JPS6324431B2 - - Google Patents

Info

Publication number
JPS6324431B2
JPS6324431B2 JP58121245A JP12124583A JPS6324431B2 JP S6324431 B2 JPS6324431 B2 JP S6324431B2 JP 58121245 A JP58121245 A JP 58121245A JP 12124583 A JP12124583 A JP 12124583A JP S6324431 B2 JPS6324431 B2 JP S6324431B2
Authority
JP
Japan
Prior art keywords
rare earth
seawater
boric acid
ions
hydrated oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58121245A
Other languages
Japanese (ja)
Other versions
JPS6012190A (en
Inventor
Yuzuru Ishibashi
Junji Nomura
Akira Kaneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58121245A priority Critical patent/JPS6012190A/en
Priority to US06/570,322 priority patent/US4596659A/en
Priority to GB08401170A priority patent/GB2135983B/en
Priority to FR8400678A priority patent/FR2539319B1/en
Priority to IT19220/84A priority patent/IT1173067B/en
Priority to IE1512/84A priority patent/IE57683B1/en
Priority to IN422/CAL/84A priority patent/IN161949B/en
Priority to AU30097/84A priority patent/AU549135B2/en
Priority to DE3424463A priority patent/DE3424463A1/en
Priority to KR1019840003846A priority patent/KR880000582B1/en
Publication of JPS6012190A publication Critical patent/JPS6012190A/en
Priority to US06/808,581 priority patent/US4666883A/en
Publication of JPS6324431B2 publication Critical patent/JPS6324431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海水又はかん水或いは苦汁水中より、
選択性良く、かつ高効率でホウ酸イオンを分離除
去する方法に関する。 海水より水酸化マグネシウムを製造するに際
し、海水中に溶存するホウ酸化合物が水酸化マグ
ネシウムと共沈し、その品質を低下させることか
ら、海水中のホウ酸化合物を除去する方法が研究
されている。 従来、水中に溶存するホウ酸化合物の分離方法
として、アニオン交換樹脂や多価アルコール類か
ら誘導されたホウ素選択樹脂等のキレート樹脂、
或いは水酸化マグネシウムを代表とする金属水酸
化物によつて吸着分離する方法等が提案されてい
る。しかしながら、海水中のホウ酸濃度はホウ素
原子として4〜5ppmと極めて低く、かつまた、
多量の各種イオンが共存するため、上記の方法で
はホウ素選択性或いは吸着能力が十分でなく、経
済的に有効な方法は見い出されていないのが実情
である。 本発明者らは、この様な問題点を解決すべく、
各種吸着剤及びイオン交換体について研究を重ね
本発明に到達した。 即ち、本発明は、海水又はかん水或いは苦汁水
中のホウ酸イオンを分離除去するに際して、PH5
〜10に調整した該水を希土類含水酸化物と接触さ
せてホウ酸イオンを吸着分離し、該ホウ酸イオン
を吸着した希土類含水酸化物をPH2〜4又はPH12
〜14に調整した水溶液と接触させて脱着再生し、
繰返し使用することを特徴とする海水又はかん水
或いは苦汁水中のホウ酸イオンの分離除去方法に
関するものである。 本発明でいうかん水とは、海水を濃縮したとき
食塩の飽和していない溶液、及び地下かん水の様
な食塩を含んではいるが飽和していない溶液をい
い、苦汁水とは海水からNaClを晶析等により分
離した後の残液をいう。 本発明に示す希土類元素の含水酸化物とは、希
土類元素、即ち、Y、La、Ce、Pr、Nd、Sm、
Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの
金属、酸化物、及び塩類の水酸化によつて得られ
る化合物である。希土類元素の種類としては、
La、Ce、Y、Sm等が好ましく、特にCe()が
吸着能が大きく、かつ、溶解度が極めて低いため
好ましい。 これらの希土類含水酸化物は各々単独で用いて
もよく、複数種を混合して用いてもよい。又、活
性炭、アルミナ等他の物質と共に用いることもで
きる。 これらの希土類含水酸化物は、例えば塩酸塩、
硫酸塩、硝酸塩等の塩類水溶液中にアルカリ溶液
を添加する方法等、上記塩類水溶液のPHを調整す
ることによつて、容易に沈殿物として得ることが
できる。 該希土類含水酸化物は、上記の様にして得られ
た沈殿物を懸濁状態のまま、或いは過して得ら
れるケーキ状態として使用に供することもできる
し、又、乾燥して粉体として或いは適当な有機高
分子材料を用いて造粒した造粒体等公知の方法で
担持した担持体として使用することもできる。 固定床又は流動床等の工学的方法により吸着除
去を実施するためには、0.1〜10mmφの造粒体と
して使用するのが好ましい。該造粒体は公知の有
機高分子材料を用いて容易に得ることができる。
該有機高分子材料としては、フエノール樹脂、ユ
リア樹脂、メラミン樹脂、ポリエステル樹脂、ジ
アリルフタレート樹脂、キシレン樹脂、アルキル
ベンゼン樹脂、エポキシ樹脂、エボキシアクリレ
ート樹脂、ケイ素樹脂、ウレタン樹脂、フツ素樹
脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリ
エチレン、塩素化ポリオレフイン、ポリプロピレ
ン、ポリスチレン、ABS樹脂、ポリアミド、メ
タクリル樹脂、ポリアセタール、ポリカーボネー
ト、セルロース系樹脂、ポリビニルアルコール、
ポリイミド、ポリスルホン、ポリアクリロニトリ
ル等が使用できるが、適当な耐水性、耐薬品をも
ち、かつ親水性が大きく、多孔質な構造を形成し
得るものが好ましく、ポリアミド、セルロース系
樹脂、ポリスルホン、ポリアクリロニトリル等が
特に好ましい。これらの樹脂を用いて得られる多
孔質な構造をもつ造粒体は十分な吸着速度をも
ち、固定床又は流動床等の工学的方法に用いるの
に好適である。 本発明の希土類含水酸化物が、どの様な作用機
構でホウ酸イオンを固定するのかは明らかでない
が、本発明でいう吸着とは、希土類含水酸化物或
いは水溶液中における該希土類含水酸化物の表面
状態と水溶液中のホウ酸イオンとの物理的及び/
又は化学的作用により、ホウ酸イオンが固定され
る現象をいう。 海水又はかん水或いは苦汁水からホウ酸イオン
を分離するに際し、該水のPHを調整してホウ酸イ
オンの解離状態及び、希土類含水酸化物の表面電
位を調整することは吸着量を増大させ、分離効率
を高めるのに有効である。即ち、PH5〜10、特に
好ましくは7〜9.5に調整するのが良い。PH5以
下では著しく吸着能力が低下し、効率が悪くなる
し、PH10以上では吸着能力が低下すると共に、該
水中のマグネシウムが水酸化物として沈殿してし
まうため好ましくない。 又、海水又はかん水或いは苦汁水からホウ酸イ
オンを分離するに際し、該水中に炭酸イオンが共
存するとホウ酸イオンの吸着を妨害する傾向があ
るため、予め炭酸イオンを除去しておくことが好
ましい。該イオンは公知の方法、例えば、PHを4
〜5以下に調整して曝気或いは煮沸する方法等で
容易に実施することができる。上記の方法によれ
ば、例えば、通常の海水中に溶存する炭酸イオン
濃度1mM/を0.1mM/以下にすることがで
きる。 該希土類含水酸化物を用いてホウ酸イオンを吸
着させる方法は、該希土類含水酸化物をホウ酸イ
オンを含有する海水又はかん水或いは苦汁水とを
接触させる方法であればどの様な方法でも良い。
例えば、希土類含水酸化物の懸濁液、ケーキ、粉
体或いは造粒体を海水又はかん水或いは苦汁水中
に加え懸濁させて接触させる方法、造粒体又は粉
体を充填した塔に該水を通水して接触させる方
法、希土類含水酸化物を多孔性物質、不織布等に
含浸固定し、該固定体を該水中に浸漬する方法等
が有効である。又、該水中に希土類元素の水溶性
塩を溶解させた後、PHの調整等適当な方法で希土
類含水酸化物の沈殿を生ぜしめ、溶存ホウ酸イオ
ンを吸着させることもできる。 上記接触時の温度は常温でよい。所望により温
度を上げることもできる。接触時間は、接触時の
物理的条件や粒径等によつて左右されるが、通常
0.5〜10分でよい。 希土類含水酸化物の添加量は、該希土類含水酸
化物の単位量当りの飽和吸着量と溶液中のホウ酸
濃度との間に相関関係があるため、初濃度と目標
到達濃度とによつて好適な量を設定することがで
きる。例えば、海水中のホウ酸イオンをCe()
の含水酸化物スラリーを用いて分離する場合に
は、3〜1Kg―固形分/m3の添加量で、ホウ素原
子として2〜0.1ppmの濃度にすることができる。 又、上記の方法でホウ酸イオンを吸着せしめた
希土類含水酸化物は、PHの調整、塩の添加等の適
