JPS6324576B2 - - Google Patents

Info

Publication number
JPS6324576B2
JPS6324576B2 JP56099681A JP9968181A JPS6324576B2 JP S6324576 B2 JPS6324576 B2 JP S6324576B2 JP 56099681 A JP56099681 A JP 56099681A JP 9968181 A JP9968181 A JP 9968181A JP S6324576 B2 JPS6324576 B2 JP S6324576B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
dark current
compensation
pin photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56099681A
Other languages
Japanese (ja)
Other versions
JPS583335A (en
Inventor
Masaru Ikeuchi
Mitsuaki Nishe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56099681A priority Critical patent/JPS583335A/en
Publication of JPS583335A publication Critical patent/JPS583335A/en
Publication of JPS6324576B2 publication Critical patent/JPS6324576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は、光受信機の暗電流補償回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dark current compensation circuit for an optical receiver.

第1図にデイジタル光受信機の構成例を示す。
図において、1はシリコン形PINフオトダイオー
ド、2はヘツドアンプ、3はコンパレータ、RL
は負帰還を兼ねた負荷抵抗であり、PINフオトダ
イオード1の受けた光受信パワーPrが電圧に変
換されて増幅され、ヘツドアンプ2の出力信号電
圧e0が基準電圧e3と比較されて二値信号とされ
る。この場合、デイジタル光受信機の代表的伝達
特性である光受信パワー対データ誤り率特性は、 熱雑音やシヨツト雑音などの雑音、 ヘツドアンプやコンパレータの温度によるド
リフト、 フオトダイオードなどの光電変換素子の暗電
流の温度変化、 等によつて劣化される。
FIG. 1 shows an example of the configuration of a digital optical receiver.
In the figure, 1 is a silicon type PIN photodiode, 2 is a head amplifier, 3 is a comparator, R L
is a load resistance that also serves as a negative feedback, and the optical reception power Pr received by the PIN photodiode 1 is converted to voltage and amplified, and the output signal voltage e0 of the head amplifier 2 is compared with the reference voltage e3 to obtain a binary value. It is considered a signal. In this case, the optical reception power versus data error rate characteristic, which is a typical transfer characteristic of a digital optical receiver, is affected by noise such as thermal noise and shot noise, temperature-related drift of the head amplifier and comparator, and darkness of photoelectric conversion elements such as photodiodes. It deteriorates due to changes in current temperature, etc.

本発明は、上述したデータ誤り率などの特性劣
化を阻止する一対策として、光電変換素子の暗電
流の温度変化を補償した光受信機を提供すること
を目的とする。そのため本発明では、受光用光電
変換素子の暗電流温度特性を、別途設けたダイオ
ードの逆電流、暗電流あるいは順電圧等の温度特
性を用いて補償することとする。
An object of the present invention is to provide an optical receiver that compensates for temperature changes in the dark current of a photoelectric conversion element, as a measure to prevent the deterioration of characteristics such as the data error rate described above. Therefore, in the present invention, the dark current temperature characteristics of the light-receiving photoelectric conversion element are compensated by using the temperature characteristics of a separately provided diode such as reverse current, dark current, or forward voltage.

