JPS63244763A - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device

Info

Publication number
JPS63244763A
JPS63244763A JP62078584A JP7858487A JPS63244763A JP S63244763 A JPS63244763 A JP S63244763A JP 62078584 A JP62078584 A JP 62078584A JP 7858487 A JP7858487 A JP 7858487A JP S63244763 A JPS63244763 A JP S63244763A
Authority
JP
Japan
Prior art keywords
voltage
substrate
layer
memory device
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078584A
Other languages
Japanese (ja)
Other versions
JP2713901B2 (en
Inventor
Ryohei Kirisawa
桐澤 亮平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7858487A priority Critical patent/JP2713901B2/en
Publication of JPS63244763A publication Critical patent/JPS63244763A/en
Application granted granted Critical
Publication of JP2713901B2 publication Critical patent/JP2713901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a high-precision programming voltage by a method wherein a constant-voltage diode in a substrate is so structured that a depletion layer therein may extend, centripetally or diffusion-wise, in the lateral direction in the substrate and that a p-n junction portion prone to break down is contained in the substrate. CONSTITUTION:After the formation of an element-isolating region in a p<->-type Si substrate 1, a channel stopper layer 5 is formed, a prescribed distance back from the end of the element-isolating region. A thermal oxide film 6 is formed in the element-isolating region, a masking material 7 is formed provided with a ring-geometry opening, and the As ions are implanted for the formation of an n<+>-type layer 2. Next, a masking material 8 is formed provided with an opening at thc middle of the element, and then boron ions are implanted for the formation of a thick p-type layer 3. A CVD SiO2 film 9 is deposited, which is provided with contact holes for the construction of Al wirings 10, 11. The Al wiring 11 is formed into a ring, symmetrical to the pattern of the n<+>-type layer 2.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電気的書替えを可能とした不揮発性半導体記
憶装置に係り、特に書込みまたは消去のために電源電圧
より高いプログラミング電圧を得る定電圧ダイオードの
部分の改良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-volatile semiconductor memory device that is electrically rewritable, and particularly relates to a non-volatile semiconductor memory device that enables electrical rewriting, and in particular, programming that is higher than the power supply voltage for writing or erasing. This invention relates to improvements in the part of the constant voltage diode that obtains the voltage.

(従来の技術) 電気的にIIえ可能とした不揮発性半導体記憶装置(E
2 FROM>のメモリセルは、浮遊ゲ−トと制卸ゲー
トを持つMOSトランジスタ構造を有し、浮遊ゲートへ
の電荷注入のみならず、浮遊ゲートの電荷放出をも電気
的に行うよう工夫されている。例えばそのメモリセルは
、書替え領域の基板と浮遊ゲートとの間にトンネル電流
が流れ得る極薄絶縁膜を設けた構造とする。この様な構
造のnチャネルのメモリセルでの情報消去動作は、制御
ゲートに正の高電圧を印加し、ドレインを接地して基板
から電子を極薄絶縁膜を通して浮遊ゲートに注入するこ
とにより行われる。情報の書込みは、制御ゲートを接地
し、ドレインに正の高電圧を印加して、浮遊ゲートの電
子を極薄絶縁膜を通して基板に放出させることにより行
われる。これらの電気的書込み、消去に用いられる高電
圧(プログラミング電圧)は、昇圧回路と定電圧回路を
用いて作られる。
(Prior art) Non-volatile semiconductor memory device (E
2 FROM> memory cell has a MOS transistor structure with a floating gate and a control gate, and is devised to electrically perform not only charge injection into the floating gate but also charge discharge from the floating gate. There is. For example, the memory cell has a structure in which an extremely thin insulating film through which a tunnel current can flow is provided between the substrate in the rewrite area and the floating gate. Information erasure in an n-channel memory cell with such a structure is performed by applying a high positive voltage to the control gate, grounding the drain, and injecting electrons from the substrate into the floating gate through an extremely thin insulating film. be exposed. Information is written by grounding the control gate, applying a high positive voltage to the drain, and emitting electrons from the floating gate to the substrate through the extremely thin insulating film. The high voltage (programming voltage) used for electrical writing and erasing is generated using a booster circuit and a constant voltage circuit.

