JPS63246875A - Semiconductor storage device and manufacture thereof - Google Patents

Semiconductor storage device and manufacture thereof

Info

Publication number
JPS63246875A
JPS63246875A JP8161587A JP8161587A JPS63246875A JP S63246875 A JPS63246875 A JP S63246875A JP 8161587 A JP8161587 A JP 8161587A JP 8161587 A JP8161587 A JP 8161587A JP S63246875 A JPS63246875 A JP S63246875A
Authority
JP
Japan
Prior art keywords
substrate
film
silicon nitride
nitride film
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8161587A
Other languages
Japanese (ja)
Inventor
Hideaki Arima
有馬 秀明
Koji Ozaki
浩司 小崎
Kiyoteru Kobayashi
清輝 小林
Yasushi Kinoshita
木下 靖史
Toshiaki Omori
大森 寿朗
Junji Tateishi
準二 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8161587A priority Critical patent/JPS63246875A/en
Publication of JPS63246875A publication Critical patent/JPS63246875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make it possible to open a tunnel region in a submicron order and to obtain a high density EEPROM, by providing a substrate, an impurity diffused layer, which is formed in the substrate, and double-layer films of a silicon oxide film and a silicon nitride film, which are formed on the impurity diffused layer at a part other than a tunnel insulating film. CONSTITUTION:Double-layer films 3 and 4 comprising Si3N4/SiO2 are formed in the surface of a semiconductor substrate before a tunnel region is formed. The Si3N4 is patterned by plasma etching. Thereafter, with the Si3N4 as a mask, the SiO2 3 is etched by a wet method using fluoric acid solution. Therefore, a tunnel region in a submicron order can be opened in the surface of the substrate 1 without any damage. Thus the memory cell can be proportionally reduced, and a large-capacity, highly reliable EEPROM (Electrically Erasable and Programmable Reed only Memory) is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体記憶装置に関するもので、特に情報の
書込みおよび消去が電気的に可能な不揮発性メモリ、い
わゆるE E F ROM (Electricall
y Erasable and Programmab
le  Read 0nly Mem。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and in particular to a nonvolatile memory in which information can be written and erased electrically, so-called EEF ROM (Electrical Memory).
y Erasable and Programmable
le Read 0nly Mem.

ry)の構造とその製造方法に関するものである。ry) and its manufacturing method.

[従来の技術] 第2図は従来のEEFROMセルの断面構造を模式的に
示した図である。第2図から見られるように、EEPR
OMセルは、メモリトランジスタ部とセレクトトランジ
スタ部をそれぞれ形成する2つのMOS型トランジスタ
から構成される。メモリトランジスタは、半導体基板1
の活性領域に形成されるソース16およびドレイン17
と、半導体基板1上の電荷蓄積用のフローティングゲー
ト12およびフローティングゲートの電荷蓄積動作を制
御するためのコントロールゲート11とから構成される
。またフローティングゲート12とドレイン領域17と
の間には電荷の通路となるトンネル領域14が設けられ
ている。このトンネル領域は厚さ100λ程度の薄い絶
縁膜と、フローティングゲート12とドレイン17とで
構成される領域である。トンネル領域以外のフローティ
ングゲート12と半導体基板1との間には、トンネル絶
縁膜より厚いゲート絶縁膜が形成される。
[Prior Art] FIG. 2 is a diagram schematically showing the cross-sectional structure of a conventional EEFROM cell. As seen from Figure 2, EEPR
The OM cell is composed of two MOS transistors forming a memory transistor section and a select transistor section, respectively. The memory transistor is a semiconductor substrate 1
A source 16 and a drain 17 formed in the active region of
, a floating gate 12 for charge storage on the semiconductor substrate 1, and a control gate 11 for controlling the charge storage operation of the floating gate. Further, a tunnel region 14 is provided between the floating gate 12 and the drain region 17, which serves as a path for charges. This tunnel region is a region composed of a thin insulating film with a thickness of about 100λ, a floating gate 12, and a drain 17. A gate insulating film thicker than the tunnel insulating film is formed between the floating gate 12 and the semiconductor substrate 1 in areas other than the tunnel region.