本発明の詳細な説明に先立ち、第1図の光受信
機における受光用PINフオトダイオード1の暗電
流温度特性によるデータ誤りについて、第2,3
図を参照して説明する。第2図はPINフオトダイ
オードの逆バイアス12Vにおける暗電流の温度特
性を示し、温度が20℃から60℃へ変化すると、暗
電流Idは0.6nAから10nAへと大きく変化する。ま
た第3図はデータ誤り率の温度特性を示し、温度
が40℃から60℃へ変化すると、光受信パワーPr
に換算して2.5dBの劣化が生じる。この劣化は次
のように考えられる。ここで、 Pr:光信号パワー〔W〕、 γ:PINフオトダイオードの感度〔A/W〕、 RL:ヘツドアンプの負荷抵抗〔Ω〕、 m:光信号の変調度、 e0:ヘツドアンプの出力信号電圧〔V〕、 e′0:ヘツドアンプの出力直流電圧〔V〕、 とすると、 e0=−2m・Pr・γ・RL …式(1) が成立する。今、光受信パワーが−42dBm(6.3×
10-8W)として、m=0.5、γ=0.55、RL=3×
105であるとすると、この場合の出力信号電圧の
振幅は |e0|=2×0.5×(6.3×10-8) ×0.55×(3×105)=10〔mV〕 …式(2) となる。一方、暗電流の変化ΔIdによる出力直流
電圧の変化分Δe′0は、 Δe′0=−ΔId・RL …式(3) で与えられ、温度が20℃から60℃へ変化した場合
は、 Δe′0=−(10×10-9−0.6×10-9) ×(3×105)=−2.82〔mV〕 …式(4) となる。したがつて、コンパレータ3への入力電
圧は、20℃から60℃への変化により第4図aから
bへと変化する。但し、簡単のため、20℃での出
力直流電圧をOVとしてある。
Prior to a detailed explanation of the present invention, we will explain data errors due to the dark current temperature characteristics of the light-receiving PIN photodiode 1 in the optical receiver shown in FIG.
This will be explained with reference to the figures. Figure 2 shows the temperature characteristics of the dark current of a PIN photodiode at a reverse bias of 12 V. When the temperature changes from 20°C to 60°C, the dark current I d changes significantly from 0.6 nA to 10 nA. Figure 3 shows the temperature characteristics of the data error rate. When the temperature changes from 40℃ to 60℃, the optical reception power Pr
This results in a deterioration of 2.5dB. This deterioration can be considered as follows. Where, Pr: Optical signal power [W], γ: Sensitivity of PIN photodiode [A/W], R L : Load resistance of head amplifier [Ω], m: Modulation degree of optical signal, e 0 : Output of head amplifier Signal voltage [V], e′ 0 : head amplifier output DC voltage [V], then e 0 =−2m·Pr·γ·R L …Equation (1) holds true. Now, the optical reception power is -42dBm (6.3×
10 -8 W), m=0.5, γ=0.55, R L =3×
10 5 , the amplitude of the output signal voltage in this case is |e 0 |=2×0.5×(6.3×10 -8 )×0.55×(3×10 5 )=10 [mV] …Equation (2) ) becomes. On the other hand, the change Δe′ 0 in the output DC voltage due to the change ΔI d in the dark current is given by Δe′ 0 = −ΔI d・R L ...Equation (3), and when the temperature changes from 20℃ to 60℃ is Δe′ 0 =−(10×10 −9 −0.6×10 −9 )×(3×10 5 )=−2.82 [mV] …Equation (4). Therefore, the input voltage to the comparator 3 changes from a to b in FIG. 4 due to a change from 20°C to 60°C. However, for simplicity, the output DC voltage at 20°C is defined as OV.

以上のことより、コンパレータ3の基準電圧e3
が一定であれば、スレツシヨールド電圧が相対的
に大きくずれることとなり、ヘツドアンプ2の出
力信号に雑音があつたりする温度が高いほどデー
タ誤り率が増加することとなる。
From the above, the reference voltage e 3 of comparator 3
If the threshold voltage is constant, the threshold voltage will deviate relatively greatly, and the higher the temperature at which the output signal of the head amplifier 2 is affected by noise, the higher the data error rate will be.