当な方法により脱着し再生することができ、再生
した希土類含水酸化物を用いて繰返し吸着分離す
ることができる。上記の脱着は、吸着した希土類
含水酸化物をPH12〜14に調整した水溶液と接触さ
せることにより行なうことができる。該脱着液
は、アルカリ性水溶液であり、アルカリ種として
はNaOHが脱着効率が大きく特に好ましい。又、
Ce()含水酸化物に代表される様な酸に比較的
安定な希土類含水酸化物については、PH2〜4に
調整した水溶液と接触させることによつても脱着
することができる。該水溶液は、ハロゲン族陰イ
オン、硫酸イオン、硝酸イオン、リン酸イオン等
無機陰イオン及び/又は有機酸陰イオンを共存さ
せることが好ましく、特にフツ素イオン、硫酸イ
オンが効果が大きく特に好ましい。該陰イオンの
濃度は、イオン種により異なるが、0.5〜1000mg
―イオン/が適当であり、例えば、硫酸イオン
の場合には1〜50mg―イオン/でよい。 PH4以上の条件下では脱着効率が小さく、又、
PH2以下の条件下では希土類含水酸化物の溶解が
著しいため好ましくない。 以下、実施例により更に詳細に説明する。 実施例 1〜6 各種希土類含水酸化物を天然海水に懸濁させて
ホウ酸イオンを吸着させた後、脱着させた例を示
す。 予めPH3に調整して脱炭酸した後PH9に再調整
した海水(ホウ酸濃度:B2O3換算15ppm)に下
記の如く調整した希土類含水酸化物を1g―固形
分/の割合で添加し撹拌した。2時間後の試料
水中のホウ酸濃度をICP(高周波誘導結合プラズ
マ発光分析法)で測定し、平衡吸着量及び除去率
を求めた。 〔平衡吸着量〕={〔初濃度〕−〔吸着後濃度〕}/
〔単位容量当りの添加量〕 〔除去率〕=1−〔吸着後濃度〕/〔初濃度〕 次いで、ホウ酸イオンを吸着した該希土類含水
酸化物を別し、PH13.5に調整したNaOH水溶液
に1W/V%の割合で該希土類含水酸化物を添加
し撹拌した。2時間後のNaOH水溶液中のホウ
酸濃度を測定し、脱着率を求めた。 〔脱着率〕={〔液量〕×〔ホウ酸濃度〕
}/{〔Ce含水酸化物量〕×〔平衡吸着量〕} 〔希土類含水酸化物の調整法〕 実施例1(中国産塩化希土)&実施例2(Ce) 中国産塩化希土又は塩化セリウム(特級試薬)
を蒸留水に溶解し、セリウムと等モル量の過酸化
水素水を添加して撹拌した後、アンモニア水を添
加してPH9に調整した。その後85℃に加熱して過
剰の過酸化水素を分解した後、1晩熟成して過
しそのケーキを試料とした。 実施例 3〜6 (La、Sm、Gd、Y) 各元素の塩化物(特級試薬)を蒸留水に溶解
し、アンモニア水を添加してPH9に調整した。生
じた沈殿を1晩熟成して過し、そのケーキを試
料とした。 なお、比較例としてMg及びTiの含水酸化物を
実施例と同様にして吸着率を求めた。Tiの含水
酸化物はYの場合と同様にして調整し、Mgの水
酸化物は水酸化ナトリウムを添加してPH10.5に調
整した他はYの場合と同様にして調整した。結果
を表―1に示す。
The present invention uses seawater, brine, or bittern water.
The present invention relates to a method for separating and removing borate ions with good selectivity and high efficiency. When producing magnesium hydroxide from seawater, boric acid compounds dissolved in seawater co-precipitate with magnesium hydroxide, reducing its quality, so methods to remove boric acid compounds from seawater are being researched. . Conventionally, as a method for separating boric acid compounds dissolved in water, chelate resins such as anion exchange resins and boron selective resins derived from polyhydric alcohols,
Alternatively, a method of adsorption separation using a metal hydroxide, typified by magnesium hydroxide, has been proposed. However, the concentration of boric acid in seawater is extremely low at 4 to 5 ppm as boron atoms, and
Since a large amount of various ions coexist, the above-mentioned method does not have sufficient boron selectivity or adsorption ability, and the reality is that no economically effective method has been found. The present inventors, in order to solve such problems,
The present invention was achieved through repeated research on various adsorbents and ion exchangers. That is, the present invention provides a method for separating and removing boric acid ions in seawater, brine, or bittern water.
The water adjusted to pH 2-10 is brought into contact with a rare earth hydrated oxide to adsorb and separate borate ions, and the rare earth hydrated oxide that has adsorbed the borate ions is heated to a pH of 2 to 4 or PH12.
It is desorbed and regenerated by contacting with an aqueous solution adjusted to ~14.
The present invention relates to a method for separating and removing borate ions in seawater, brine, or bittern water, which is characterized by repeated use. In the present invention, brine refers to a solution that is not saturated with salt when seawater is concentrated, or a solution that contains salt but is not saturated, such as underground brine, and bittern water refers to a solution that is not saturated with salt when seawater is concentrated. The residual liquid after separation by analysis etc. Hydrous oxides of rare earth elements according to the present invention include rare earth elements, such as Y, La, Ce, Pr, Nd, Sm,
It is a compound obtained by hydroxylation of metals, oxides, and salts of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The types of rare earth elements are:
La, Ce, Y, Sm, etc. are preferable, and Ce() is particularly preferable because it has a large adsorption capacity and extremely low solubility. These rare earth hydrated oxides may be used alone or in combination. It can also be used together with other substances such as activated carbon and alumina. These rare earth hydrated oxides are, for example, hydrochloride,