この様なE” FROMでの情報書替え動作では、浮遊
ゲートと1llJIIlゲートの間の絶縁膜に高電界が
かかるため、メモリセルの信頼性上前述のプログラミン
グ電圧は精度の高いものであることが要求される。例え
ば、プログラミング電圧が設定値より高いと、書替えを
繰返すうちにゲート絶縁膜が容易に破壊する。具体的に
メモリセルのゲート絶縁膜の膜厚が400人程度とし、
プログラミング電圧が20Vとすると、このプログラミ
ング電圧が僅か1v増加するだけで絶縁膜が破壊するま
での寿命は1/2にまで減少する。逆に、プログラミン
グ電圧が低下すると、メモリセルの書込み時と消去時の
しきい値電圧の差が減少し、メモリセルの“0″ 41
″判定のマージンが小さくなるという結果を招く。
In the information rewriting operation in such an E"FROM, a high electric field is applied to the insulating film between the floating gate and the 1llJIIl gate, so the programming voltage mentioned above must be highly accurate in order to ensure the reliability of the memory cell. For example, if the programming voltage is higher than the set value, the gate insulating film will be easily destroyed as rewriting is repeated.Specifically, the thickness of the gate insulating film of the memory cell is about 400 mm.
Assuming that the programming voltage is 20V, the lifetime until the insulating film breaks down is reduced by half if the programming voltage increases by only 1V. Conversely, as the programming voltage decreases, the difference in threshold voltage between writing and erasing a memory cell decreases, reducing the memory cell's “0” 41
``This results in a narrower margin for judgment.

ところで20V程度の高電圧を定電圧化するためには、
アバランシェを利用したダイオードが必要である。この
様な定電圧ダイオードは、通常基板と表面パシベーショ
ン膜の界面に電荷が蓄積されることによりブレークダウ
ン電圧が増加するという経時変化を示す。この経時変化
は前述した高精度のプログラミング電圧を得る上で大き
い障害となる。
By the way, in order to make a high voltage of about 20V constant,
A diode that uses avalanche is required. Such a constant voltage diode normally exhibits a change over time in which the breakdown voltage increases due to charge accumulation at the interface between the substrate and the surface passivation film. This change over time becomes a major obstacle in obtaining the above-mentioned highly accurate programming voltage.

この様な経時変化の少ない定電圧ダイオード構造として
従来、第7因に示すものが提案されている。p−型SK
1板51の表面部にn+型層52が形成され、このn“
型層52の中央部にこれより低濃度で深くp型層53が
形成されている。
Conventionally, as a constant voltage diode structure with little change over time, the structure shown in the seventh factor has been proposed. p-type SK
An n+ type layer 52 is formed on the surface of the first plate 51, and this n"
A p-type layer 53 is formed in the center of the type layer 52 at a lower concentration and deeper.

54は素子分離絶縁膜であり、55はチャネル・ストッ
パ層である。この構造では、pn接合は基板表面に終端
しない。また定電圧を得るpn接合は基板内部に、n+
型層52の先端がp型層53を横切る部分に形成される
。このダイオード構造では、表面ブレークダウンより先
に基板内部でブレークダウンを生じるため、前述したよ
うにパシベーション膜の界面に電荷が蓄積されることに
よるブレークダウン電圧の上昇という経時変化が軽減さ
れる。
54 is an element isolation insulating film, and 55 is a channel stopper layer. In this structure, the pn junction does not terminate at the substrate surface. In addition, the pn junction that obtains a constant voltage is located inside the substrate.
The tip of the type layer 52 is formed at a portion crossing the p-type layer 53. In this diode structure, breakdown occurs inside the substrate before breakdown occurs on the surface, so that the increase in breakdown voltage over time due to charge accumulation at the interface of the passivation film, as described above, is reduced.

しかしながら、この第7図の定電圧ダイオードには次の
ような問題がある。先ず、ブレークダウン電圧は逆バイ
アス印加時に、n+型層52の先端部に形成されるpn
接合から下に突出する低濃度のp型層53内に伸びる空
乏層の伸び方により決まるから、p型層53を基板内部
に十分に深く形成しなければならない。例えばp型1f
53の形成には、高い加速電圧でイオン注入を行うこと
が必要である。ところがこのようにp型層53を深く形
成して基板内部にpn接合を形成する構造では、深さ方
向の不純物濃度分布によりブレークダウン電圧が決まる
から、ブレークダウン電圧を高精度に設定することが難
しい。従ってこの定電圧ダイオードを用いてE2 FR
OMのプログラミング電圧を生成した場合、製造条件に
よるバラツキが大きく、前述したようなE2PROM1
.:要求される高精度のプログラミング電圧を得ること
は難しい。また、例えば20V程度のブレークダウン電
圧を得るためには、p型層53のイオン注入の加速電圧
を200keV以上としなければならず、イオン注入装
置が高価なものとなる。
However, the voltage regulator diode shown in FIG. 7 has the following problems. First, the breakdown voltage is determined by the pn voltage formed at the tip of the n+ type layer 52 when a reverse bias is applied.
The p-type layer 53 must be formed sufficiently deep inside the substrate because it depends on how the depletion layer extends into the low concentration p-type layer 53 that protrudes downward from the junction. For example, p-type 1f
The formation of 53 requires ion implantation at a high acceleration voltage. However, in this structure in which the p-type layer 53 is formed deeply to form a pn junction inside the substrate, the breakdown voltage is determined by the impurity concentration distribution in the depth direction, so it is difficult to set the breakdown voltage with high precision. difficult. Therefore, using this constant voltage diode, E2 FR
When generating programming voltage for OM, there are large variations depending on manufacturing conditions, and as mentioned above, E2PROM1
.. : It is difficult to obtain the required high precision programming voltage. Further, in order to obtain a breakdown voltage of about 20 V, for example, the acceleration voltage for ion implantation of the p-type layer 53 must be set to 200 keV or more, which makes the ion implantation device expensive.