第5図は本発明の一実施例であり、ヘツドアン
プ2の反転入力端子に受光用のPINフオトダイオ
ード1と負荷抵抗RLの接続点電圧が供給されて
いるのに対し、逆バイアスをかけたシリコンダイ
オード4と直列な抵抗R1の端子間電圧e2を非反
転入力端子に供給することにより、シリコンダイ
オード4の逆電流の温度特性でPINフオトダイオ
ード1の暗電流の温度変化を補償している。ここ
で出力直流電圧e′0を一定値、例えばOVとする条
件を求める。今、 Id:PINフオトダイオードの暗電流、 IR:シリコンダイオードの逆電流、 A:ヘツドアンプの裸利得、 e1:暗電流による反転入力端子の電圧、 とすると、 e′0=A(e2−e1) …式(5) e1=e′0+Id・RL …式(6) e2=IR・R1 …式(7) なる関係式が成立する。
Figure 5 shows an embodiment of the present invention, in which the voltage at the connection point between the light-receiving PIN photodiode 1 and the load resistor R L is supplied to the inverting input terminal of the head amplifier 2, while a reverse bias is applied. By supplying the voltage e 2 across the terminals of the resistor R 1 in series with the silicon diode 4 to the non-inverting input terminal, temperature changes in the dark current of the PIN photodiode 1 are compensated for by the temperature characteristics of the reverse current of the silicon diode 4. There is. Here, we will find a condition for keeping the output DC voltage e′ 0 at a constant value, for example OV. Now, I d : Dark current of PIN photodiode, IR : Reverse current of silicon diode, A : Bare gain of head amplifier, e 1 : Voltage of inverting input terminal due to dark current, then e′ 0 = A(e 2 −e 1 ) ...Equation (5) e 1 = e' 0 +I d・R L ...Equation (6) e 2 = I R・R 1 ...Equation (7) holds true.

式(5)に式(6)及び(7)を代入して解くと、 e′0=−A/A+1(Id・RL−IR・R1) …式(8) となる。したがつてヘツドアンプ2の出力直流電
圧e′0を0とするには、基本的には Id・RL=IR・R1 …式(9) なる関係が各温度で成立するような定数を選べば
良い。
When equations (6) and (7) are substituted into equation (5) and solved, e′ 0 =−A/A+1(I d ·R L −I R ·R 1 ) …Equation (8) is obtained. Therefore, in order to set the output DC voltage e' 0 of the head amplifier 2 to 0, basically, a constant such that the following relationship is established at each temperature: I d・R L = I R・R 1 ...Equation (9) All you have to do is choose.

実際にはヘツドアンプ2の出力直流電圧の温度
変化分Δe′0を0とすれば良いので、暗電流の温度
変化分ΔIdと逆電流の温度変化分ΔIRについて、 ΔId・RL=ΔIR・R1 …式(10) なる式により定数を決定すれば十分である。
Actually, the temperature change Δe′ 0 of the output DC voltage of the head amplifier 2 can be set to 0, so for the temperature change ΔI d of the dark current and the temperature change ΔI R of the reverse current, ΔI d・R L = ΔI It is sufficient to determine the constant using the following formula : R.R 1 . . . (10).

〔補償例〕[Compensation example]

PINフオトダイオード1:第2図の温度特性の
もの、 負荷抵抗RL:300KΩ シリコンダイオード4:第6図の温度特性(逆
バイアス12V)を有する品名1S955のもの、 抵抗R1:49KΩ シリコンダイオード1S955の逆電流は絶対量は
大きく異なるがその温度特性は、第6図に示す如
く、第2図のPINフオトダイオードの暗電流温度
特性の傾向と良く似ており、温度が20℃から60℃
までのそれぞれの変化分ΔId、ΔIRは ΔId=10nA−0.6nA=9.4nA ΔIR=60nA−2.5nA=57.5nA …式(11) である。そこで、RL=300KΩであれば式(10)より、 R1=ΔId/ΔIR・RL =9.4×10-9/57.5×10-9×(3×105) =4.9×104〔Ω〕 と定数が求まる。第7図に上述の如く求めた定数
を用いた場合のヘツドアンプ2の出力直流電圧
e′0の温度変化を実線で示す。但し、第7図の破
線は温度補償を施していない第1図の場合の特性
である。第7図より、−10℃から60℃の温度変化
でΔe′0が、 温度補償の有る場合:0.4mV 温度補償の無い場合:2.9mV となり、データ誤り率の劣化が大きく改善される
ことがわかる。
PIN photodiode 1: Temperature characteristics shown in Figure 2, Load resistance R L : 300KΩ Silicon diode 4: Product name 1S955 with temperature characteristics shown in Figure 6 (reverse bias 12V), Resistance R 1 : 49KΩ Silicon diode 1S955 Although the absolute amount of the reverse current differs greatly, its temperature characteristics, as shown in Figure 6, are very similar to the dark current temperature characteristics of the PIN photodiode in Figure 2, and when the temperature ranges from 20℃ to 60℃.
The respective changes ΔI d and ΔI R are as follows: ΔI d =10nA−0.6nA=9.4nA ΔI R =60nA−2.5nA=57.5nA…Equation (11). Therefore, if R L = 300KΩ, from equation (10), R 1 = ΔI d / ΔI R・R L = 9.4×10 -9 /57.5×10 -9 × (3×10 5 ) = 4.9×10 4 [Ω] and the constant are found. Figure 7 shows the output DC voltage of head amplifier 2 when using the constants determined as above.
The temperature change at e′ 0 is shown by the solid line. However, the broken line in FIG. 7 is the characteristic in the case of FIG. 1 without temperature compensation. From Figure 7, when the temperature changes from -10°C to 60°C, Δe′ 0 becomes 0.4 mV with temperature compensation and 2.9 mV without temperature compensation, indicating that the deterioration of the data error rate is greatly improved. Recognize.