It can be easily obtained as a precipitate by adjusting the pH of the aqueous salt solution, such as by adding an alkaline solution to the aqueous solution of salts such as sulfates and nitrates. The rare earth hydrated oxide can be used as a suspension of the precipitate obtained as described above, or as a cake obtained by filtration, or as a powder after drying. It can also be used as a carrier supported by a known method, such as a granule formed using a suitable organic polymer material. In order to carry out adsorption removal by an engineering method such as a fixed bed or a fluidized bed, it is preferable to use granules with a diameter of 0.1 to 10 mm. The granules can be easily obtained using known organic polymer materials.
The organic polymer materials include phenolic resin, urea resin, melamine resin, polyester resin, diallyl phthalate resin, xylene resin, alkylbenzene resin, epoxy resin, epoxy acrylate resin, silicon resin, urethane resin, fluorine resin, and vinyl chloride resin. , vinylidene chloride resin, polyethylene, chlorinated polyolefin, polypropylene, polystyrene, ABS resin, polyamide, methacrylic resin, polyacetal, polycarbonate, cellulose resin, polyvinyl alcohol,
Polyimide, polysulfone, polyacrylonitrile, etc. can be used, but those that have appropriate water resistance and chemical resistance, are highly hydrophilic, and can form a porous structure are preferred; polyamide, cellulose resin, polysulfone, polyacrylonitrile are preferred. etc. are particularly preferred. Granules with a porous structure obtained using these resins have a sufficient adsorption rate and are suitable for use in engineering methods such as fixed bed or fluidized bed. It is not clear how the rare earth hydrated oxide of the present invention fixes borate ions, but adsorption in the present invention refers to the surface of the rare earth hydrated oxide or the rare earth hydrated oxide in an aqueous solution. Physical and/or physical relationship between the state and borate ions in aqueous solution
Or, it refers to a phenomenon in which borate ions are fixed due to chemical action. When separating borate ions from seawater, brine, or bittern water, adjusting the pH of the water to adjust the dissociation state of borate ions and the surface potential of rare earth hydrous oxides increases the adsorption amount and improves separation. Effective in increasing efficiency. That is, it is best to adjust the pH to 5 to 10, particularly preferably 7 to 9.5. If the pH is lower than 5, the adsorption capacity will be significantly lowered and the efficiency will be poor, and if the pH is higher than 10, the adsorption capacity will be lowered and magnesium in the water will precipitate as hydroxide, which is not preferable. Furthermore, when separating borate ions from seawater, brine, or bittern water, it is preferable to remove carbonate ions in advance because if carbonate ions coexist in the water, they tend to interfere with the adsorption of borate ions. The ion can be prepared by a known method, for example, by adjusting the pH to 4.
This can be easily carried out by adjusting the temperature to 5 or less and aerating or boiling. According to the above method, for example, the concentration of carbonate ions dissolved in normal seawater, 1mM/, can be reduced to 0.1mM/or less. The method for adsorbing borate ions using the rare earth hydrated oxide may be any method as long as the rare earth hydrated oxide is brought into contact with seawater, brine, or bittern water containing borate ions.
For example, a method in which a suspension, cake, powder, or granule of a rare earth hydrated oxide is added to seawater, brine, or bittern water and brought into contact; Effective methods include a method in which water is brought into contact with the porous material, a method in which a porous material, a nonwoven fabric, etc. is impregnated and fixed with a rare earth hydrated oxide, and the fixed body is immersed in the water. Alternatively, after dissolving a water-soluble salt of a rare earth element in the water, the rare earth hydrated oxide can be precipitated by an appropriate method such as adjusting the pH, and dissolved borate ions can be adsorbed. The temperature during the above contact may be room temperature. The temperature can also be increased if desired. The contact time depends on the physical conditions at the time of contact, particle size, etc., but usually