(発明が解決しようとする問題点) 以上のようにE” PROMでは、書込みおよび消去の
ためのプログラミング電圧として極めて精度の高い高電
圧が要求されてし\るにも拘らず、従来の定電圧ダイオ
ードではこの要求に応えることができない、という問題
があった。
(Problems to be Solved by the Invention) As described above, in E" PROM, extremely high precision high voltage is required as programming voltage for writing and erasing, but conventional constant voltage The problem was that diodes could not meet this requirement.

本発明は上記の点に鑑みなされたもので、極めて高精度
のプログラミング電圧を得ることを可能とした定電圧ダ
イオードを扁えたE” PROMを提供することを目的
とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an E'' PROM equipped with a constant voltage diode that makes it possible to obtain extremely high precision programming voltage.

[発明の構成] (問題点を解決するための手段) 本発明は、E2PROMのプログラミング電圧を得るた
めの昇圧回路の出力端に設ける定電圧ダイオードを、一
方が第1導電型基板の素子分離された領域内中央部に、
他方がその周辺部に一部重なるように形成゛された、第
1導電型の低不純物濃度層と第2導電型の高不純物濃度
層とから構成し、且つその低不純物濃度層は不純物濃度
分布のピークを基板表面より深い位置に設定したことを
特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a constant voltage diode provided at the output end of a booster circuit for obtaining a programming voltage for an E2PROM, one of which is separated from the elements of a first conductivity type substrate. In the center of the area,
It is composed of a low impurity concentration layer of a first conductivity type and a high impurity concentration layer of a second conductivity type, the other being formed so as to partially overlap the peripheral portion thereof, and the low impurity concentration layer has an impurity concentration distribution. The peak is set at a position deeper than the substrate surface.

(作用) この様な定電圧ダイオード構成とすれば、第1導電型の
低不純物濃度層と第2導電型の高不純物濃度層からなる
ρn接合面は基板にほぼ垂直になる。換言すれば、逆バ
イアスが印加された時、空乏層は第1導電型の低不純物
濃度層内に横方向に伸びる。つまりダイオードの逆方向
耐圧特性を決定するのは基板の横方向の不純物濃度分布
であり、従来のように基板の縦方向の不純物濃度による
ものと比べて高精度のブレークダウン電圧が得られ、製
造条件による特性のバラツキも少ない。
(Function) With such a constant voltage diode configuration, the ρn junction surface consisting of the first conductivity type low impurity concentration layer and the second conductivity type high impurity concentration layer is approximately perpendicular to the substrate. In other words, when a reverse bias is applied, the depletion layer extends laterally within the first conductivity type low impurity concentration layer. In other words, it is the impurity concentration distribution in the horizontal direction of the substrate that determines the reverse breakdown voltage characteristics of the diode, and it is possible to obtain a breakdown voltage with high accuracy compared to the conventional method based on the impurity concentration in the vertical direction of the substrate. There is also little variation in characteristics depending on conditions.

