnetic motion compensation system
Pratap Limitations on the minimum charging time for the field coil of air core compensated pulsed alternators (for EM launcher applications)
RU2097274C1 (en) Electrically-driven craft
JP4479508B2 (en) Ship degaussing method
WO2024028817A1 (en) An improved satellite system
Sasakawa et al. The superconducting MHD-propelled ship YAMATO-1
MERICAS AC‐DC ADJUSTABLE VOLTAGE MARINE PROPULSION SYSTEM
JP2004306683A (en) Magnetic minesweeping device and magnetic minesweeping system
Sasakawa et al. Outline of R&D of the Superconducting MHD Ship" YAMATO-l"

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040116