0.5 to 10 minutes is sufficient. The amount of the rare earth hydrated oxide to be added is appropriate depending on the initial concentration and the target concentration, since there is a correlation between the saturated adsorption amount per unit amount of the rare earth hydrated oxide and the concentration of boric acid in the solution. You can set a certain amount. For example, the borate ion in seawater is Ce()
In the case of separation using a hydrous oxide slurry of 3 to 1 Kg-solid content/m 3 , the concentration of boron atoms can be 2 to 0.1 ppm. In addition, the rare earth hydrated oxide that has adsorbed boric acid ions in the above method can be desorbed and regenerated by appropriate methods such as adjusting the pH and adding salt, and can be repeatedly used with the regenerated rare earth hydrated oxide. Can be separated by adsorption. The above desorption can be carried out by bringing the adsorbed rare earth hydrous oxide into contact with an aqueous solution adjusted to pH 12-14. The desorption liquid is an alkaline aqueous solution, and NaOH is particularly preferable as the alkaline species since it has a high desorption efficiency. or,
Rare earth hydrated oxides that are relatively stable to acids, such as Ce() hydrated oxides, can also be desorbed by contacting them with an aqueous solution adjusted to a pH of 2 to 4. The aqueous solution preferably contains inorganic anions and/or organic acid anions such as halogen anions, sulfate ions, nitrate ions, and phosphate ions, and fluoride ions and sulfate ions are particularly preferred because they are particularly effective. The concentration of the anion varies depending on the ion species, but is 0.5 to 1000 mg.
-ion/ is suitable, for example, in the case of sulfate ion, it may be 1 to 50 mg-ion/. Under conditions of PH4 or higher, the desorption efficiency is low, and
Conditions where the pH is below 2 are not preferred because rare earth hydrated oxides are significantly dissolved. Hereinafter, it will be explained in more detail with reference to Examples. Examples 1 to 6 Examples will be shown in which various rare earth hydrated oxides are suspended in natural seawater to adsorb boric acid ions and then desorbed. Rare earth hydrated oxide prepared as below was added to seawater (boric acid concentration: 15 ppm converted to B 2 O 3 ), which had been adjusted to pH 3 and decarboxylated in advance, and then readjusted to pH 9, and stirred. did. The boric acid concentration in the sample water after 2 hours was measured by ICP (inductively coupled plasma emission spectrometry), and the equilibrium adsorption amount and removal rate were determined. [Equilibrium adsorption amount] = {[Initial concentration] - [Concentration after adsorption]}/
[Amount added per unit volume] [Removal rate] = 1 - [Concentration after adsorption] / [Initial concentration] Next, the rare earth hydrous oxide that has adsorbed borate ions is separated, and an aqueous NaOH solution adjusted to pH 13.5 is added. The rare earth hydrated oxide was added to the mixture at a ratio of 1 W/V% and stirred. The boric acid concentration in the NaOH aqueous solution after 2 hours was measured to determine the desorption rate. [Desorption rate] = {[Liquid volume] x [Boric acid concentration]
}/{[Ce hydrous oxide amount] x [equilibrium adsorption amount]} [Preparation method of rare earth hydrate oxide] Example 1 (Rare earth chloride from China) & Example 2 (Ce) Rare earth chloride or cerium chloride from China (Special grade reagent)
was dissolved in distilled water, and an equimolar amount of hydrogen peroxide was added to the solution, followed by stirring, and then aqueous ammonia was added to adjust the pH to 9. After that, the cake was heated to 85° C. to decompose excess hydrogen peroxide, and then aged overnight, and the resulting cake was used as a sample. Examples 3 to 6 (La, Sm, Gd, Y) Chlorides of each element (special grade reagent) were dissolved in distilled water, and aqueous ammonia was added to adjust the pH to 9. The resulting precipitate was aged overnight and the resulting cake was used as a sample. As a comparative example, the adsorption rates of hydrated oxides of Mg and Ti were determined in the same manner as in the examples. The hydrated oxide of Ti was prepared in the same manner as in the case of Y, and the hydroxide of Mg was prepared in the same manner as in the case of Y, except that sodium hydroxide was added to adjust the pH to 10.5. The results are shown in Table-1.