また、空乏層が基板の横方向に伸びるため、第1導電型
の低不純物IIIII!層をそれ程深く形成する必要が
なく、この定不純物濃度層形成時のイオン注入加速電圧
をそれ程高くする必要がない。しかも、第11電型の低
不純物濃度層は基板内部に木純物分布のピークを持つか
ら、そのpn接合のブレークダウン電圧を決定する部分
は基板表面位置より所定距離深い基板内部であり、ブレ
ークダウン電圧の上昇という経時変化は少ない。以上の
ように本発明の定電圧ダイオードにより生成されるプロ
グラミング電圧は極めて高精度であり、Et FROM
の信頼性向上および性能向上が図られる。
Moreover, since the depletion layer extends in the lateral direction of the substrate, the low impurity of the first conductivity type III! There is no need to form the layer so deeply, and there is no need to increase the ion implantation acceleration voltage so high when forming this constant impurity concentration layer. Moreover, since the 11th conduction type low impurity concentration layer has a peak of the wood purity distribution inside the substrate, the part that determines the breakdown voltage of the pn junction is inside the substrate a predetermined distance below the substrate surface position, and the breakdown There is little change over time in the form of an increase in down voltage. As described above, the programming voltage generated by the voltage regulator diode of the present invention has extremely high precision, and the Et FROM
This will improve reliability and performance.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第4図は、本発明の一実施例のE” PROMの全体構
成を示す。メモリセルMCは、浮遊ゲートとII Il
lゲートを有するメモリトランジスタQMとこれに直列
接続されたスイッチングトランジスタQsとから構成さ
れ、これがマトリクス配列されている。21はロウ・デ
コーダ、22はカラム・デコーダ、23はメモリセルの
ソースバイアス回路、24はセンスアンプ、27はデー
タデコーダである。25は昇圧回路であり、その出力は
定電圧ダイオード26により振幅が一定値に設定されて
プログラミング電圧Vpとして各部に供給されている。
FIG. 4 shows the overall configuration of an E'' PROM according to an embodiment of the present invention.A memory cell MC has a floating gate and a
It is composed of a memory transistor QM having an l gate and a switching transistor Qs connected in series with the memory transistor QM, which are arranged in a matrix. 21 is a row decoder, 22 is a column decoder, 23 is a memory cell source bias circuit, 24 is a sense amplifier, and 27 is a data decoder. 25 is a booster circuit, the output of which is set to a constant amplitude by a constant voltage diode 26 and is supplied to various parts as a programming voltage Vp.

ロウ・デコーダ21により選ばれたOつに沿ったスイッ
チングトランジスタQsとバイト選択用トランジスタQ
Rが駆動されると、選ばれた1バイト分につきカラムデ
コーダ22により選択的に書込み、vtみ出しなどが行
われる。
The switching transistor Qs and the byte selection transistor Q along the O selected by the row decoder 21
When R is driven, the column decoder 22 selectively performs writing, vt extraction, etc. for one selected byte.

第4図中、破線で囲んだメモリセルMCに着目して書替
え、読み出し動作を簡単に説明すると、次の通りである
。書込み時は、ロウ・デコーダ211の出力がプログラ
ミング電圧Vp=20V。
A brief description of the rewrite and read operations focusing on the memory cell MC surrounded by a broken line in FIG. 4 is as follows. During writing, the output of the row decoder 211 is the programming voltage Vp=20V.

カラム・デコーダ2221の出力が同じ<Vp、カラム
・デコーダ2211の出力はVss、データ線デコーダ
27の選択された出力がやはりVpであり、セルバイア
ス回路23の出力は70−ティングとなる。これにより
選択されたメモリセルMCのメモリトランジスタQMで
は、ドレインが20v1制御ゲートが0■となり、浮遊
ゲートに蓄積されていた電子が基板に放出される。消去
時は、カラム・デコーダ2211の出力がVp1カラム
・デコーダ2221およびロウ・デコーダ211の出力
もVP1データ線デコーダ27およびセルバイアス回路
の出力がVssとなる。これにより選択されたメモリト
ランジスタQyでは、浮遊ゲートに電子が注入される。
The output of the column decoder 2221 is the same <Vp, the output of the column decoder 2211 is Vss, the selected output of the data line decoder 27 is also Vp, and the output of the cell bias circuit 23 is 70-ting. As a result, in the memory transistor QM of the selected memory cell MC, the drain becomes 20v1 and the control gate becomes 0■, and the electrons stored in the floating gate are released to the substrate. During erasing, the output of the column decoder 2211 becomes Vp1, the output of the column decoder 2221 and the row decoder 211, the output of the VP1 data line decoder 27 and the cell bias circuit become Vss. Electrons are injected into the floating gate of the selected memory transistor Qy.

情報読み出しにはプログラミング電圧Vpは用いられな
い。即ち、ロウ・デコーダ211の出力およびカラム・
デコーダ2221の出力をVCCN他の出力を全てVs
sとすることにより、メモリトランジスタQMのオン、
オフ状態が読取られる。
Programming voltage Vp is not used for information reading. That is, the output of the row decoder 211 and the column
The output of the decoder 2221 is VCCN, and all other outputs are Vs.
By setting s, the memory transistor QM is turned on,
Off state is read.