セレクトトランジスタは、半導体基板1の活性領域に形
成されるソース(メモリトランジスタのドレインと共用
)17およびビットライン15と、半導体基板1上のワ
ードライン13とから構成される。フローティングゲー
トへの電荷の注入およびフローティングゲートからの電
荷の放出は電極18.19.20.21へ適当な電位の
電圧を印加することにより行なわれる。
The select transistor is composed of a source (shared with the drain of the memory transistor) 17 and a bit line 15 formed in the active region of the semiconductor substrate 1, and a word line 13 on the semiconductor substrate 1. Injection of charge into the floating gate and discharge of charge from the floating gate are performed by applying a voltage of an appropriate potential to the electrodes 18, 19, 20, 21.

第3図は従来のEEPROMのトンネル領域形成工程を
示す断面図であり、図において1は半導体基板、2は基
板1と逆の導電型を示す不純物拡散層、3は5i02.
5はフォトレジスト、6は多結晶シリコン、7はトンネ
ル絶縁膜である。従来の方法では、まず素子分離領域を
形成した後、基板1の所望の場所に不純物拡散層2を形
成し、その表面をSiO□で覆う。この段階が3−1図
である。次にフォトレジスト5を塗布し、フォトリソグ
ラフィ技術で、フォトレジストに開孔部を設け、しかる
後、フッ酸系溶液により、フォトレジスト5の開孔部に
より、下地5i023をエツチングする。この状態が3
−2図である。次に3−3図に示すようにフォトレジス
ト5を除去し、適当な表面清浄を行なう。さらに3−4
図に示すように、トンネル絶縁膜7を形成した後、多結
晶シリコン6をLPCVD法などで被着させる。このよ
うにしてトンネル領域を形成するのであるが、通常フォ
トレジスト5の膜厚は、1μm前後である。このため、
たとえば直径0.5μmの開孔部をフォトレジストで形
成しても、そのアスペクト比は2となる。したがって直
径0.5μmの穴の内部にフッ酸系溶液が浸透するのは
表面張力の影響によって極めて困難となる。一方、5i
023のエツチングにプラズマエツチング技術を応用す
ることも考えられるが、この場合は、半導体基板1およ
び不純物拡散層2の表面にプラズマによる損傷を与えて
しまうためにその後に形成されるトンネル絶縁膜の絶縁
耐圧の劣化や信頼性の低下を招く。
FIG. 3 is a cross-sectional view showing the process of forming a tunnel region of a conventional EEPROM. In the figure, 1 is a semiconductor substrate, 2 is an impurity diffusion layer having a conductivity type opposite to that of the substrate 1, and 3 is a 5i02.
5 is a photoresist, 6 is polycrystalline silicon, and 7 is a tunnel insulating film. In the conventional method, an element isolation region is first formed, then an impurity diffusion layer 2 is formed at a desired location on the substrate 1, and its surface is covered with SiO□. This stage is shown in Figure 3-1. Next, a photoresist 5 is applied, and openings are formed in the photoresist using photolithography, and then the base 5i023 is etched using the openings of the photoresist 5 using a hydrofluoric acid solution. This state is 3
-Figure 2. Next, as shown in Figure 3-3, the photoresist 5 is removed and appropriate surface cleaning is performed. 3-4 more
As shown in the figure, after forming the tunnel insulating film 7, polycrystalline silicon 6 is deposited by LPCVD or the like. The tunnel region is formed in this way, and the film thickness of the photoresist 5 is usually around 1 μm. For this reason,
For example, even if an opening with a diameter of 0.5 μm is formed using photoresist, its aspect ratio will be 2. Therefore, it is extremely difficult for a hydrofluoric acid solution to penetrate into a hole having a diameter of 0.5 μm due to the influence of surface tension. On the other hand, 5i
It is also possible to apply plasma etching technology to the etching of 023, but in this case, the insulation of the tunnel insulating film formed afterwards would be damaged due to plasma damage to the surfaces of the semiconductor substrate 1 and the impurity diffusion layer 2. This leads to deterioration of withstand voltage and reliability.