【表】【table】

【表】 実施例 7、8 Ce()含水酸化物を用いてかん水及び苦汁水
中のホウ酸イオンを吸着させ、次いで脱着させた
例を示す。 天然海水を濃縮して得られたかん水(10゜Be′、
ホウ酸濃度:B2O3換算42ppm)及び苦汁水
(33゜Be′、ホウ酸濃度:B2O3換算142ppm)につ
いてCe()含水酸化物を67mg―固形分/B2O3
mgの割合で添加して除去率を求めた。かん水、苦
汁水の脱炭酸、PH調整等他の条件は実施例2と同
様である。次いで、ホウ酸イオンを吸着した該
Ce含水酸化物を別し、PH2.0に調整した
30mM/―Na2SO4水溶液に1W/V%の割合で
添加し撹拌して脱着させた。実施例2と同様にし
て脱着率を求めた。使用したかん水及び苦汁水の
主成分組成を表―2に示す。結果を表―3に示
す。
[Table] Examples 7 and 8 Examples are shown in which boric acid ions in brine and bittern water were adsorbed and then desorbed using Ce() hydrous oxide. Brine obtained by concentrating natural seawater (10°Be′,
For boric acid concentration: 42 ppm in terms of B 2 O 3 ) and bittern water (33°Be', boric acid concentration: 142 ppm in terms of B 2 O 3 ), 67 mg of Ce () hydrated oxide - solid content / B 2 O 3 -
The removal rate was determined by adding at a rate of mg. Other conditions such as brine, decarboxylation of bittern water, and pH adjustment were the same as in Example 2. Next, the material that adsorbed borate ions was
Separate Ce hydrated oxide and adjust to PH2.0
It was added to a 30mM/-Na 2 SO 4 aqueous solution at a rate of 1W/V% and desorbed by stirring. The desorption rate was determined in the same manner as in Example 2. Table 2 shows the main component composition of the brine and bittern water used. The results are shown in Table-3.