上述の例の他、第5図のシリコンダイオード4
の代りに、PINフオトダイオードを用いその暗電
流で温度補償できる。この例の場合は受光用光電
変換素子と補償用のダイオードが共にPINフオト
ダイオードであるから、温度特性は電流の絶対量
と共に同じである。そこで、RL=R1とすること
により極めて正確に温度補償を行うことができ
る。なお、補償用のPINフオトダイオード5には
光を当てない。更に受光用の光電変換素子がアバ
ランシエフオトダイオード即ちAPDの場合には、
APDは増倍効果のあるフオトダイオードであつ
て各温度における暗電流は増倍率により異なるた
め、光電変換用APDの暗電流に対する温度補償
はシリコンダイオード4の代りにAPDを用いて
その暗電流により行うのが望ましい。なお、この
場合もRL=R1で良く、また補償用のAPDには光
を当てない。
In addition to the above-mentioned example, the silicon diode 4 in FIG.
Instead, a PIN photodiode can be used and its dark current can be used to compensate for the temperature. In this example, since both the light-receiving photoelectric conversion element and the compensation diode are PIN photodiodes, the temperature characteristics and the absolute amount of current are the same. Therefore, temperature compensation can be performed extremely accurately by setting R L =R 1 . Note that the compensation PIN photodiode 5 is not exposed to light. Furthermore, if the photoelectric conversion element for receiving light is an avalanche photodiode, or APD,
APD is a photodiode with a multiplication effect, and the dark current at each temperature differs depending on the multiplication factor. Therefore, temperature compensation for the dark current of APD for photoelectric conversion is performed by using APD instead of silicon diode 4 and using its dark current. is desirable. In this case as well, R L =R 1 may be sufficient, and the compensation APD is not irradiated with light.

以上説明した温度補償回路はアナログ信号自体
を補償するので、デジタル光受信機の場合だけで
なく、アナログ光受信機の場合でも有効である。
Since the temperature compensation circuit described above compensates for the analog signal itself, it is effective not only for digital optical receivers but also for analog optical receivers.

第8図はコンパレータ3の段階で温度補償する
場合の回路例を示す。同図において、5は定電圧
回路であり、その出力電圧e4を抵抗R1を介して
シリコンダイオード4に逆バイアスさせ、シリコ
ンダイオード4のカソードから基準電圧e3を得て
いる。今、PINフオトダイオード1の暗電流が温
度上昇と共に増加したとすれば、ヘツドアンプ2
の出力直流電圧e′0は逆に低下する。そこで、コ
ンパレータ3のマイナス入力端子に印加される基
準電圧e3にe′0と同様の温度変化を持たせれば、
コンパレータ3におけるデータ誤りがなくなる。
第8図の例の場合、PINフオトダイオード1が第
2図の温度特性のもので、シリコンダイオード4
が第6図の温度特性の1S955であり、またRL
300KΩであるとして定数を求めると次の通りで
ある。20℃〜60℃間では、式(11)より Δe′0=2.82mV ΔIR=57.5nA であるから、 R1=2.82×10-3/57.5×10-9=4.9×104〔Ω〕 即ちR1=49KΩとなる。一方、20℃における最適
な基準電圧をe3(20℃)とすると、定電圧源5の
出力電圧e4は e4=e3(20℃)+4.9×104×3×10-9 =e3(20℃)+1.47×10-4〔V〕 と設定しておけば良い。
FIG. 8 shows an example of a circuit when temperature compensation is performed at the comparator 3 stage. In the figure, 5 is a constant voltage circuit, whose output voltage e 4 is reverse biased to the silicon diode 4 through a resistor R 1 , and a reference voltage e 3 is obtained from the cathode of the silicon diode 4 . Now, if the dark current of PIN photodiode 1 increases as the temperature increases, then the dark current of PIN photodiode 1 increases as the temperature increases.
On the contrary, the output DC voltage e′ 0 decreases. Therefore, if the reference voltage e 3 applied to the negative input terminal of comparator 3 has a temperature change similar to e′ 0 , then
Data errors in the comparator 3 are eliminated.
In the example shown in Figure 8, PIN photodiode 1 has the temperature characteristics shown in Figure 2, and silicon diode 4
is 1S955 with the temperature characteristics shown in Figure 6, and R L =
Assuming that it is 300KΩ, the constant is calculated as follows. Between 20℃ and 60℃, Δe′ 0 = 2.82mV ΔI R = 57.5nA from equation (11), so R 1 = 2.82×10 -3 /57.5×10 -9 = 4.9×10 4 [Ω] That is, R 1 =49KΩ. On the other hand, if the optimal reference voltage at 20°C is e 3 (20°C), the output voltage e 4 of the constant voltage source 5 is e 4 = e 3 (20°C) + 4.9×10 4 ×3×10 -9 It is sufficient to set it as = e 3 (20℃) + 1.47×10 -4 [V].

なお、コンパレータ3の段階で温度補償する場
合も、第8図のシリコンダイオード4の代りに
PINフオトダイオードを逆バイアスで用いてその
暗電流で補償することができる。この場合はRL
=R1となる。また、光電変換素子がAPDであれ
ば、同じくシリコンダイオード4の代りにAPD
を逆バイアスにして用いれば良い。
In addition, when temperature compensation is performed at the stage of comparator 3, the silicon diode 4 in Fig. 8 can be replaced with
A PIN photodiode can be used in reverse bias to compensate for its dark current. In this case R L
= R1 . Also, if the photoelectric conversion element is an APD, use the APD instead of the silicon diode 4.
It can be used with reverse bias.

更に付言するに、補償用のダイオードと直列、
並列あるいは直並列の如く抵抗を接続すれば見掛
け上の温度特性を変化するこができるので、受光
用光電変換素子の暗電流温度特性とかなり異なる
特性のダイオードを補償用に用いることができ、
またシリコンダイオード等の順電圧を用いること
も可能である。
Furthermore, in series with the compensation diode,
By connecting resistors in parallel or in series and parallel, the apparent temperature characteristics can be changed, so a diode with characteristics quite different from the dark current temperature characteristics of the photoelectric conversion element for light reception can be used for compensation.
It is also possible to use a forward voltage such as a silicon diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はデジタル光受信機の従来例の回路図、
第2図はPINフオトダイオードの暗電流温度特性
のグラフ、第3図は第1図の従来例におけるデー
タ誤り率温度特性のグラフ、第4図a,bはデー
タ誤り率増加を説明するための波形図、第5図は
本発明の一実施例の回路図、第6図は温度補償用
シリコンダイオードの逆電流温度特性のグラフ、
第7図は温度補償効果を示すグラフ、第8図は他
の実施例の回路図である。 図面中、1は受光用PINフオトダイオード、2
はヘツドアンプ、3はコンパレータ、4は補償用
シリコンダイオード、5は定電圧源である。
Figure 1 is a circuit diagram of a conventional example of a digital optical receiver.
Figure 2 is a graph of the dark current temperature characteristics of the PIN photodiode, Figure 3 is a graph of the data error rate temperature characteristics of the conventional example in Figure 1, and Figures 4a and b are graphs of the temperature characteristics of the data error rate for the conventional example shown in Figure 1. A waveform diagram, FIG. 5 is a circuit diagram of an embodiment of the present invention, and FIG. 6 is a graph of reverse current temperature characteristics of a silicon diode for temperature compensation.
FIG. 7 is a graph showing the temperature compensation effect, and FIG. 8 is a circuit diagram of another embodiment. In the drawing, 1 is a PIN photodiode for light reception, 2
3 is a head amplifier, 3 is a comparator, 4 is a compensation silicon diode, and 5 is a constant voltage source.