[発明が解決しようとする問題点] 従来のEEFROMは以上のように構成されているので
、トンネル領域を開孔するのにフッ酸溶液を用いる湿式
プロセスで行なわなければならず、直径1μm以下の領
域を開孔することが極めて困難となり、サブミクロンの
開孔ができなくなるなどの問題点があった。またサブミ
クロンのトンネル領域が開孔できないため、メモリセル
を比例縮小することができず、大容量のEEFROMが
得られなかった。
[Problems to be Solved by the Invention] Since the conventional EEFROM is configured as described above, the tunnel region must be opened by a wet process using a hydrofluoric acid solution, and the tunnel region must be opened using a wet process using a hydrofluoric acid solution. There were problems such as it became extremely difficult to open holes in the area, and submicron holes could not be opened. Further, since the submicron tunnel region cannot be opened, the memory cell cannot be proportionally reduced, and a large-capacity EEFROM cannot be obtained.

この発明は上記のような問題点を解消するためになされ
たもので、サブミクロンのトンネル領域を開孔できると
ともに、開孔プロセスで誘起される酸化膜欠陥の発生を
抑制でき、高密度のEEFROMを得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and it is possible to open a submicron tunnel region, suppress the occurrence of oxide film defects induced in the opening process, and improve the performance of high-density EEFROM. The purpose is to obtain.

[問題点を解決するための手段] この発明に係るEEPROMは、トンネル領域を開孔す
る前に、基板表面に5t3N、/5i02の2層膜を形
成し、プラズマエツチング法によりSi、N、膜に開孔
部を作り、このSt、N4膜をマスクとして下地のSi
O□をフッ酸系エツチング液で除去するようにしたもの
である。
[Means for Solving the Problems] In the EEPROM according to the present invention, before opening the tunnel region, a two-layer film of 5t3N and /5i02 is formed on the substrate surface, and Si, N, and the film are removed by plasma etching. An opening is made in the Si substrate using the St, N4 film as a mask.
The O□ is removed using a hydrofluoric acid etching solution.

[作用コ この発明における5i02膜エツチングのためのSi、
N、膜は厚さ100OA程度であるため、直径1.0μ
m程度の孔でもアスペクト比は0゜1程度となり、微小
な孔を5in2上にあけることができる。
[Function] Si for etching the 5i02 film in this invention,
N, since the film is about 100OA thick, the diameter is 1.0μ.
Even if the hole is about m in size, the aspect ratio will be about 0°1, and a minute hole can be made on the order of 5 in2.

[発明の実施例] 以下この発明の一実施例を図について説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to the drawings.

第1図において1は半導体基板、2はこの半導体基板と
反対の導電型を有する不純物拡散層、3は5i02.4
はシリコン窒化膜(si3N4)、5はフォトレジスト
、6は多結晶シリコン電極である。第1図は、この発明
によるEEPROMのトンネル領域形成工程のみを抜粋
したものである。
In FIG. 1, 1 is a semiconductor substrate, 2 is an impurity diffusion layer having a conductivity type opposite to that of the semiconductor substrate, and 3 is 5i02.4.
5 is a silicon nitride film (si3N4), 5 is a photoresist, and 6 is a polycrystalline silicon electrode. FIG. 1 is an excerpt of only the process of forming a tunnel region of an EEPROM according to the present invention.