【表】【table】

【表】 実施例 9〜15 Ce()含水酸化物について、アルカリ性水溶
液で脱着し、次いで再吸着させた例を示す。 実施例2と同様にしてホウ酸イオンを吸着させ
たCe()含水酸化物を、表―4に示すアルカリ
種及びPHを調整した水溶液に2W/V%の割合で
懸濁させ撹拌した。2時間経過後、液中のホウ酸
濃度を測定して脱着率を求めた。次いで、実施例
2と同様にして再吸着させ、除去率を求めた。な
お、再吸着時には懸濁液のPHを9に調整した。 結果を表−4に示す。
[Table] Examples 9 to 15 Examples are shown in which Ce() hydrous oxide was desorbed with an alkaline aqueous solution and then re-adsorbed. Ce () hydrated oxide with borate ions adsorbed in the same manner as in Example 2 was suspended in an aqueous solution with the alkaline species and pH adjusted as shown in Table 4 at a ratio of 2W/V% and stirred. After 2 hours, the concentration of boric acid in the solution was measured to determine the desorption rate. Next, it was adsorbed again in the same manner as in Example 2, and the removal rate was determined. Note that the pH of the suspension was adjusted to 9 during re-adsorption. The results are shown in Table 4.

【表】 る再吸着時の除去率の割合(百分率)を示
す。
実施例 16〜26 Ce()含水酸化物について、酸性水溶液で脱
着し、次いで再吸着させた例を示す。 表―5に示す種々の酸性水溶液について実施例
9〜15と同様にして脱着率及び、再吸着時の除去
率を求めた。又、脱着後の水溶液中のCeの濃度
をICPで測定し溶解量を求めた。 結果を表―5に示す。
[Table] Shows the removal rate (percentage) during re-adsorption.
Examples 16 to 26 Examples will be shown in which Ce() hydrous oxide was desorbed with an acidic aqueous solution and then re-adsorbed. The desorption rate and the removal rate during re-adsorption were determined for the various acidic aqueous solutions shown in Table 5 in the same manner as in Examples 9-15. In addition, the concentration of Ce in the aqueous solution after desorption was measured by ICP to determine the amount dissolved. The results are shown in Table-5.

【表】 実施例 27 ポリアクリロニトリル樹脂で造粒したCe()
含水酸化物を用いて海水中のホウ酸イオンを吸着
させ、更に脱着させた後再吸着させた例を示す。 ポリアクリロニトリル樹脂で造粒した造粒体
(粒径1.0〜0.5mmφ、粒内空隙率0.6)を、10mmφ
のガラス製カラムに充填容量として20ml充填し
た。(該20mlの造粒体中にはCe()含水酸化物
8.0gを含有する。)予めPH3に調整し曝気して脱
炭酸した後PH9に再調整した海水を、上記充填カ
ラムに400ml/hrの速度で12時間通水した。該海
水のホウ酸濃度は14ppm(B2O3換算)であつた。
12時間後のカラム出口の海水中のホウ酸濃度と、
通水した海水総量4.8のホウ酸濃度を測定し、
12時間後の出口濃度と総吸着量を求めた。 引き続き、上記吸着後のカラムに400ml/hrの
速度で30分間蒸留水を通水して海水を置換した
後、0.1N NaOH水溶液(PH13)を60ml/hrの速
度で6時間通水した。カラムより流出した
NaOH水溶液360ml中のホウ酸濃度を測定し、総
脱着量と脱着率を求めた。 更に、上記脱着後の造粒体を取出し、PH2の塩
酸水溶液200ml中に1時間浸漬して造粒体内のPH
を調整した後、カラムに再充填した。上記と同様
に海水を通水して12時間後の出口濃度と総吸着量
を求めた。 引き続き、PH2に調整した60meq/の濃度の
Na2SO4水溶液を400ml/hrの速度で6時間通水
した。カラムより流出したNa2SO4水溶液中のホ
ウ酸濃度を測定し、総脱着量と脱着率を求めた。 更に、脱着後の造粒体を取出し、PH12の
NaOH水溶液200ml中に1時間浸漬して造粒体内
のPHを調整した後、カラムに再充填した。再度上
記と同様に海水を通水してホウ酸イオンを吸着さ
せ、12時間後の出口濃度と総吸着量を求めた。 以上の結果を表―6に示す。なお、脱着率は次
式で計算した値である。 〔脱着率〕=〔総脱着量〕/〔脱着前の総吸着量〕×
100
[Table] Example 27 Ce () granulated with polyacrylonitrile resin
An example will be shown in which boric acid ions in seawater are adsorbed using a hydrous oxide, further desorbed, and then re-adsorbed. Granules granulated with polyacrylonitrile resin (particle size 1.0 to 0.5 mmφ, intragranular porosity 0.6) are
The sample was filled into a glass column with a packing volume of 20 ml. (The 20ml granules contain Ce() hydrated oxide.
Contains 8.0g. ) Seawater, which had been previously adjusted to pH 3, aerated and decarboxylated, and readjusted to pH 9, was passed through the packed column at a rate of 400 ml/hr for 12 hours. The boric acid concentration of the seawater was 14 ppm (in terms of B 2 O 3 ).
Boric acid concentration in seawater at the column outlet after 12 hours,
We measured the boric acid concentration in the total amount of seawater that passed through, 4.8,
The outlet concentration and total adsorption amount after 12 hours were determined. Subsequently, distilled water was passed through the column after adsorption at a rate of 400 ml/hr for 30 minutes to replace seawater, and then a 0.1N NaOH aqueous solution (PH13) was passed at a rate of 60 ml/hr for 6 hours. flowed out from the column
The boric acid concentration in 360 ml of NaOH aqueous solution was measured, and the total desorption amount and desorption rate were determined. Furthermore, the granules after the above desorption were taken out and immersed in 200 ml of hydrochloric acid aqueous solution with a pH of 2 for 1 hour to reduce the pH inside the granules.
After adjusting, the column was refilled. In the same manner as above, the outlet concentration and total adsorption amount were determined 12 hours after passing seawater. Next, at a concentration of 60meq/adjusted to PH2
A Na 2 SO 4 aqueous solution was passed through the tube at a rate of 400 ml/hr for 6 hours. The boric acid concentration in the Na 2 SO 4 aqueous solution flowing out from the column was measured, and the total desorption amount and desorption rate were determined. Furthermore, the granules were taken out after desorption and heated to PH12.
After adjusting the pH inside the granules by immersing them in 200 ml of NaOH aqueous solution for 1 hour, the column was refilled. Seawater was passed through the tube again in the same manner as above to adsorb borate ions, and the outlet concentration and total amount of adsorption after 12 hours were determined. The above results are shown in Table-6. Note that the desorption rate is a value calculated using the following formula. [Desorption rate] = [Total desorption amount] / [Total adsorption amount before desorption] ×
100