第5図は、メモリセルMCの具体的な構造例である。メ
モリトランジスタQMは、p型81基板31にソース、
ドレインとなるn4−型1136゜39が形成され、そ
のチャネル領域上にゲート絶縁lR32を介して浮遊ゲ
ート33が形成され、更にこの上ににゲート絶縁膜34
を介して1llllゲート35が形成されている。書替
え領域の基板表面にはソースとつながるn型層4oが予
め形成されており、この上に基板と浮遊ゲート33との
間で電荷の授受を行うための極薄絶縁1141が形成さ
れている。スイッチングトランジスタQBは、メモリト
ランジスタQvのソースと共通の09型層36をソース
とし、ドレインとなるn+型層38が形成され、これら
の間のチャネル領域上にゲート絶縁膜を介して二層構造
のゲート電極37が形成されて構成されている。二層の
ゲート電極37は他の箇所でコンタクト孔を介して共通
接続されている。
FIG. 5 shows a specific structural example of the memory cell MC. The memory transistor QM has a source and a p-type 81 substrate 31,
An n4-type 1136°39 which becomes a drain is formed, a floating gate 33 is formed on the channel region via a gate insulating layer 32, and a gate insulating film 34 is further formed on this.
A gate 35 is formed through the gate. An n-type layer 4o connected to the source is previously formed on the surface of the substrate in the rewrite area, and an ultra-thin insulator 1141 for transferring charge between the substrate and the floating gate 33 is formed on this. The switching transistor QB uses the 09 type layer 36 which is common to the source of the memory transistor Qv as a source, and the n+ type layer 38 which becomes the drain is formed, and a two-layer structure is formed on the channel region between these with a gate insulating film interposed therebetween. A gate electrode 37 is formed and configured. The two-layer gate electrodes 37 are commonly connected through contact holes at other locations.

第1図(aン (b)は、昇圧口!!25の出力端に設
けられた、プログラミング電圧Vpを得るための定電圧
ダイオード26部分の構造を示す平面図とそのA−A−
断面図である。p−型81M板1の素子分離された領域
の中央部に深いp型Jii3が形成され、このp型層3
の周辺に一部重なるように周囲を取囲んで、カソード領
域となるn+型12が形成されている。4は素子分離絶
縁膜であり、5はチャネル・ストッパ層であり、6は熱
酸化膜である。ダイオード領域は図示のように素子分離
領域の端部から距離a1だけ離してあり、またチャネル
・ストッパ層5はその先端部を素子分離領域端部から距
l11a2だけ後退させている。
FIG. 1(a) and (b) are plan views showing the structure of the constant voltage diode 26 provided at the output end of the booster port!!25 for obtaining the programming voltage Vp, and its A-A-
FIG. A deep p-type Jii3 is formed in the center of the element-isolated region of the p-type 81M board 1, and this p-type layer 3
An n+ type 12, which becomes a cathode region, is formed surrounding the periphery so as to partially overlap the periphery of the . 4 is an element isolation insulating film, 5 is a channel stopper layer, and 6 is a thermal oxide film. As shown, the diode region is spaced a distance a1 from the end of the isolation region, and the tip of the channel stopper layer 5 is set back a distance l11a2 from the end of the isolation region.

この定電圧ダイオードの具体的な製造工程を、第2図(
a)〜(d)により説明する。先ず(a)に示すように
、p−型Si基板1の素子分離領域を形成する。チャネ
ル・ストッパ層5は前述のように素子分離領域端部より
所定路Ill後退させて形成する。素子形成領域にはこ
の後例えば300人の熱酸化膜6を形成する。そしてこ
の後、(b)に示すようにリング状開口を持つ第1のマ
スク材7を形成し、Asをイオン注入してn1型層2を
形成する。このときイオン注入条件は例えば、加速電圧
40keV、ドーズ量4.5〜6.0X10”101”
とする。次に(C)に示すように、改めて素子中央部に
開口を持つマスク材8を形成し、ボロンをイオン注入し
て深いp型層3を形成する。p型層13はその周辺部が
n+型層2の一部と重なる。このp型層3のイオン注入
条件は例えば、加速電圧150〜180keV、ドーズ
量2.5〜3.0x1012 /α2とする。これらイ
オン注入後、酸化膜6が形成されている状態で02雰囲
気中で900〜950℃、20〜30分の熱処理を行う
。そして最後に(d)に示すように、CVD5 I 0
219を堆積し、コンタクト孔を開けてへ2配線10.
11を形成する。へβ配miiは、n1型層2のパター
ンと相似形をなしてリング状に形成される。
The specific manufacturing process of this voltage regulator diode is shown in Figure 2 (
This will be explained using a) to (d). First, as shown in (a), an element isolation region of a p-type Si substrate 1 is formed. As described above, the channel stopper layer 5 is formed at a predetermined distance Ill from the end of the element isolation region. Thereafter, a thermal oxide film 6 of, for example, 300 layers is formed in the element formation region. Thereafter, as shown in FIG. 3B, a first mask material 7 having a ring-shaped opening is formed, and As is ion-implanted to form an n1 type layer 2. At this time, the ion implantation conditions are, for example, an acceleration voltage of 40 keV and a dose of 4.5 to 6.0×10"101".
shall be. Next, as shown in (C), a mask material 8 having an opening at the center of the element is formed again, and boron ions are implanted to form a deep p-type layer 3. A peripheral portion of the p-type layer 13 overlaps with a portion of the n+-type layer 2 . The ion implantation conditions for this p-type layer 3 are, for example, an acceleration voltage of 150 to 180 keV and a dose of 2.5 to 3.0×10 12 /α2. After these ion implantations, heat treatment is performed at 900 to 950° C. for 20 to 30 minutes in an 02 atmosphere with the oxide film 6 formed. And finally, as shown in (d), CVD5 I 0
Deposit 219, open a contact hole, and connect to 2 wiring 10.
11 is formed. The β pattern is formed in a ring shape similar to the pattern of the n1 type layer 2.