1−1図において、まず、半導体基板1の所望の場所に
不純物拡散層2を形成し、その表面をSiO□3で覆う
。不純物拡散層2を形成する前に、いわゆるフィールド
工程、たとえばLOGOS(Local 0xidat
ion of’ 5ilicon)法などで、素子分離
領域を形成しておくのは言うまでもない。次に、従来の
方法では、この5i023の上に直接にフォトレジスト
を塗布し、一般的な光りソグラフィ技術によって、フォ
トレジストに開孔パターンを形成していたが、本発明で
は、5i023を形成した後、さらにSL、N44をた
とえばLPCVD法で被着させ、Si3N4/5i02
の2層膜を形成する。この状態が1−2図である。次に
1−3図に示したように、フォトリソグラフィ技術でフ
ォトレジスト5に所望の開孔パターンを形成し、フォト
レジスト5をマスクとして下地のSt、N、4をエツチ
ングする。この際たとえばCF4+O□プラズマなどを
用いたドライプロセスで513N4をエツチングする。
1-1, first, an impurity diffusion layer 2 is formed at a desired location on a semiconductor substrate 1, and its surface is covered with SiO□3. Before forming the impurity diffusion layer 2, a so-called field process, for example, LOGOS (Local Oxidat
Needless to say, the element isolation region is formed using a method such as ion of 5 silicon. Next, in the conventional method, a photoresist was applied directly onto this 5i023, and an opening pattern was formed in the photoresist using a general photolithography technique, but in the present invention, a hole pattern was formed on the photoresist. After that, SL and N44 are further deposited by, for example, LPCVD method, and Si3N4/5i02
A two-layer film is formed. This state is shown in Figure 1-2. Next, as shown in FIG. 1-3, a desired opening pattern is formed in the photoresist 5 by photolithography, and the underlying St, N, and 4 layers are etched using the photoresist 5 as a mask. At this time, 513N4 is etched by a dry process using, for example, CF4+O□ plasma.

このため、フォトレジストの開孔径がサブミクロンであ
っても、下地513N4は十分にエツチング可能である
Therefore, even if the opening diameter of the photoresist is submicron, the underlying layer 513N4 can be sufficiently etched.

また、プラズマエツチングの条件を適当に選ぶことによ
って、Si、N、4の下部にあるSin。
In addition, by appropriately selecting the plasma etching conditions, Si, N, and Sin below 4 can be removed.

3をほとんどエツチングすることな(Si3N44だけ
を選択的に除去することが可能である。次に、フォトレ
ジスト5を除去した後、St、N。
3 (it is possible to selectively remove only Si3N44). Next, after removing the photoresist 5, St, N.

4をマスクとしてフッ酸系溶液を用いてSin。4 as a mask and using a hydrofluoric acid solution.

3をエツチングする。このSi、N、4の膜厚は100
0Å以下であるため、Si、N44の開孔部におけるア
スペクト比は0.1以下となり、フッ酸系溶液は表面張
力の影響を受けずに5i023にサブミクロンの開孔部
を形成することができる。この状態が1−4図である。
Etch 3. The film thickness of this Si, N, 4 is 100
Since it is 0 Å or less, the aspect ratio in the openings of Si and N44 is 0.1 or less, and the hydrofluoric acid solution can form submicron pores in 5i023 without being affected by surface tension. . This state is shown in Figure 1-4.

また、5i023は湿式エツチングされるため、半導体
基板1および、不純物拡散層2の表面には何らの損傷も
与えることはない。しかる後、適当な表面クリーニング
を行なって、トンネル絶縁膜7たとえば5tO2や5i
OxNy(オキシナイトライド)、ナイトロキサイド(
nytroxide)などを形成した後、浮遊ゲートと
なる多結晶シリコン6をたとえばLPCVD法で被着せ
しめる。この段階が1−5図である。後は従来のEEP
ROM製造法に従って所望の回路を構成すればよい。
Furthermore, since 5i023 is wet-etched, the surfaces of semiconductor substrate 1 and impurity diffusion layer 2 are not damaged in any way. After that, appropriate surface cleaning is performed and the tunnel insulating film 7 is coated with a material such as 5tO2 or 5i.
OxNy (oxynitride), nitroxide (
After forming a polycrystalline silicon 6, which will become a floating gate, for example, is deposited by LPCVD. This stage is shown in Figures 1-5. The rest is conventional EEP
A desired circuit may be constructed according to the ROM manufacturing method.