【表】 実施例 28 脱炭酸処理を行なわない天然海水にCe()含
水酸化物を添加し、吸着させた例を示す。 天然海水を脱炭酸せずにPH9に調整して使用し
た他は実施例2と同様に行なつた。結果を実施例
2と共に表―7に示す。なお、炭酸イオンの定量
は陰イオンクロマトグラフイーで測定した。
[Table] Example 28 This is an example in which Ce() hydrous oxide was added to natural seawater without decarboxylation treatment and adsorbed. The same procedure as in Example 2 was carried out except that natural seawater was used after being adjusted to pH 9 without being decarboxylated. The results are shown in Table 7 together with Example 2. Note that carbonate ions were determined by anion chromatography.

【表】 以上の様に、本発明によれば、海水又はかん水
或いは苦汁水中から選択性良く、かつ、高い効率
でホウ酸イオンを分離でき、更に希土類含水酸化
物は容易に再生して使用できるので、工業的なホ
ウ酸イオンの分離除去方法として好適である。 本発明の方法は、海水又はかん水或いは苦汁水
中から水酸化マグネシウムを製造する場合の様に
該水中にホウ酸イオンが存在しないことが必要と
される分野に応用することができる。
[Table] As described above, according to the present invention, borate ions can be separated from seawater, brine, or bittern water with good selectivity and high efficiency, and rare earth hydrated oxides can be easily regenerated and used. Therefore, it is suitable as an industrial method for separating and removing borate ions. The method of the present invention can be applied to fields where the absence of borate ions is required in water, such as in the production of magnesium hydroxide from seawater, brine or bittern water.

Claims (1)

【特許請求の範囲】 1 海水又はかん水或いは苦汁水中のホウ酸イオ
ンを分離除去するに際して、PH5〜10に調整した
該水を希土類含水酸化物と接触させてホウ酸イオ
ンを吸着分離し、該ホウ酸イオンを吸着した希土
類含水酸化物をPH2〜4又はPH12〜14に調整した
水溶液と接触させて脱着再生し、繰返し使用する
ことを特徴とする海水又はかん水或いは苦汁水中
のホウ酸イオンの分離除去方法。 2 希土類含水酸化物がCe()含水酸化物であ
る特許請求の範囲第1項記載の方法。 3 有機高分子材料で担持された希土類含水酸化
物を用いることを特徴とする特許請求の範囲第1
項記載の方法。
[Scope of Claims] 1. When separating and removing boric acid ions in seawater, brine, or bittern water, the water adjusted to pH 5 to 10 is brought into contact with a rare earth hydrated oxide to adsorb and separate the boric acid ions, and Separation and removal of boric acid ions in seawater, brine or bittern water, characterized in that rare earth hydrated oxides that have adsorbed acid ions are brought into contact with an aqueous solution adjusted to PH2-4 or PH12-14 for desorption and regeneration and repeated use. Method. 2. The method according to claim 1, wherein the rare earth hydrated oxide is a Ce() hydrated oxide. 3 Claim 1 characterized in that a rare earth hydrated oxide supported on an organic polymer material is used.
The method described in section.
JP58121245A 1983-01-18 1983-07-04 Method for separating and removing borate ion in seawater, salt water or bittern water Granted JPS6012190A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP58121245A JPS6012190A (en) 1983-07-04 1983-07-04 Method for separating and removing borate ion in seawater, salt water or bittern water
US06/570,322 US4596659A (en) 1983-01-18 1984-01-13 Selective separation of borate ions in water
GB08401170A GB2135983B (en) 1983-01-18 1984-01-17 Selective adsorption of borate ions from aqueous solution
FR8400678A FR2539319B1 (en) 1983-01-18 1984-01-17 PROCESS FOR THE SEPARATION OF BORATE IONS, ADSORBENT OF THESE IONS AND PROCESS FOR THE PREPARATION OF THE ADSORBENT
IT19220/84A IT1173067B (en) 1983-01-18 1984-01-18 SELECTIVE SEPARATION OF BORATE IONS IN WATER
IE1512/84A IE57683B1 (en) 1983-07-04 1984-06-15 Selective adsorption of borate ions from aqueous solutions
IN422/CAL/84A IN161949B (en) 1983-07-04 1984-06-18
AU30097/84A AU549135B2 (en) 1983-07-04 1984-07-02 Process for separation of borate ion from water
DE3424463A DE3424463A1 (en) 1983-07-04 1984-07-03 Process and adsorbent for isolating borate ions from water
KR1019840003846A KR880000582B1 (en) 1983-07-04 1984-07-04 Separating method for borate ion in water
US06/808,581 US4666883A (en) 1983-01-18 1985-12-13 Selective separation of borate ions in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121245A JPS6012190A (en) 1983-07-04 1983-07-04 Method for separating and removing borate ion in seawater, salt water or bittern water