第3図は、この定電圧ダイオードの第1図(b)でnゝ
型層2とp型層3が互いに重なるB−B −位置での深
さ方向の不純物11度分布である。p型層3の不純物濃
度のピーク位置は04″型層2の先端よりも深い位置に
ある。
FIG. 3 shows the impurity 11 degree distribution in the depth direction of this constant voltage diode at the BB- position where the n-type layer 2 and the p-type layer 3 overlap each other in FIG. 1(b). The peak position of the impurity concentration of the p-type layer 3 is located deeper than the tip of the 04'' type layer 2.

この実施例による定電圧ダイオードでは、逆バイアス時
、空乏層はリング状のnI型層2がらp型層3内に横方
向に伸び、ブレークダウンは基板内部のpn接合部分で
生じる。従ってこの定電圧ダイオードにより得られるプ
ログラミング電圧Vpは、1ilI変化が少ないことは
勿論、イオン注入加速電圧依存性の少ない安定した高精
度の値となる。これにより、E2 PROMの信頼性向
上と性能向上が図られる。また定電圧ダイオードは横方
向の空乏層の拡がりを利用するため、p型層3を従来の
ように深く形成することは必要ではなく、従来のような
高加速電圧を用いる必要がない。
In the constant voltage diode according to this embodiment, during reverse bias, the depletion layer extends laterally from the ring-shaped nI type layer 2 into the p type layer 3, and breakdown occurs at the pn junction inside the substrate. Therefore, the programming voltage Vp obtained by this constant voltage diode has a stable and highly accurate value with less dependence on the ion implantation accelerating voltage as well as less variation in IilI. This improves the reliability and performance of the E2 PROM. Further, since the constant voltage diode utilizes the spread of the depletion layer in the lateral direction, it is not necessary to form the p-type layer 3 deeply as in the conventional case, and there is no need to use a high acceleration voltage as in the conventional case.

上記実施例の定電圧ダイオードでは、MMiと同じ導電
型のp型層3を素子領域中央部に、カソードとなるn+
型1iI2をこのp型WA3の周囲に設けたが、これら
の配置を逆にすることができる。その場合の断面構造を
第1図(b)に対応させて第6図に示す。この構造の先
の実施例のものと比較した時の動作上の相違は、逆バイ
アス時の空乏層の伸び方が素子中心部に向かう(求心的
)か、素子中心から外方に伸びる(拡散的)かの違いで
ある。これらは基板の横方向に空乏層が伸びるという点
で本質的に同じであり、縦方向の不純物濃度分布を先の
実施例と同様に設定すれば、先の実施例と同様の作用効
果が得られる。
In the constant voltage diode of the above embodiment, the p-type layer 3 having the same conductivity type as MMi is placed in the center of the element region, and the n+
Although the type 1iI2 is provided around this p-type WA3, their arrangement can be reversed. The cross-sectional structure in that case is shown in FIG. 6, corresponding to FIG. 1(b). The operational difference between this structure and the previous embodiment is that the depletion layer during reverse bias either extends toward the center of the device (centripetal) or extends outward from the center of the device (diffused). There is a difference between These are essentially the same in that the depletion layer extends in the horizontal direction of the substrate, and if the vertical impurity concentration distribution is set in the same way as in the previous example, the same effects as in the previous example can be obtained. It will be done.