[発明の効果コ 以上のように、この発明によれば、トンネル領域を形成
する前に半導体基板表面にSi、N、/SiO2の2層
膜を形成し、St、N4をプラズマエツチングでパター
ニングし、しかる後、Si、N、をマスクとして5i0
2をフッ酸系溶液を用いた湿式法でエツチングするため
に、サブミクロンのトンネル領域を基板表面に何らの損
傷をも与えずに開孔することが可能となる。また、サブ
ミクロンのトンネル領域が開孔できることにより、メモ
リセルを比例縮小することが可能となり、大容量で高信
頼性のあるEEFROMを得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, before forming a tunnel region, a two-layer film of Si, N, /SiO2 is formed on the surface of a semiconductor substrate, and St and N4 are patterned by plasma etching. , then 5i0 with Si, N, as a mask.
Since 2 is etched by a wet method using a hydrofluoric acid solution, a submicron tunnel region can be formed without causing any damage to the substrate surface. Furthermore, since a submicron tunnel region can be opened, it becomes possible to proportionally reduce the size of the memory cell, which has the effect of providing a large-capacity, highly reliable EEFROM.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるEEFROMのトン
ネル領域形成工程を示す断面図、第2図は従来のEEF
ROMセルの断面構造を模式的に示した図、第3図は従
来のEEFROMのトンネル領域形成工程を示す断面図
である。 1は半導体基板、2は不純物拡散層、3はSiO□、4
は”aN*、5はフォトレジスト、6は多結晶シリコン
、7はトンネル絶縁膜、11はコントロールゲート、1
2はフローティングゲート、13はワードライン、14
はトンネル領域、15はビットライン、16はメモリト
ランジスタのソース、17はメモリトランジスタのドレ
イン、18.19.20.21は電極である。 なお、図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a sectional view showing the process of forming a tunnel region of an EEFROM according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional EEFROM.
FIG. 3 is a diagram schematically showing a cross-sectional structure of a ROM cell, and FIG. 3 is a cross-sectional view showing a process of forming a tunnel region of a conventional EEFROM. 1 is a semiconductor substrate, 2 is an impurity diffusion layer, 3 is SiO□, 4
is "aN*," 5 is photoresist, 6 is polycrystalline silicon, 7 is tunnel insulating film, 11 is control gate, 1
2 is a floating gate, 13 is a word line, 14
15 is a tunnel region, 15 is a bit line, 16 is a source of a memory transistor, 17 is a drain of a memory transistor, and 18, 19, 20, and 21 are electrodes. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)基板と、前記基板に形成された不純物拡散層と、
前記不純物拡散層上で、トンネル絶縁膜を除く部分に形
成されたシリコン酸化膜とシリコン窒化膜の2層膜とを
少なくとも一部に有することを特徴とする半導体記憶装
置。
(1) a substrate, an impurity diffusion layer formed on the substrate,
A semiconductor memory device characterized in that at least a portion of the impurity diffusion layer has a two-layer film of a silicon oxide film and a silicon nitride film formed in a portion excluding a tunnel insulating film.
(2)前記シリコン窒化膜の膜厚が1000Å以下であ
ることを特徴とする特許請求の範囲第1項記載の半導体
記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the silicon nitride film has a thickness of 1000 Å or less.
(3)基板を準備し、前記基板上に不純物拡散層を形成
し、前記不純物拡散層上にシリコン酸化膜を形成し、前
記シリコン酸化膜上にシリコン窒化膜を形成し、前記シ
リコン窒化膜上に所望の開孔パターンを有するフォトレ
ジスト層を形成し、前記フォトレジストをマスクとして
下地のシリコン窒化膜をエッチングし、次に前記フォト
レジストを除去した後、前記所定の形状を有するシリコ
ン窒化膜をマスクとして前記シリコン酸化膜をエッチン
グしてトンネル領域を形成し、次に前記エッチングを行
なった箇所にトンネル絶縁膜を形成する工程を一部に含
むことを特徴とする半導体記憶装置の製造方法。
(3) Prepare a substrate, form an impurity diffusion layer on the substrate, form a silicon oxide film on the impurity diffusion layer, form a silicon nitride film on the silicon oxide film, and form a silicon nitride film on the silicon nitride film. A photoresist layer having a desired opening pattern is formed, the underlying silicon nitride film is etched using the photoresist as a mask, and after the photoresist is removed, the silicon nitride film having the predetermined shape is etched. A method for manufacturing a semiconductor memory device, comprising a step of etching the silicon oxide film as a mask to form a tunnel region, and then forming a tunnel insulating film in the etched area.
(4)トンネル領域の開孔において、シリコン窒化膜を
プラズマエッチングすることを特徴とする特許請求の範
囲第3項記載の半導体記憶装置の製造方法。
(4) The method for manufacturing a semiconductor memory device according to claim 3, wherein the silicon nitride film is plasma-etched in the opening of the tunnel region.
(5)前記シリコン窒化膜の膜厚が1000Å以下であ
ることを特徴とする特許請求の範囲第3項または4項に
記載の半導体記憶装置の製造方法。
(5) The method for manufacturing a semiconductor memory device according to claim 3 or 4, wherein the silicon nitride film has a thickness of 1000 Å or less.
JP8161587A 1987-04-01 1987-04-01 Semiconductor storage device and manufacture thereof Pending JPS63246875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8161587A JPS63246875A (en) 1987-04-01 1987-04-01 Semiconductor storage device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8161587A JPS63246875A (en) 1987-04-01 1987-04-01 Semiconductor storage device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63246875A true JPS63246875A (en) 1988-10-13