Publications (2)

Publication Number Publication Date
JPS6012190A JPS6012190A (en) 1985-01-22
JPS6324431B2 true JPS6324431B2 (en) 1988-05-20

Family

ID=14806488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121245A Granted JPS6012190A (en) 1983-01-18 1983-07-04 Method for separating and removing borate ion in seawater, salt water or bittern water

Country Status (6)

Country Link
JP (1) JPS6012190A (en)
KR (1) KR880000582B1 (en)
AU (1) AU549135B2 (en)
DE (1) DE3424463A1 (en)
IE (1) IE57683B1 (en)
IN (1) IN161949B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665279B2 (en) * 2000-01-14 2011-04-06 栗田工業株式会社 Method for treating boron-containing water
KR100698672B1 (en) * 2003-05-01 2007-03-23 가부시키가이샤 니혼 가이스이 Adsorbent and process for producing the same
WO2005056175A1 (en) 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation Porous formed article and method for production thereof
JP4637737B2 (en) * 2005-12-16 2011-02-23 株式会社日本海水 Regeneration method of boron adsorbent
KR200428457Y1 (en) * 2006-07-19 2006-10-12 신준희 Screw driver with scissors
JP4948305B2 (en) * 2007-07-23 2012-06-06 合同資源産業株式会社 Method and system for circulating use of polarizing film manufacturing chemicals
JP6840354B2 (en) * 2017-02-03 2021-03-10 学校法人早稲田大学 Treatment method of boron-containing water
JP6950893B2 (en) * 2018-06-21 2021-10-13 学校法人早稲田大学 Treatment method of boron-containing water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692671A (en) * 1970-10-01 1972-09-19 North American Rockwell Rare earth ion removal from waste water
US3736255A (en) * 1970-10-01 1973-05-29 North American Rockwell Water decolorization

Also Published As

Publication number Publication date
IE841512L (en) 1985-01-04
AU3009784A (en) 1985-01-10
IN161949B (en) 1988-03-05
KR850001012A (en) 1985-03-14
AU549135B2 (en) 1986-01-16
KR880000582B1 (en) 1988-04-16
IE57683B1 (en) 1993-02-24
DE3424463C2 (en) 1989-06-15
JPS6012190A (en) 1985-01-22
DE3424463A1 (en) 1985-01-17

Similar Documents

Publication Publication Date Title
EP0191893B1 (en) Process for adsorption treatment of dissolved fluorine
US6849187B2 (en) Arsenic removal media
US9102551B2 (en) Media for the removal of heavy metals and volatile byproducts from drinking water
US4867882A (en) Method for reducing the amount of anionic metal ligand complex in a solution
JPH0445213B2 (en)
US4596659A (en) Selective separation of borate ions in water
JPS6324431B2 (en)
JP5110463B2 (en) Method for producing magnetic nanocomplex material having anion adsorptivity and magnetism
JPH022612B2 (en)
Kawasaki et al. Relationship between anion adsorption and physicochemical properties of aluminum oxide
JP2004066161A (en) Water treatment method
JPS59132986A (en) Separation of borate ion
JPS6259973B2 (en)
JPH0256958B2 (en)
JPS61192340A (en) Fluorine complex ion adsorbent
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JP4547528B2 (en) Nitrate ion selective adsorbent, production method thereof, nitrate ion removal method and nitrate ion recovery method using the same
JP3911884B2 (en) Arsenic compound removal method and adsorbent
JP4000370B2 (en) Method for removing nitrate ions from various anion-containing aqueous solutions and method for recovering nitrate ions
JP2859897B2 (en) A method for reducing the amount of anionic metal-ligand complex in solution
JPS6136973B2 (en)
JPS63287547A (en) Adsorbent for fluoride ion
JP2006263603A (en) Method for treating boron-containing water
JP4392493B2 (en) Method for removing and recovering phosphorus
JP2641239B2 (en) Silver adsorbent and method of using the same