本発明は上記実施例に限られるものではなく、その趣旨
を逸脱しない範囲で種々変形して実施することが可能で
ある。
The present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、高いプログラミング
電圧を得るための定電圧ダイオードを、基板の横方向に
求心的に或いは拡散的に空乏層が伸びる構造とし、且つ
ブレークダウンを生じるpn接合部分が基板内部に位置
するように構成することにより、^精度且つ安定なプロ
グラミング電圧を得ることができ、従ってE2 PRO
Mの信頼性向上および性能向上を図ることができる。
[Effects of the Invention] As described above, according to the present invention, a constant voltage diode for obtaining a high programming voltage has a structure in which the depletion layer extends centripetally or diffusely in the lateral direction of the substrate, and the breakdown By configuring the pn junction part that generates the E2 PRO
It is possible to improve the reliability and performance of M.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明の一実施例のE2 PRO
Mにおける定電圧ダイオードの構造を示す図、第2図(
a)〜(d)はその製造工程を示す図、第3図は同じく
その不純物濃度分布を示す図、第4図はそのE2 FR
OMの全体構成を示す等価回路図、第5図(a)〜(C
)は同じくそのメモリセルの構造を示す図、第6図は他
の実施例のE2 FROMの定電圧ダイオードの構造を
示す図、第7図は従来の定電圧ダイオードの構造を示す
図である。 1・・・p−型S1基板、2・・・n+型層、3・・・
p型層。4・・・素子分離絶縁膜、5・・・チャネル・
ストッパ層、6・・・熱酸化膜、7,8・・・マスク材
、MC・・・メモリセル、QM・・・メモリトランジス
タ、Qw・・・スイッチングトランジスタ、QR,Qc
・・・選択トランジスタ、21・・・ロウ・デコーダ、
22・・・カラム・デコーダ、23・・・セルバイアス
回路、24・・・センスアンプ、25・・・昇圧回路、
26・・・定電圧ダイオード、27・・・データ線デコ
ーダ。 出願人代理人 弁理士 鈴江武彦 第10 (a) s ) + 各 22++++ 第2 口 (d) @2 図 (a) 第60
FIGS. 1(a) and 1(b) show E2 PRO according to an embodiment of the present invention.
A diagram showing the structure of a constant voltage diode in M, Fig. 2 (
a) to (d) are diagrams showing the manufacturing process, Figure 3 is a diagram showing the impurity concentration distribution, and Figure 4 is the E2 FR.
Equivalent circuit diagrams showing the overall configuration of OM, Figures 5(a) to (C
) is a diagram showing the structure of the memory cell, FIG. 6 is a diagram showing the structure of a constant voltage diode of E2 FROM of another embodiment, and FIG. 7 is a diagram showing the structure of a conventional constant voltage diode. 1... p- type S1 substrate, 2... n+ type layer, 3...
p-type layer. 4... Element isolation insulating film, 5... Channel
Stopper layer, 6... Thermal oxide film, 7, 8... Mask material, MC... Memory cell, QM... Memory transistor, Qw... Switching transistor, QR, Qc
... selection transistor, 21 ... row decoder,
22... Column decoder, 23... Cell bias circuit, 24... Sense amplifier, 25... Boost circuit,
26... Constant voltage diode, 27... Data line decoder. Applicant's agent Patent attorney Takehiko Suzue No. 10 (a) s) + each 22++++ 2nd mouth (d) @2 Figure (a) No. 60

Claims (3)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上に、電気的に書替え可
能な不揮発性メモリセルをマトリクス配列したメモリア
レイ、選択的にメモリセルの情報読み出し、書込みおよ
び消去を行うための制御回路、選択されたメモリセルに
情報書込みまたは消去を行うための電源電圧より高い電
圧を発生する昇圧回路、およびこの昇圧回路からの出力
電圧を一定値に設定してプログラミング電圧を得るため
の定電圧ダイオードが集積形成された不揮発性半導体記
憶装置において、前記定電圧ダイオードは、前記第1導
電型半導体基板の素子分離された領域内に、一方がその
領域中央部に、他方がその周辺に一部重なるように形成
された第1導電型の低不純物濃度層と第2導電型の高不
純物濃度層とから構成され、且つ前記低不純物濃度層の
不純物分布のピークが基板表面より深い位置に設定され
ていることを特徴とする不揮発性半導体記憶装置。
(1) A memory array in which electrically rewritable nonvolatile memory cells are arranged in a matrix on a first conductivity type semiconductor substrate, a control circuit for selectively reading, writing and erasing information in the memory cells, and selection. It integrates a booster circuit that generates a voltage higher than the power supply voltage for writing or erasing information into memory cells, and a constant voltage diode that sets the output voltage from this booster circuit to a constant value to obtain a programming voltage. In the formed nonvolatile semiconductor memory device, the constant voltage diodes are arranged in the device-isolated region of the first conductivity type semiconductor substrate, one of which partially overlaps the center of the region, and the other partially overlaps the periphery of the region. It is composed of a first conductivity type low impurity concentration layer and a second conductivity type high impurity concentration layer, and the peak of the impurity distribution of the low impurity concentration layer is set at a position deeper than the substrate surface. A nonvolatile semiconductor memory device characterized by:
(2)前記定電圧ダイオードを構成する不純物層は、素
子分離領域の端部から所定距離離して形成されている特
許請求の範囲第1項記載の不揮発性半導体記憶装置。
(2) The nonvolatile semiconductor memory device according to claim 1, wherein the impurity layer constituting the constant voltage diode is formed at a predetermined distance from an end of the element isolation region.
(3)前記低電圧ダイオードの周囲の素子分離領域の基
板表面に形成されたチャネル・ストッパ層はその先端部
が、素子分離領域端部より後退している特許請求の範囲
第1項記載の不揮発性半導体記憶装置。
(3) The channel stopper layer formed on the substrate surface of the element isolation region around the low voltage diode has a tip thereof set back from an edge of the element isolation region. semiconductor memory device.
JP7858487A 1987-03-31 1987-03-31 Nonvolatile semiconductor memory device Expired - Fee Related JP2713901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7858487A JP2713901B2 (en) 1987-03-31 1987-03-31 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7858487A JP2713901B2 (en) 1987-03-31 1987-03-31 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS63244763A true JPS63244763A (en) 1988-10-12
JP2713901B2 JP2713901B2 (en) 1998-02-16