Claims (1)

【特許請求の範囲】[Claims] 1 光信号に対応し光電変換素子を含む回路によ
り得られる信号電圧の前記光電変換素子の暗電流
温度特性に基づく温度変化分を補償する電圧源と
して、ダイオードを含みこのダイオードに基づく
温度特性の補償電圧を発生する回路を備え、且つ
この補償電圧の温度変化分で前記信号電圧の温度
変化分を相殺する回路とを備えたことを特徴とす
る光受信機。
1 A diode is included as a voltage source that compensates for a temperature change based on the dark current temperature characteristics of the photoelectric conversion element in a signal voltage obtained by a circuit that corresponds to an optical signal and includes a photoelectric conversion element, and the temperature characteristics are compensated for based on this diode. An optical receiver comprising: a circuit that generates a voltage; and a circuit that offsets a temperature change in the signal voltage with a temperature change in the compensation voltage.
JP56099681A 1981-06-29 1981-06-29 Optical receiver Granted JPS583335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56099681A JPS583335A (en) 1981-06-29 1981-06-29 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56099681A JPS583335A (en) 1981-06-29 1981-06-29 Optical receiver

Publications (2)

Publication Number Publication Date
JPS583335A JPS583335A (en) 1983-01-10
JPS6324576B2 true JPS6324576B2 (en) 1988-05-21

Family

ID=14253768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56099681A Granted JPS583335A (en) 1981-06-29 1981-06-29 Optical receiver

Country Status (1)

Country Link
JP (1) JPS583335A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783067A (en) * 1980-11-11 1982-05-24 Toshiba Corp Photoreceiving device
JPS57114116A (en) * 1981-01-07 1982-07-15 Canon Inc Image forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783067A (en) * 1980-11-11 1982-05-24 Toshiba Corp Photoreceiving device
JPS57114116A (en) * 1981-01-07 1982-07-15 Canon Inc Image forming device

Also Published As

Publication number Publication date
JPS583335A (en) 1983-01-10

Similar Documents

Publication Publication Date Title
US4096382A (en) Photo-current log-compression circuit
US4730128A (en) Bias circuit for an avalanche photodiode
US6919716B1 (en) Precision avalanche photodiode current monitor
JPH0671186B2 (en) Logarithmic amplifier circuit
US4599527A (en) Device for stabilizing gain of a photosensitive avalanche member
JPH10276048A (en) Offset compensation circuit
JPH0257740B2 (en)
JPS6324576B2 (en)
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JPH0315859B2 (en)
JPS584274Y2 (en) Fiber optic digital link receiver circuit
JP2558691B2 (en) AC light component amplifier
JPH0690046A (en) Optical monitor circuit
JP7073609B2 (en) Optical receiver and power monitoring method for optical receiver
JPH0351723Y2 (en)
JP2688745B2 (en) Voltage output circuit of semiconductor light receiving element
JPH07183559A (en) Electric supply circuit for particularly apd
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
SU1492226A1 (en) Photodetector
JPS5995711A (en) Driving circuit of avalanche photodiode
CN116545390A (en) Operational amplifier circuit and photoelectric detection system
JPH0576209B2 (en)
JP3157364B2 (en) Signal isolation circuit
SU1510684A1 (en) Photoelectric current amlifier
JPH0522833Y2 (en)