Family

ID=13751224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8161587A Pending JPS63246875A (en) 1987-04-01 1987-04-01 Semiconductor storage device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63246875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788144A1 (en) * 1996-01-31 1997-08-06 STMicroelectronics S.r.l. Process for fabricating tunnel-oxide nonvolatile memory devices
JP2006024932A (en) * 2004-07-06 2006-01-26 Samsung Electronics Co Ltd Method for forming tunneling insulating layer of nonvolatile memory device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788144A1 (en) * 1996-01-31 1997-08-06 STMicroelectronics S.r.l. Process for fabricating tunnel-oxide nonvolatile memory devices
JP2006024932A (en) * 2004-07-06 2006-01-26 Samsung Electronics Co Ltd Method for forming tunneling insulating layer of nonvolatile memory device
US7429511B2 (en) 2004-07-06 2008-09-30 Samsung Electronics Co., Ltd. Method of forming a tunneling insulating layer in nonvolatile memory device

Similar Documents

Publication Publication Date Title
JP2933902B2 (en) Method for incorporating non-volatile memory and logic components into a single sub-0.3 micron fabrication process to obtain integrated non-volatile memory
US6130168A (en) Using ONO as hard mask to reduce STI oxide loss on low voltage device in flash or EPROM process
JPH1093055A (en) Manufacturing flash memory element
JP2001156276A (en) Forming method of gate oxide layer of different thickness
RU2168797C2 (en) Process of manufacture of elements of structures of very small size on semiconductor substrate
JPS63246875A (en) Semiconductor storage device and manufacture thereof
JP2650925B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0897302A (en) Manufacture of semiconductor memory
JP3231136B2 (en) Method for manufacturing semiconductor memory device
KR100470992B1 (en) How to Form a Resistance in an Inactive Memory Device
JPH08298314A (en) Nonvolatile semiconductor memory and its manufacture
KR100237007B1 (en) Fabrication method of flash memory cell
JPH10189922A (en) Manufacture of flash memory element
KR19980043614A (en) Manufacturing method of nonvolatile memory device
KR100253344B1 (en) Manufacturing method for contact hole of semiconductor memory
JPH1065026A (en) Manufacturing method of nonvolatile semiconductor memory device
KR100365754B1 (en) Method for fabricating semiconductor device
KR100823694B1 (en) Method of forming a structure of floating gate in a non-volatile memory device
KR100218730B1 (en) Fabricating method of semiconductor device
JPS6212125A (en) Manufacture of semiconductor device
JPH06196497A (en) Manufacture of semiconductor device
JPH01298770A (en) Semiconductor device and manufacture thereof
JPH04186778A (en) Manufacture of semiconductor
KR100638966B1 (en) Method for forming gate of flash memory device
JPH11238816A (en) Gate forming method of semiconductor storage device preventing conductive layer formation in boundary region