Family

ID=13665958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7858487A Expired - Fee Related JP2713901B2 (en) 1987-03-31 1987-03-31 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2713901B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100373A (en) * 1988-10-07 1990-04-12 Mitsubishi Electric Corp Semiconductor device
JPH04174540A (en) * 1990-11-07 1992-06-22 Nec Corp Semiconductor device
JP2005322920A (en) * 2004-04-30 2005-11-17 Samsung Electronics Co Ltd Method of manufacturing eeprom cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128778A (en) * 1974-09-04 1976-03-11 Hitachi Ltd HANDOTAITE IDENATSUSOCHITO SONOSEIZOHOHO
JPS56103473A (en) * 1980-01-23 1981-08-18 New Japan Radio Co Ltd Semiconductor device
JPS5750480A (en) * 1980-09-12 1982-03-24 Fuji Electric Co Ltd Constant voltage diode
JPS59112639A (en) * 1982-12-17 1984-06-29 Hitachi Ltd Semiconductor integrated circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128778A (en) * 1974-09-04 1976-03-11 Hitachi Ltd HANDOTAITE IDENATSUSOCHITO SONOSEIZOHOHO
JPS56103473A (en) * 1980-01-23 1981-08-18 New Japan Radio Co Ltd Semiconductor device
JPS5750480A (en) * 1980-09-12 1982-03-24 Fuji Electric Co Ltd Constant voltage diode
JPS59112639A (en) * 1982-12-17 1984-06-29 Hitachi Ltd Semiconductor integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100373A (en) * 1988-10-07 1990-04-12 Mitsubishi Electric Corp Semiconductor device
JPH04174540A (en) * 1990-11-07 1992-06-22 Nec Corp Semiconductor device
JP2005322920A (en) * 2004-04-30 2005-11-17 Samsung Electronics Co Ltd Method of manufacturing eeprom cell

Also Published As

Publication number Publication date
JP2713901B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US4016588A (en) Non-volatile semiconductor memory device
JP2555027B2 (en) Semiconductor memory device
CA2286193C (en) Nonvolatile memory
JP3004043B2 (en) Nonvolatile semiconductor memory device
US4131983A (en) Adjustment of avalanche voltage in DIFMOS memory devices by control of impurity doping
US6352886B2 (en) Method of manufacturing floating gate memory with substrate band-to-band tunneling induced hot electron injection
JPH0760864B2 (en) Semiconductor integrated circuit device
JPH02292869A (en) The plane flash eprom cell and its manufacture
JPH01146371A (en) Semiconductor storage device
TW200540871A (en) Non-volatile memory array with simultaneous write and erase feature
US20210082938A1 (en) Single poly non-volatile memory device, method of manufacturing the same and single poly non-volatile memory device array
US20020033499A1 (en) Nonvolatile memory cell with high programming efficiency
GB2032687A (en) Electrically programmable floating gate read only memory
US6528845B1 (en) Non-volatile semiconductor memory cell utilizing trapped charge generated by channel-initiated secondary electron injection
JPS63244763A (en) Nonvolatile semiconductor memory device
EP0138439A2 (en) Electrically erasable programable nonvolatile semiconductor memory device having dual-control gate
KR20030091780A (en) Flash memory cell erase scheme using both source and channel regions
JPS63226966A (en) Nonvolatile semiconductor memory device
JPH09205158A (en) Flash memory element and its manufacture
JPS62183161A (en) Semiconductor integrated circuit device
JP2544569B2 (en) Semiconductor memory device
JP2972954B2 (en) Programmable semiconductor memory
JPH02244767A (en) Non-volatile semiconductor memory
JPS6029232B2 (en) Non-volatile semiconductor memory device
JPH0462473B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees